
LOGIC | SATISFIABILITY MODULO THEORIES

SMT DETAILS
WS 2018 / 2019 (342.208)

Armin Biere biere@jku.at
Martina Seidl martina.seidl@jku.at

Institute for Formal Models and Verification
Johannes Kepler Universität Linz

Version 2018.3

Propositional Skeleton

Example (arbitrary LRA formula)

x 6= y ∧ (2 ∗ x ≤ z ∨ ¬ (x− y ≥ z ∧ z ≤ y))

eliminate 6= by disjunction

(x < y︸ ︷︷ ︸
a

∨ x > y︸ ︷︷ ︸
b

) ∧ (2 ∗ x ≤ z︸ ︷︷ ︸
c

∨ ¬(x− y ≥ z︸ ︷︷ ︸
d

∧ z ≤ y︸ ︷︷ ︸
e

))

which is abstracted to a propositional formula called “propositional skeleton”

(a ∨ b) ∧ (c ∨ ¬(d ∧ e)) with α(x < y) = a, α(x > y) = b, . . .

SAT solver enumerates solutions, e.g., a = b = c = d = e = 1

check solution literals with theory solver, e.g., Fourier-Motzkin

spurious solutions (disproven by theory solver) added as “lemma”, e.g., ¬(a ∧ b ∧ c ∧ c ∧ d ∧ e)
or just ¬(a ∧ b) after minimization

continue until SAT solver says unsatisfiable or theory solver satisfiable

1/23

Lemmas on Demand
this is an extremely “lazy” version of DPLL (T) / CDCL(T)

LemmasOnDemand(φ)

ψ = PropositionalSkeleton(φ)

let α be the abstraction function, mapping theory literals to prop. literals

while ψ has satisfiable assignment σ
let l1, . . . , ln be all the theory literals with σ(α(li)) = 1

check conjunction L = l1 ∧ · · · ∧ ln with theory solver
if theory solver returns satisfying assignment ρ return satisfiable
determine “small” sub-set {k1, . . . , km} ⊆ {l1, . . . , ln} where
K = k1 ∧ · · · ∧ km remains unsatisfiable (by theory solver)

add lemma ¬K to ψ, actually replace ψ by ψ ∧ α(¬K)

return unsatisfiable

note that these lemmas ¬K are all clauses

2/23

Minimal Unsatisfiable Set (MUS)

motivation: the lemmas we add in “lemmas on demand” should be small
MUS︷ ︸︸ ︷

(a ∨ ¬b) ∧ (a ∨ b) ∧ (¬a ∨ ¬c) ∧ (¬a ∨ c)∧(a ∨ ¬c) ∧ (a ∨ c)︸ ︷︷ ︸
MUS

� given an unsatisfiable set of “constraints” S (set of literals, or clauses)

� an MUS M is a sub-set M ⊆ S such that
� M is still unsatisfiable
� any M ′ ⊂M (with M ′ 6=M) is satisfiable

� so an MUS is a “minimal” inconsistent subset
� all constraints in the MUS are necessary for M to be inconsistent
� so one minimal way to explain inconsistency of S

� note that “being inconsistent” is a monotone property
� if A ⊆ B is a set of constraints
� if A is unsatisfiable then B is unsatisfiable
� essential for algorithms to compute an MUS

3/23

Iterative Destructive Algorithm for MUS Computation

destructive = remove constraints from an over-approximation of an MUS

IterativeDestructiveMUS(S)

M = S
D = S

while D 6= ∅
pick constraint C ∈ D
if M\{C} unsatisfiable remove C from M

remove C from D

return M

needs exactly |S| satisfiability checks

any-time algorithm: preliminary result M remains inconsistent
can stop any time

4/23

QuickXplain Variant of MUS Computation

quickly “zoom in” on one MUS (particularly if there is a small one)

QuickMUSRecursive(D)

if M\D is satisfiable
if |D| > 1

let D = L ∪R with |L|, |R| > 0 . . . ≥ b |D|
2
c

QuickMUSRecursive(L)

QuickMUSRecursive(R)

else remove D from M

QuickMUS(S)

global variable M = S

QuickMUSRecursive(S)

return M

needs at most 2 · |S| and at least |M | satisfiability checks
5/23

Theory of Arrays

� functions “read” and “write”: read(a, i), write(a, i, v)

� axioms

∀a, i, j : i = j → read(a, i) = read(a, j) array congruence

∀a, v, i, j : i = j → read(write(a, i, v), j) = v read over write 1

∀a, v, i, j : i 6= j → read(write(a, i, v), j) = read(a, j) read over write 2

� used to model memory (HW and SW)

