LOGIC | SATISFIABILITY MODULO THEORIES

SMT DETAILS
WS 2018 / 2019 (342.208)

4

Armin Biere biere@jku.at

Martina Seidl martina.seidl@jku.at JOHAN NES KE PLER
Institute for Formal Models and Verification U N | V E R S | TAT Ll N Z

Johannes Kepler Universitat Linz

Version 2018.3

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Propositional Skeleton

Example (arbitrary LRA formula)
r#FyYy AN 2xz<z V ~(@-y>2zA2<y)

eliminate # by disjunction
(z<yVzz>y ANQ2xz<zV-alz—y>2z A 2<y))
N—— N— N—_—— N—— N—
a b c d e
which is abstracted to a propositional formula called “propositional skeleton”

(aVb)A(cV—(dAe)) with a(z<y)=a, alz>y)=0»,...
SAT solver enumerates solutions, e.g., a=b=c=d=e¢=1
check solution literals with theory solver, e.g., Fourier-Motzkin

spurious solutions (disproven by theory solver) added as “lemma”, e.g., =(a AbAcAcAdAe)
or just —(a A b) after minimization

continue until SAT solver says unsatisfiable or theory solver satisfiable
1/23

Lemmas on Demand
this is an extremely “lazy” version of DPLL (T) / CDCL(T)

LemmasOnDemand(¢)
1) = PropositionalSkeleton(¢)
let o be the abstraction function, mapping theory literals to prop. literals

while ¢ has satisfiable assignment o
letly,...,l, be all the theory literals with o(a(l;)) = 1
check conjunction L =13 A --- Al, with theory solver
if theory solver returns satisfying assignment p return satisfiable
determine “small” sub-set {k1,...,km} C {l1,...,ln} Where
K =k A--- ANk, remains unsatisfiable (by theory solver)
add lemma —K to ¢, actually replace v by ¥ A a(—K)

return unsatisfiable

note that these lemmas — K are all clauses

2/23

Minimal Unsatisfiable Set (MUS)

motivation: the lemmas we add in “lemmas on demand” should be small
MUS

(aV=b)A(aVb)A(maV-c)A(—aVc)AaV —c)A(aVc)

MUS
B given an unsatisfiable set of “constraints” S (set of literals, or clauses)
W an MUS M is a sub-set M C S such that
O M is still unsatisfiable
O any M’ C M (with M’ # M) is satisfiable
B so an MUS is a “minimal” inconsistent subset
O all constraints in the MUS are necessary for M to be inconsistent
O so one minimal way to explain inconsistency of S
B note that “being inconsistent” is a monotone property
0O if A C B is a set of constraints
O if A is unsatisfiable then B is unsatisfiable
O essential for algorithms to compute an MUS

3/23

Iterative Destructive Algorithm for MUS Computation
destructive = remove constraints from an over-approximation of an MUS

IterativeDestructiveMUS(.S)
M=S
D=S
while D # ()
pick constraint C' € D

if M\{C'} unsatisfiable remove C from M
remove C from D

return M

needs exactly | S| satisfiability checks

any-time algorithm: preliminary result M remains inconsistent
can stop any time

4/23

QuickXplain Variant of MUS Computation

quickly “zoom in” on one MUS (particularly if there is a small one)

QuickMUSRecursive(D)

if M\D is satisfiable
if | D] > 1

let D = LU R with L], |R| >0 Sy

QuickMUSRecursive(L)
QuickMUSRecursive(R)

else remove D from M

QuickMUS(S)
global variable M = S
QuickMUSRecursive(S)
return M

needs at most 2 - |S| and at least | M| satisfiability checks

5/23

Theory of Arrays

functions “read” and “write”: read(a, i), write(a, 7, v)
axioms
Va,i,7:1 =7 — read(a,i) = read(a, j) array congruence
Ya,v,i,7:1=j — read(write(a,?,v),j) = v read over write 1
Va,v,i,j: 1 # j — read(write(a, ¢, v),j) = read(a,j) read over write 2
used to model memory (HW and SW)

