LOGIC | SATISFIABILITY MODULO THEORIES

SMT BASICS

WS 2018/2019 (342.208)

Armin Biere Martina Seidl biere@jku.at martina.seidl@jku.at

Institute for Formal Models and VerificationJohannes Kepler Universität Linz

Version 2018.1

Satisfiability Modulo Theories (SMT)

Example

```
f(x) \neq f(y) \ \land \ x + u = 3 \ \land \ v + y = 3 \ \land \ u = a[z] \ \land \ v = a[w] \ \land \ z = w
```

- formulas in first-order logic usually without quantifiers, variables implicitly existentially quantified with sorted / typed symbols including functions / constants / predicates are interpreted SMT quantifier reasoning weaker than in first-order theorem proving (FO) much richer language compared to propositional logic (SAT)
- no need to axiomatize "theories" using axioms with quantifiers important theories are "built-in": uninterpreted functions, equality, arithmetic, arrays, bit-vectors . . . focus is on decidable theories, thus fully automatic procedures
- state-of-the-art SMT solvers essentially rely on SAT solvers
 SAT solver enumerates solutions to a propositional skeleton propositional and theory conflicts recorded as propositional clauses
 DPLL(T), CDCL (T), read DPLL modulo theory T or CDCL modulo T
- SMT sweet spot between SAT and FO: many (industrial) applications standardized language SMTLIB used in applications and competitions

Buggy Program

```
int middle (int x, int y, int z) {
 int m = z;
 if (y < z) {
  if (x < y)
   m = y;
   else if (x < z)
   m = v;
 } else {
   if (x > y)
   m = y;
   else if (x > z)
    m = x;
 return m;
```

Test Suite for Buggy Program

```
middle(1, 2, 3) = 2
middle (1, 3, 2) = 2
middle (2, 1, 3) = 1
middle (2, 3, 1) = 2
middle (3, 1, 2) = 2
middle (3, 2, 1) = 2
middle (1, 1, 1) = 1
middle(1, 1, 2) = 1
middle (1, 2, 1) = 1
middle (2, 1, 1) = 1
middle (1, 2, 2) = 2
middle (2, 1, 2) = 2
middle (2, 2, 1) = 2
```

- This black box test suite has to be generated manually.
- How to ensure that it covers all cases?

Need to check outcome of each run individually and determine correct result.

- Difficult for large programs.
- Better use specification and check it.

Specification for Middle

let a be an array of size 3 indexed from 0 to 2

$$a[i] = x \land a[j] = y \land a[k] = z$$

$$\land$$

$$a[0] \le a[1] \land a[1] \le a[2]$$

$$\land$$

$$i \ne j \land i \ne k \land j \ne k$$

$$\rightarrow$$

$$m = a[1]$$

median obtained by sorting and taking middle element in the order coming up with this specification is a manual process

Encoding of Middle Program in Logic

```
int m = z;
if (v < z) {
                                                      (y < z \land x < y \rightarrow m = y)
  if (x < y)
    m = y;
                                                      (y < z \land x > y \land x < z \rightarrow m = y)
  else if (x < z)
    m = y;
                                                      (y < z \land x \ge y \land x \ge z \rightarrow m = z)
} else {
  if (x > y)
                                                      (y \ge z \land x > y \rightarrow m = y)
    m = v;
  else if (x > z)
                                                      (y \ge z \land x \le y \land x > z \rightarrow m = x)
    m = x:
                                                      (u > z \land x < u \land x < z \rightarrow m = z)
return m;
```

this formula can be generated automatically by a compiler

Translating Checking of Specification as SMT Problem

```
let P be the encoding of the program, and S of the specification program is correct if "P \to S" is valid program has a bug if "P \to S" is invalid program has a bug if negation of "P \to S" is satisfiable (has a model) program has a bug if "P \land \neg S" is satisfiable (has a model)
```

Checking Specification as SMT Problem Example

$$\begin{array}{ll} (y < z \wedge x < y \rightarrow m = y) & \wedge \\ (y < z \wedge x \geq y \wedge x < z \rightarrow m = y) & \wedge \\ (y < z \wedge x \geq y \wedge x \geq z \rightarrow m = z) & \wedge \\ (y \geq z \wedge x \geq y \wedge x \geq z \rightarrow m = z) & \wedge \\ (y \geq z \wedge x \leq y \wedge x > z \rightarrow m = x) & \wedge \\ (y \geq z \wedge x \leq y \wedge x \leq z \rightarrow m = z) & \wedge \\ (y \geq z \wedge x \leq y \wedge x \leq z \rightarrow m = z) & \wedge \\ a[i] = x \wedge a[j] = y \wedge a[k] = z & \wedge \\ a[0] \leq a[1] \wedge a[1] \leq a[2] & \wedge \\ i \neq j \wedge i \neq k \wedge j \neq k & \wedge \\ m \neq a[1] \end{array}$$