� eagerly reduce arrays to uninterpreted functions by eliminating “write”

read(write(a, i, v), j) replaced by (i = j ? v : read(a, j))

� more sophisticated non-eager algorithms are usually faster

� such as for instance the lemmas-on-demand algorithm in Boolector

6/23

Simple Array Example

i 6= j ∧ u = read(write(a, i, v), j) ∧ v = read(a, j) ∧ u 6= v

eliminate “write”

i 6= j ∧ u = (i = j ? v : read(a, j)) ∧ v = read(a, j) ∧ u 6= v

simplify conditional by assuming “i 6= j”

i 6= j ∧ u = read(a, j) ∧ v = read(a, j) ∧ u 6= v

applying congruence for both “read”

i 6= j ∧ u = read(a, j) = read(a, j) = v ∧ u 6= v

which is clearly unsatisfiable
7/23

More Complex Array Example for Checking Aliasing

original optimized

assert (i != k); int t = a[k];
a[i] = a[k]; a[i] = t;
a[j] = a[k]; a[j] = t;

i 6= k t = read(a, k)
b1 = write(a, i, t) c1 = write(a, i, t)
b2 = write(b1, j, s) c2 = write(c1, j, t)
s = read(b1, k)

original 6= optimized iff b2 6= c2

b2 6= c2 iff ∃l with read(b2, l) 6= read(c2, l)

8/23

Aliasing Example Continued 1

thus original 6= optimized iff

i 6= k

t = read(a, k)
b1 = write(a, i, t)
b2 = write(b1, j, s)
c1 = write(a, i, t)
c2 = write(c1, j, t)
s = read(b1, k)
read(b2, l) 6= read(c2, l)

satisfiable

9/23

Aliasing Example Continued 2

thus original 6= optimized iff

i 6= k

t = read(a, k)
b1 = write(a, i, t)
b2 = write(b1, j, s)
c1 = write(a, i, t)
c2 = write(c1, j, t)
s = read(b1, k)
u = read(b2, l)
v = read(c2, l)
u 6= v

satisfiable

10/23

Aliasing Example Continued 3

after eliminating c2

i 6= k

t = read(a, k)
b1 = write(a, i, t)
b2 = write(b1, j, s)
c1 = write(a, i, t)
c2 = write(c1, j, t)
s = read(b1, k)
u = read(b2, l)
v = (l = j ? t : read(c1, l))
u 6= v

11/23

Aliasing Example Continued 4

after eliminating c2, c1

i 6= k

t = read(a, k)
b1 = write(a, i, t)
b2 = write(b1, j, s)
c1 = write(a, i, t)
c2 = write(c1, j, t)
s = read(b1, k)
u = read(b2, l)
v = (l = j ? t : (l = i ? t : read(a, l)))
u 6= v

12/23

Aliasing Example Continued 5

after eliminating c2, c1, b2

i 6= k

t = read(a, k)
b1 = write(a, i, t)
b2 = write(b1, j, s)
c1 = write(a, i, t)
c2 = write(c1, j, t)
s = read(b1, k)
u = (l = j ? s : read(b1, l))
v = (l = j ? t : (l = i ? t : read(a, l)))
u 6= v

13/23

Aliasing Example Continued 6

after eliminating c2, c1, b2, b1

i 6= k

t = read(a, k)
b1 = write(a, i, t)
b2 = write(b1, j, s)
c1 = write(a, i, t)
c2 = write(c1, j, t)
s = (k = i ? t : read(a, k))
u = (l = j ? s : (l = i ? t : read(a, l)))
v = (l = j ? t : (l = i ? t : read(a, l)))
u 6= v

14/23

Aliasing Example Continued 7

result after “write” elimination

i 6= k

t = read(a, k)
s = (k = i ? t : read(a, k))
u = (l = j ? s : (l = i ? t : read(a, l)))
v = (l = j ? t : (l = i ? t : read(a, l)))
u 6= v

15/23

Aliasing Example Continued 8
after eliminating conditionals (if-then-else)

i 6= k

t = read(a, k)
k = i → s = t

k 6= i → s = read(a, k)
l = j → u = s

l 6= j ∧ l = i → u = t

l 6= j ∧ l 6= i → u = read(a, l)
l = j → v = t

l 6= j ∧ l = i → v = t

l 6= j ∧ l 6= i → v = read(a, l)
u 6= v

now treat “read” as uninterpreted function (say f)
check with lemmas-on-demand and congruence closure

16/23

Ackermann’s Reduction

formula in theory of uninterpreted functions with equality and disequality:

1. flatten terms by introducing new variables as before
� remove nested function applications
� equalities and disequalities have at least one variable on left or right side

2. instantiate congruence axiom in all possible ways:
� replace all function applications f(u) by new variable fu

� replace all function applications f(u, v) by new variable fu,v etc.
3. if formula contains fu and fv add u = v → fu = fv as lemma etc.

