LOGIC | SATISFIABILITY MODULO THEORIES

SMT DETAILS

WS 2018 / 2019 (342.208)

<u>Armin Biere</u> biere@jku.at Martina Seidl martina.seidl@jku.at

Institute for Formal Models and Verification Johannes Kepler Universität Linz

JOHANNES KEPLER UNIVERSITÄT LINZ

Version 2018.3

Propositional Skeleton

Example (arbitrary LRA formula)

$$x \neq y \land (2 * x \le z \lor \lor \neg (x - y \ge z \land z \le y))$$

eliminate \neq by disjunction

$$\underbrace{(\underbrace{x < y}_{a} \lor \underbrace{x > y}_{b})_{b} \land \underbrace{(\underbrace{2 * x \leq z}_{c} \lor \neg(\underbrace{x - y \geq z}_{d} \land \underbrace{z \leq y}_{e}))_{c}}_{d}$$

which is abstracted to a propositional formula called "propositional skeleton"

 $(a \lor b) \land (c \lor \neg (d \land e))$ with $\alpha(x < y) = a$, $\alpha(x > y) = b$,...

SAT solver enumerates solutions, e.g., a = b = c = d = e = 1

check solution literals with theory solver, e.g., Fourier-Motzkin

spurious solutions (disproven by theory solver) added as "lemma", e.g., $\neg(a \land b \land c \land c \land d \land e)$ or just $\neg(a \land b)$ after minimization

continue until SAT solver says unsatisfiable or theory solver satisfiable

Lemmas on Demand

this is an extremely "lazy" version of DPLL (T) / CDCL(T)

 $LemmasOnDemand(\phi)$

 $\psi = PropositionalSkeleton(\phi)$

let α be the abstraction function, mapping theory literals to prop. literals

while ψ has satisfiable assignment σ

let l_1, \ldots, l_n be all the theory literals with $\sigma(\alpha(l_i)) = 1$ check conjunction $L = l_1 \land \cdots \land l_n$ with theory solver if theory solver returns satisfying assignment ρ return satisfiable determine "small" sub-set $\{k_1, \ldots, k_m\} \subseteq \{l_1, \ldots, l_n\}$ where $K = k_1 \land \cdots \land k_m$ remains unsatisfiable (by theory solver) add lemma $\neg K$ to ψ , actually replace ψ by $\psi \land \alpha(\neg K)$

return unsatisfiable

note that these lemmas $\neg K$ are all clauses

Minimal Unsatisfiable Set (MUS)

motivation: the lemmas we add in "lemmas on demand" should be small

 \blacksquare given an unsatisfiable set of "constraints" S (set of literals, or clauses)

 \blacksquare an MUS *M* is a sub-set *M* \subseteq *S* such that

 \Box *M* is still unsatisfiable

 \Box any $M' \subset M$ (with $M' \neq M$) is satisfiable

■ so an MUS is a "minimal" inconsistent subset

 \Box all constraints in the MUS are *necessary* for *M* to be inconsistent

 $\hfill\square$ so one minimal way to explain inconsistency of S

note that "being inconsistent" is a monotone property

- \Box if $A \subseteq B$ is a set of constraints
- $\hfill\square$ if A is unsatisfiable then B is unsatisfiable
- essential for algorithms to compute an MUS

Iterative Destructive Algorithm for MUS Computation

destructive = remove constraints from an over-approximation of an MUS

```
\begin{split} IterativeDestructiveMUS(S) \\ M &= S \\ D &= S \\ \end{split}  while D \neq \emptyset  pick constraint C \in D 
 if M \setminus \{C\} unsatisfiable remove C from M 
 remove C from D
```

return M

needs exactly |S| satisfiability checks

any-time algorithm: preliminary result *M* remains inconsistent can stop any time