Encoding with Linear Integer Arithmetic in SMTLIB2

```
(set-logic QF AUFLIA)
(declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int) (declare-fun m () Int)
(assert (=> (and (< v z) (< x v)) (= m v)))
(assert (=> (and (< v z) (>= x v) (< x z)) (= m v))) : fix by replacing last 'v' by 'x'
(assert (=> (and (< v z) (>= x v) (>= x z)) (= m z)))
(assert (=> (and (>= v z) (> x v)) (= m v)))
(assert (=> (and (>= y z) (<= x y) (> x z) ) (= m x)))
(assert (=> (and (>= v z) (<= x v) (<= x z)) (= m z)))
(declare-fun i () Int) (declare-fun i () Int) (declare-fun k () Int)
(declare-fun a () (Array Int Int))
(assert (and (\leq 0 i) (\leq i 2) (\leq 0 j) (\leq i 2) (\leq 0 k) (\leq i 2)))
(assert (and (= (select a i) x) (= (select a i) v) (= (select a k) z)))
(assert (<= (select a 0) (select a 1) (select a 2)))
(assert (distinct i i k))
(assert (distinct m (select a 1)))
(check-sat) (get-model) (exit)
```

Checking Middle Example with Z3

```
$ z3 middle-buggy.smt2
                                                                        $ z3 middle-fixed.smt2
sat
                                                                        unsat
(model
  (define-fun i () Int 1)
  (define-fun a () (Array Int Int) ( as-array k!0))
  (define-fun j () Int 0)
  (define-fun k () Int 2)
  (define-fun m () Int 2281)
  (define-fun z () Int 2283)
  (define-fun y () Int 2281)
  (define-fun x () Int 2282)
  (define-fun k!0 ((x!1 Int)) Int
     (ite (= x!1\ 2) 2283
     (ite (= x!1\ 1) 2282
     (ite (= x!1 0) 2281 2283))))
                                                  see also
                                                              http://rise4fun.com
```

Encoding with Bit-Vector Logic in SMTLIB2

```
(set-logic QF AUFBV)
(declare-fun x () ( BitVec 32)) (declare-fun y () ( BitVec 32))
(declare-fun z () ( BitVec 32)) (declare-fun m () ( BitVec 32))
(assert (=> (and (bvult y z) (bvult x y) ) (= m y)))
(assert (=> (and (byult v z) (byuge x v) (byult x z)) (= m v))) : fix last 'v'->'x'
(assert (=> (and (bvult y z) (bvuge x y) (bvuge x z)) (= m z)))
(assert (=> (and (bvuge y z) (bvugt x y) ) (= m y)))
(assert (=> (and (bvuge y z) (bvule x y) (bvugt x z)) (= m x)))
(assert (=> (and (byuge y z) (byule x y) (byule x z)) (= m z)))
(declare-fun i ()( BitVec 2)) (declare-fun i ()( BitVec 2)) (declare-fun k ()( BitVec 2))
(declare-fun a ()(Array ( BitVec 2) ( BitVec 32)))
(assert (and (byule #b00 i) (byule i #b10) (byule #b00 i) (byule i #b10)))
(assert (and (bvule #b00 k) (bvule k #b10)))
(assert (and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(assert (byule (select a #b00) (select a #b01)))
(assert (byule (select a #b01) (select a #b10)))
(assert (distinct i i k)) (assert (distinct m (select a #b01)))
(check-sat) (get-model) (exit)
```

Checking Middle Example with Boolector

```
$ boolector -m middle32-buggv.smt2
sat
2 1100110110001111101011011111001001 x
3 01101101100011110101101110000001 y
4 111010110000111110101100111010001 2
5 011011011000111110101101110000001 m
28 01 i
29 00 i
30 10 k
31[00] 01101101100011110101101110000001 a
31[01] 11001101100011110101101111001001 a
31[10] 11101011000011110101100111010001 a
$ boolector middle32-fixed.smt2
unsat
```

see also http://fmv.jku.at/boolector

Theory of Linear Real Arithmetic (LRA)

- constants: integers, rationals, etc.
- predicates: equality =, disequality \neq , inequality \leq (strict <) etc.
- \blacksquare functions: addition +, subtraction -, multiplication \cdot by constant only