4. use decision procedure for theory of equality and disequality
� if the resulting formula after the first two steps contains n variables
� then only need to consider domains with n elements
� or bit-vectors of length dlog2ne bits
� allows eager encoding into SAT

“eagerly” generates all instantiations of the congruence axioms as lemmas

17/23

Example of Ackermann’s Reduction

we start with an already flattened formula

x = f(y) ∧ y = f(x) ∧ x 6= y

after second step

x = fy ∧ y = fx ∧ x 6= y

after adding lemmas in second step

x = fy ∧ y = fx ∧ x 6= y ∧ (x = y → fx = fy)

resulting formula has 4 variables thus needs bit-vectors of length 2

18/23

Example of Ackermann’s Reduction to Bit-Vectors

$ cat ack.smt2
(set-logic QF_BV)
(declare-fun x () (_ BitVec 2))
(declare-fun y () (_ BitVec 2))
(declare-fun fx () (_ BitVec 2))
(declare-fun fy () (_ BitVec 2))
(assert (and (= x fy) (= y fx) (distinct x y) (=> (= x y) (= fx fy))))
(check-sat)
(exit)
$ boolector ack.smt2 -m -d
sat
x 0
y 3
fx 3
fy 0

19/23

Theory of Bit-Vectors

� allows “bit-precise” reasoning

� caputures semantics of low-level languages like assembler, C, C++, . . .
� Java / C# also use two-complement representations for int
� modelling of hardware / circuits on the word-level (RTL)
� important for security applications and precise test case generation

� many operations

� logical operations, bit-wise operations (and, or)
� equalities, inequalities, disequalities
� shift, concatenation, slicing
� addition, multiplication, division, modulo, . . .

� main approach is reduction to SAT through bit-blasting

� reduction of bit-vector operations similar to circuit synthesis
� Ackermann’s Reduction only needs equality and disequality

20/23

Bit-Blasting Bit-Vector Equality

for each bit-vector equality u = v with u and v bit-vectors of width w

introduce new propositional variables for individual bits

u1, . . . , uw v1, . . . , vw

replace u = v by new propositional variable eu=v

add the propositional constraint

eu=v ↔
w∧

i=1

(ui ↔ vi)

disequality u 6= v is replaced by ¬eu=v

resulting formula satisfiable iff original formula satisfiable

21/23

Bit-Blasting Ackermann Example

x = fy ∧ y = fx ∧ x 6= y ∧ (x = y → fx = fy)

now replacing the bit-vector equalities and the disequality by new e variables

ex=fy ∧ ey=fx ∧ ¬ex=y ∧ (ex=y → efx=fy)

and adding the equality constraints

ex=fy ↔ (x1 ↔ fy
1) ∧ (x2 ↔ fy

2)

ey=fx ↔ (y1 ↔ fx
1) ∧ (y2 ↔ fx

2)

ex=y ↔ (x1 ↔ y1) ∧ (x2 ↔ y2)

efx=fy ↔ (fx
1 ↔ fy

1) ∧ (fx
2 ↔ fy

2)

gives an “equi-satisfiable” formula which can be checked by SAT solver

22/23

Bit-Blasting Ackermann Example in Limboole Syntax

$ cat ackbitblasted.limboole

exfy & eyfx & !exy & (exy -> efxfy) &
(exfy <-> (x1 <-> fy1) & (x2 <-> fy2)) &
(eyfx <-> (y1 <-> fx1) & (y2 <-> fx2)) &
(exy <-> (x1 <-> y1) & (x2 <-> y2)) &
(efxfy <-> (fx1 <-> fy1) & (fx2 <-> fy2))

$ limboole ackbitblasted.limboole -s | grep -v SAT | sort

efxfy = 0
exfy = 1
exy = 0
eyfx = 1
fx1 = 0
fx2 = 1
fy1 = 1
fy2 = 1
x1 = 1
x2 = 1
y1 = 0
y2 = 1

23/23