QuickXplain Variant of MUS Computation

quickly "zoom in" on one MUS (particularly if there is a small one)

```
QuickMUSRecursive(D)
     if M \setminus D is satisfiable
          if |D| > 1
               let D = L \cup R with |L|, |R| > 0 \dots \ge \lfloor \frac{|D|}{2} \rfloor
                QuickMUSRecursive(L)
                QuickMUSRecursive(R)
     else remove D from M
QuickMUS(S)
     global variable M = S
```

```
QuickMUSRecursive(S)
```

return M

needs at most $2 \cdot |S|$ and at least |M| satisfiability checks

Theory of Arrays

functions "read" and "write": read(a, i), write(a, i, v)

axioms

 $\begin{array}{ll} \forall a,i,j\colon i=j \rightarrow \mathsf{read}(a,i) = \mathsf{read}(a,j) & \text{array congruence} \\ \forall a,v,i,j\colon i=j \rightarrow \mathsf{read}(\mathsf{write}(a,i,v),j) = v & \text{read over write 1} \\ \forall a,v,i,j\colon i\neq j \rightarrow \mathsf{read}(\mathsf{write}(a,i,v),j) = \mathsf{read}(a,j) & \text{read over write 2} \end{array}$

■ used to model memory (HW and SW)

eagerly reduce arrays to uninterpreted functions by eliminating "write"

read(write(a, i, v), j) replaced by (i = j ? v : read(a, j))

■ more sophisticated non-eager algorithms are usually faster

such as for instance the lemmas-on-demand algorithm in Boolector

Simple Array Example

 $i \neq j \land u = \operatorname{read}(\operatorname{write}(a, i, v), j) \land v = \operatorname{read}(a, j) \land u \neq v$

eliminate "write"

 $i \neq j \land u = (i = j ? v : \operatorname{read}(a, j)) \land v = \operatorname{read}(a, j) \land u \neq v$

simplify conditional by assuming " $i \neq j$ "

 $i \neq j \land u = \operatorname{read}(a, j) \land v = \operatorname{read}(a, j) \land u \neq v$

applying congruence for both "read"

$$i \neq j \ \land \ u = \mathsf{read}(a, j) = \mathsf{read}(a, j) = v \ \land \ u \neq v$$

which is clearly unsatisfiable

More Complex Array Example for Checking Aliasing

original	optimized
assert (i != k); a[i] = a[k]; a[j] = a[k];	int $t = a[k];$ a[i] = t; a[j] = t;
$i \neq k$ $b_1 = write(a, i, t)$ $b_2 = write(b_1, j, s)$ $s = read(b_1, k)$	$t = \operatorname{read}(a, k)$ $c_1 = \operatorname{write}(a, i, t)$ $c_2 = \operatorname{write}(c_1, j, t)$