Example

$$z \leq x - y \ \land \ x + 2 \cdot y \leq 5 \ \land \ 4 \cdot z - 2 \cdot x \geq y$$

- we focus on conjunction of inequalities as in the example first
- equalities "=" can be replaced by two inequalities "≤"
 - ☐ disequalities replaced by disjunction of strict inequalities
- combination with SAT allows arbitrary formulas (not just conjunctions)
- related to optimization problems solved in operation research (OR)
 - ☐ OR algorithms are usually variants of the classic SIMPLEX algorithm

Fourier-Motzkin Elimination Procedure by Example

$$z \le x - y \quad \land \quad x + 2 \cdot y \le 5 \quad \land \quad 4 \cdot z - 2 \cdot x \ge y$$

pick pivot variable, e.g. x, and isolate it on one side with coefficient 1

$$\begin{aligned} z+y &\leq x & \wedge & x \leq 5-2 \cdot y & \wedge & 4 \cdot z-y \geq 2 \cdot x \\ z+y &\leq x & \wedge & x \leq 5-2 \cdot y & \wedge & 2 \cdot z-0.5 \cdot y \geq x \\ z+y &\leq x & \wedge & x \leq 5-2 \cdot y & \wedge & x \leq 2 \cdot z-0.5 \cdot y \end{aligned} \tag{1}$$

eliminate x by adding $A \leq B$ for all inequalities $A \leq x$ and $x \leq B$

$$z + y \le 5 - 2 \cdot y \quad \land \qquad z + y \le 2 \cdot z - 0.5 \cdot y$$
$$z \le 5 - 3 \cdot y \quad \land \qquad 1.5 \cdot y \le z \tag{2}$$

and same procedure with new pivot variable, e.g. z, and eliminate z

$$\begin{array}{rcl}
1.5 \cdot y & \leq & 5 - 3 \cdot y \\
y & \leq & 10/9
\end{array} \tag{3}$$

- (3) has (as one) solution $y = 0 \in (-\infty, 10/9]$ or $y = 1 \in (-\infty, 10/9]$
- (2) then allows $z = 0 \in [0, 5]$ $z = 2 \in [1.5, 2]$
- (1) then forces x = 0 forces x = 3 thus satisfiable

Theory of Uninterpreted Functions and Equality

functions as in first-order (FO): sorted / typed without interpretation
equality as single interpreted predicate
uninterpreted functions allow to abstract from concrete implementations
 in hardware (HW) verification abstract complex circuits (e.g. multiplier) in software (SW) verification abstract sub routine computation
congruence closure algorithms using fast union-find data structures
\square start with all terms (and sub-terms) in different equivalence classes \square if $t_1=t_2$ is an asserted literal merge equivalence classes of t_1 and t_2
$\hfill \Box$ for all elements of an equivalence class check congruence axiom
• let t_1 and t_2 be two terms in the same equivalence class • if there are terms $f(t_1)$ and $f(t_2)$ merge their equivalence classes
\square continue until the partition of terms in equivalence classes stabilizes \square if asserted disequality $t_1 \neq t_2$ exists with t_1, t_2 in the same equivalence class then <i>unsatisfiable</i> otherwise <i>satisfiable</i>

Congruence Closure By Example

assume flattened structure where all sub-terms are identified by variables

$$[x\mid y\mid t\mid u\mid v]$$

$$\underbrace{x=y}\wedge x=g(y)\wedge t=g(x)\wedge u=f(x,t)\wedge v=f(y,x)\wedge u\neq v$$
 asserted literal $x=y$ puts x and y in to the same equivalence class

$$[x\ y\mid t\mid u\mid v]$$

$$x=y\wedge\underbrace{x=g(y)\wedge t=g(x)}_{\text{apply congruence axiom since }x\text{ and }u\text{ in same equivalence class}}$$

Congruence Closure By Example

$$[x\ y\ t\mid u\mid v]$$

$$x=y\wedge x=g(y)\wedge t=g(x)\wedge\underbrace{u=f(x,t)\wedge v=f(y,x)}_{\text{apply congruence axiom since } y,\,x\text{ and } t\text{ are all in same equivalence class}}_{\text{apply congruence axiom since } y,\,x\text{ and } t\text{ are all in same equivalence class}$$

$$[x \ y \ t \mid u \ v]$$

$$x = y \wedge x = g(y) \wedge t = g(x) \wedge u = f(x,t) \wedge v = f(y,x) \wedge u \neq v$$

u and v in the same equivalence class but $u \neq v$ asserted thus unsatisfiable