eagerly reduce arrays to uninterpreted functions by eliminating “write”
read(write(a,i,v),5) replacedby (i=7 ? v:read(a,j))

more sophisticated non-eager algorithms are usually faster

such as for instance the lemmas-on-demand algorithm in Boolector

6/23

Simple Array Example

1 #j AN u=read(write(a,i,v),j) A v=read(a,j) N uFv
eliminate “write”
i1#j ANu=(i=37 7 v:read(a,j)) A v=read(a,j) N u#v
simplify conditional by assuming “i # j”
1#j AN u=read(a,j) N v=read(a,j) AN u#v
applying congruence for both “read”
t#j N u=read(a,j)=read(a,j) =v N u#v

which is clearly unsatisfiable

7/23

More Complex Array Example for Checking Aliasing

original optimized
assert (i = k); intt = a[k];

a[i] = alk]; afil =t;

afj] = alkl; afi] =t;

1 #£k t = read(a, k)

b1 = write(a, i,t) c1 = write(a, 1, t)

be = write(b1, J, s) c2 = write(e1, J,t)
s =read(b1, k)

original # optimized iff ba # c2
by # o iff 3 with read(bs,!) # read(cs,!)

8/23

Aliasing Example Continued 1

thus original # optimized iff

i £k

t =read(a, k)

b1 = write(a, i,t)

be = write(b1, J, s)

c1 = write(a, i, t)

co = write(eu, 4, t)

s =read(b1, k)
read(bz,!) # read(cz,)

satisfiable

9/23

Aliasing Example Continued 2

thus original # optimized iff

oy

t = read(a, k)

by = write(a, i, t)
by = write(b1, 7, s)
1 = write(a, i, t)
co = write(e1, 4, 1)
s = read(by, k)

u = read(b, 1)

v = read(cz, 1)

uFv

satisfiable

10/23

Aliasing Example Continued 3

after eliminating c

i £k

t = read(a, k)

b1 = write(a, 1, t)

ba = write(b1, 7, s)

c1 = write(a, i, t)

co = write(ci, 7, 1)

s =read(bi, k)

u = read(bs,)

v= (=7 7 t:read(c,l))
u# v

11/23

Aliasing Example Continued 4

after eliminating cz, ¢1

i#£k

t =read(a, k)

b1 = write(a, 1, t)

ba = write(b1, 7,)

c1 = write(a, i, t)

co = write(ci, 7, 1)

s =read(bi, k)

u = read(bs, 1)

v=(0=77t:(I=4 7 t:read(a,l)))
uFv

12/23

Aliasing Example Continued 5

after eliminating cz, c1, b2

i £k

t = read(a, k)

by = write(a, i, t)

ba = write(b1, 7,)

c1 = write(a, i, t)

co = write(ci, 7, 1)

s =read(bi, k)

u= (=3 7 s:read(bi,!))
v=(0=77t:(I=47 t:read(a,l)))
uFv

13/23

Aliasing Example Continued 6

after eliminating c2, c1, b2, b1

t =read(a, k)

b1 = write(a, i, 1)
be = write(b1, 7, s)

c1 = write(a, i, t)

co = write(ci, 7, 1)

s= (k=1 7 t:read(a,k))
u=(1Il=377s:(l=17 t:read(a,l)))
v=(0=77¢t:(I=14 7 t:read(a,l)))
uFv

14/23

Aliasing Example Continued 7

result after “write” elimination

i £k

t =read(a, k)

s= (k=1 7 t:read(a,k))
u=(1=377s:(l=1¢7 t:read(a,l)))
v=_10l=757t:(I=147 t:read(a,l)))
U #£ v

15/23

Aliasing Example Continued 8

after eliminating conditionals (if-then-else)

i £k

t = read(a, k)

k=1 — s=t

k#1i — s=read(a,k)
l=7 - u=s

I#£jANl=i > u=t
l#£jNl#i — u=read(a,l)
l=7 > v=t

l#jNl=i > v=t
l#£jNl#i — v=read(a,l)
uF#v

now treat “read” as uninterpreted function (say f)
check with lemmas-on-demand and congruence closure