original \neq optimized iff $b_2 \neq c_2$

 $b_2 \neq c_2$ iff $\exists l$ with $read(b_2, l) \neq read(c_2, l)$

thus original \neq optimized iff

$$i \neq k$$

$$t = \operatorname{read}(a, k)$$

$$b_1 = \operatorname{write}(a, i, t)$$

$$b_2 = \operatorname{write}(b_1, j, s)$$

$$c_1 = \operatorname{write}(a, i, t)$$

$$c_2 = \operatorname{write}(c_1, j, t)$$

$$s = \operatorname{read}(b_1, k)$$

$$\operatorname{read}(b_2, l) \neq \operatorname{read}(c_2, l)$$

satisfiable

thus original \neq optimized iff

$$i \neq k$$

$$t = read(a, k)$$

$$b_1 = write(a, i, t)$$

$$b_2 = write(b_1, j, s)$$

$$c_1 = write(a, i, t)$$

$$c_2 = write(c_1, j, t)$$

$$s = read(b_1, k)$$

$$u = read(b_2, l)$$

$$v = read(c_2, l)$$

$$u \neq v$$

satisfiable

after eliminating c_2

$$i \neq k$$

$$t = read(a, k)$$

$$b_1 = write(a, i, t)$$

$$b_2 = write(b_1, j, s)$$

$$c_1 = write(a, i, t)$$

$$c_2 = write(c_1, j, t)$$

$$s = read(b_1, k)$$

$$u = read(b_2, l)$$

$$v = (l = j ? t : read(c_1, l))$$

$$u \neq v$$

after eliminating c_2, c_1

$$i \neq k$$

$$t = \operatorname{read}(a, k)$$

$$b_1 = \operatorname{write}(a, i, t)$$

$$b_2 = \operatorname{write}(b_1, j, s)$$

$$c_1 = \operatorname{write}(a, i, t)$$

$$c_2 = \operatorname{write}(c_1, j, t)$$

$$s = \operatorname{read}(b_1, k)$$

$$u = \operatorname{read}(b_2, l)$$

$$v = (l = j ? t : (l = i ? t : \operatorname{read}(a, l)))$$

$$u \neq v$$

after eliminating c_2, c_1, b_2

 $i \neq k$ $t = \operatorname{read}(a, k)$ $b_1 = \operatorname{write}(a, i, t)$ $b_2 = \operatorname{write}(b_1, j, s)$ $c_1 = \operatorname{write}(a, i, t)$ $c_2 = \operatorname{write}(c_1, j, t)$ $s = \operatorname{read}(b_1, k)$ $u = (l = j ? s : \operatorname{read}(b_1, l))$ $v = (l = j ? t : (l = i ? t : \operatorname{read}(a, l)))$ $u \neq v$

after eliminating c_2, c_1, b_2, b_1

$$\begin{split} i \neq k \\ t &= \mathsf{read}(a, k) \\ b_1 &= \mathsf{write}(a, i, t) \\ b_2 &= \mathsf{write}(b_1, j, s) \\ c_1 &= \mathsf{write}(a, i, t) \\ c_2 &= \mathsf{write}(c_1, j, t) \\ s &= (k = i \ ? \ t : \mathsf{read}(a, k)) \\ u &= (l = j \ ? \ s : (l = i \ ? \ t : \mathsf{read}(a, l))) \\ v &= (l = j \ ? \ t : (l = i \ ? \ t : \mathsf{read}(a, l))) \\ u &\neq v \end{split}$$

result after "write" elimination

$$\begin{split} & i \neq k \\ & t = \mathsf{read}(a, k) \\ & s = (k = i \ ? \ t : \mathsf{read}(a, k)) \\ & u = (l = j \ ? \ s : (l = i \ ? \ t : \mathsf{read}(a, l))) \\ & v = (l = j \ ? \ t : (l = i \ ? \ t : \mathsf{read}(a, l))) \\ & u \neq v \end{split}$$

after eliminating conditionals (if-then-else)

$$i \neq k$$

$$t = \operatorname{read}(a, k)$$

$$k = i \rightarrow s = t$$

$$k \neq i \rightarrow s = \operatorname{read}(a, k)$$

$$l = j \rightarrow u = s$$

$$l \neq j \land l = i \rightarrow u = t$$

$$l \neq j \land l \neq i \rightarrow u = \operatorname{read}(a, l)$$

$$l = j \rightarrow v = t$$

$$l \neq j \land l = i \rightarrow v = t$$

$$l \neq j \land l \neq i \rightarrow v = t$$

$$l \neq j \land l \neq i \rightarrow v = t$$

$$l \neq j \land l \neq i \rightarrow v = t$$

$$l \neq j \land l \neq i \rightarrow v = t$$

$$l \neq j \land l \neq i \rightarrow v = t$$

$$l \neq j \land l \neq i \rightarrow v = t$$

$$l \neq j \land l \neq i \rightarrow v = t$$

$$l \neq j \land l \neq i \rightarrow v = t$$

$$l \neq j \land l \neq i \rightarrow v = t$$

$$l \neq j \land l \neq i \rightarrow v = t$$

$$l \neq j \land l \neq i \rightarrow v = t$$

$$l \neq j \land l \neq i \rightarrow v = t$$

$$l \neq j \land l \neq i \rightarrow v = t$$

$$l \neq j \land l \neq i \rightarrow v = t$$

now treat "read" as uninterpreted function (say f) check with lemmas-on-demand and congruence closure

Ackermann's Reduction

formula in theory of uninterpreted functions with equality and disequality:

- 1. flatten terms by introducing new variables as before
 - $\hfill\square$ remove nested function applications
 - $\hfill\square$ equalities and disequalities have at least one variable on left or right side
- 2. instantiate congruence axiom in all possible ways:
 - $\hfill\square$ replace all function applications f(u) by new variable f^u
 - \Box replace all function applications f(u, v) by new variable $f^{u, v}$ etc.
- 3. if formula contains f^u and f^v add $u = v \rightarrow f^u = f^v$ as lemma etc.
- 4. use decision procedure for theory of equality and disequality
 - $\hfill\square$ if the resulting formula after the first two steps contains n variables
 - \Box then only need to consider domains with n elements
 - $\hfill\square$ or bit-vectors of length $\lceil \log_2 n \rceil$ bits
 - $\hfill\square$ allows eager encoding into SAT

"eagerly" generates all instantiations of the congruence axioms as lemmas

Example of Ackermann's Reduction

we start with an already flattened formula

 $x = f(y) \land y = f(x) \land x \neq y$

after second step

 $x = f^y \wedge y = f^x \wedge x \neq y$

after adding lemmas in second step

 $x = f^y \land y = f^x \land x \neq y \land (x = y \to f^x = f^y)$

resulting formula has 4 variables thus needs bit-vectors of length 2

Example of Ackermann's Reduction to Bit-Vectors

```
$ cat ack.smt2
(set-logic QF BV)
(declare-fun x () ( BitVec 2))
(declare-fun v () ( BitVec 2))
(declare-fun fx () ( BitVec 2))
(declare-fun fy () ( BitVec 2))
(assert (and (= x fy) (= y fx) (distinct x y) (=> (= x y) (= fx fy))))
(check-sat)
(exit)
$ boolector ack.smt2 -m -d
sat
x 0
уЗ
fx 3
fy 0
```

Theory of Bit-Vectors

allows "bit-precise" reasoning

- □ caputures semantics of low-level languages like assembler, C, C++, ...
- □ Java / C# also use two-complement representations for int
- □ modelling of hardware / circuits on the word-level (RTL)
- $\hfill\square$ important for security applications and precise test case generation

I many operations

- □ logical operations, bit-wise operations (and, or)
- $\hfill\square$ equalities, inequalities, disequalities
- \Box shift, concatenation, slicing
- \Box addition, multiplication, division, modulo, ...
- main approach is reduction to SAT through *bit-blasting*
 - $\hfill\square$ reduction of bit-vector operations similar to circuit synthesis
 - Ackermann's Reduction only needs equality and disequality

Bit-Blasting Bit-Vector Equality

for each bit-vector equality u = v with u and v bit-vectors of width w

introduce new propositional variables for individual bits

 u_1,\ldots,u_w v_1,\ldots,v_w

replace u = v by new propositional variable $e_{u=v}$

add the propositional constraint

$$e_{u=v} \leftrightarrow \bigwedge_{i=1}^{w} (u_i \leftrightarrow v_i)$$

disequality $u \neq v$ is replaced by $\neg e_{u=v}$

resulting formula satisfiable iff original formula satisfiable

Bit-Blasting Ackermann Example

$$x = f^y \land y = f^x \land x \neq y \land (x = y \to f^x = f^y)$$

now replacing the bit-vector equalities and the disequality by new e variables

$$e_{x=f^y} \wedge e_{y=f^x} \wedge \neg e_{x=y} \wedge (e_{x=y} \to e_{f^x=f^y})$$

and adding the equality constraints

$$\begin{array}{lll} e_{x=f^y} & \leftrightarrow & (x_1 \leftrightarrow f_1^y) \wedge (x_2 \leftrightarrow f_2^y) \\ e_{y=f^x} & \leftrightarrow & (y_1 \leftrightarrow f_1^x) \wedge (y_2 \leftrightarrow f_2^x) \\ e_{x=y} & \leftrightarrow & (x_1 \leftrightarrow y_1) \wedge (x_2 \leftrightarrow y_2) \\ e_{f^x=f^y} & \leftrightarrow & (f_1^x \leftrightarrow f_1^y) \wedge (f_2^x \leftrightarrow f_2^y) \end{array}$$

gives an "equi-satisfiable" formula which can be checked by SAT solver

Bit-Blasting Ackermann Example in Limboole Syntax

\$ cat ackbitblasted.limboole

exfy & eyfx & !exy & (exy -> efxfy) & (exfy <-> (x1 <-> fy1) & (x2 <-> fy2)) & (eyfx <-> (y1 <-> fx1) & (y2 <-> fx2)) & (exy <-> (x1 <-> y1) & (x2 <-> y2)) & (efxfy <-> (fx1 <-> fy1) & (fx2 <-> fy2))

\$ limboole ackbitblasted.limboole -s | grep -v SAT | sort

efxfy = 0 exfy = 1 exy = 0 eyfx = 1 fx1 = 0 fx2 = 1 fy1 = 1 fy2 = 1 x1 = 1 x2 = 1 y1 = 0y2 = 1