16/23

Ackermann’s Reduction
formula in theory of uninterpreted functions with equality and disequality:

1. flatten terms by introducing new variables as before

O remove nested function applications

O equalities and disequalities have at least one variable on left or right side
2. instantiate congruence axiom in all possible ways:

O replace all function applications f(u) by new variable f*

O replace all function applications f(u,v) by new variable f* etc.
3. if formula contains f“ and f* add u = v — f* = f* as lemma etc.
4. use decision procedure for theory of equality and disequality

O if the resulting formula after the first two steps contains n variables

O then only need to consider domains with n elements

O or bit-vectors of length [log,n] bits

O allows eager encoding into SAT

“eagerly” generates all instantiations of the congruence axioms as lemmas

17/23

Example of Ackermann’s Reduction

we start with an already flattened formula
r=fy)ANy=flx) Nz #y
after second step
r=[f'ANy=[f"NeFy
after adding lemmas in second step
s=fIAy=FfAzEYN(z=y— "= [Y)

resulting formula has 4 variables thus needs bit-vectors of length 2

18/23

Example of Ackermann’s Reduction to Bit-Vectors

$ cat ack.smt2

(set-logic QF_BV)
(declare-fun x () (_ BitVec 2))
(declare-funy () (_ BitVec 2))
(declare-fun fx () (_ BitVec 2))
(declare-fun fy () (BitVec 2))
(assert (and (= x fy) (= y fx) (d
(check-sat)

(exit)

$ boolector ack.smt2 -m -d
sat

x0

y3

fx 3

fy 0

istinct x y) (=> (= xy) (= fxfy))))

19/23

Theory of Bit-Vectors

B allows “bit-precise” reasoning

O caputures semantics of low-level languages like assembler, C, C++, ...
O Java / C# also use two-complement representations for int

O modelling of hardware / circuits on the word-level (RTL)

O important for security applications and precise test case generation

B many operations

O logical operations, bit-wise operations (and, or)
O equalities, inequalities, disequalities
O shift, concatenation, slicing
O addition, multiplication, division, modulo, . ..
B main approach is reduction to SAT through bit-blasting

O reduction of bit-vector operations similar to circuit synthesis
O Ackermann’s Reduction only needs equality and disequality

20/23

Bit-Blasting Bit-Vector Equality
for each bit-vector equality © = v with u and v bit-vectors of width w
introduce new propositional variables for individual bits

ULy ..., U Vi,...,0w
replace v = v by new propositional variable e, —,

add the propositional constraint

w
Cumny /\(m- o)
=1

disequality u # v is replaced by —e,—,

resulting formula satisfiable iff original formula satisfiable

21/23

Bit-Blasting Ackermann Example

z=[f'Ny=f"NeFyAle=y— [=[)
now replacing the bit-vector equalities and the disequality by new e variables
€x=fu N €y=fo N T€z=y A (€z=y —> €fr=yy)
and adding the equality constraints

x1 <) A (22 < f3)
& 1) A (y2 < f2)
T1 < Y1) A (T2 <> y2)

e NS < 1)

gives an “equi-satisfiable” formula which can be checked by SAT solver

Cx=fy < (
ey=r= <
€x=y <
(

Efr=fy Ad

22/23

Bit-Blasting Ackermann Example in Limboole Syntax

$ cat ackbitblasted.limboole

exfy & eyfx & lexy & (exy -> efxfy) &
(exfy <-> (x1 <-> fy1) & (x2 <-> fy2)) &
(eyfx <-> (y1 <-> fx1) & (y2 <-> fx2)) &
(exy <-> (x1 <->y1) & (x2 <->y2)) &
(efxfy <-> (fx1 <-> fy1) & (fx2 <-> fy2))

$ limboole ackbitblasted.limboole -s | grep -v SAT | sort

efxfy =0
exfy =1

exy =0

eyfx =1

fx1=0

fx2 =1

fyl =1

fy2 =1

x1 =1

x2 =1

y1=0

y2=1

23/23

