VL+UE LOGIK: COURSE ORGANIZATION

WS 2018/2019 (342.208, 342.209)

Armin Biere Wolfgang Schreiner Martina Seidl Wolfgang Windsteiger Version 2018.2

Objectives of this Course

In this course, you will learn to

- understand logic formulas
- use concise mathematical notations
- formulate and solve problems in formal languages
- reason with logics manually and algorithmically

This course consists of *lectures* and *exercises*.

Organization of the Course

Lecture

■ each week (Tuesday, 8:00-9:30, HS16)

Minitest

■ each week (Tuesday, 9:40–9:55, HS16)

Exercises

- each week (Tuesday, 11:00–11:45, HS18)
- based on the lecture of the same day
- presented by lecturer

Grading

weekly minitests during the winter semester optionally supplemented by lab exercises if passed positively, no further exam is required details on the next slides retry exams if minitests/lab exercises were not passed (positively) over whole content of the course (lecture and exercises) dates in early and late spring 2019/early autumn 2019 extra registration in KUSSS required

In either case, you get two certificates (with the same grade): one for the lecture and one for the exercises

Structure of this Course

		assignments		
name	lectures	tests	labs	required positive
Module 1: SAT	4	4	1	2
Module 2: First-Order	6	6	2	3
Module 3: SMT	2	2	1	1

Mini-Tests

- if you hand in one test, you will get the certificates
- each week
- duration: 15 minutes
- everybody has to individually solve a test similar to the exercises discussed in the previous week
- this test will be corrected and is used for the grade of the exercise course
- each handed-in test is worth up to 5 points
- \blacksquare a handed-in test is positive with ≥ 2.5 points
 - □ up to 1 additional point can be earned by solving the weekly challenges
- no test can be repeated or taken at a later time

Lab Exercises

- the lab exercises have a tool aspect and are voluntary
- each handed-in lab exercise is worth up to 5 points
- solutions of handed-in lab exercises have to be presented orally
- \blacksquare a lab exercise is positive with ≥ 2.5 points
- dates for the lab exercises depend on the date of their announcement:
 - □ Week X: announcement of lab exercise
 - ☐ Week X+2 (or 3): submission
 - ☐ Week X+3 (or 4): presentation

Weekly Challenge

- each Tuesday, we publish a weekly challenge
- this challenge can be submitted until the given deadline (before the minitest!) via Moodle
- you can earn up to one extra point that is counted for this minitest (BUT: maximum is still 5 points)
- **a** assume you obtain t points on the minitest and you get c for the weekly challenge, then you get min((t+c),5) points
 - example 1: you have 1.5 points on the minitest. With the point from the weekly challenge you have 2.5 points (positive!!!!)
 - example 2: you have 5 points on the minitest. With the point from the weekly challenge you have 5 points.

Grading

- to pass the course you need to have
 - ☐ the required number of positive assignments for each module
 - □ enough points in total (see below)
- grading scheme:
 - $\square \geq 52$ points: 1 very good (sehr gut)
 - $\square \geq 44$ points: 2 good (gut)
 - $\square \geq 36$ points: 3 satisfactory (befriedigend)
 - $\square \geq 28$ points: 4 sufficient (genügend)
 - $\square < 28$ points: 5 insufficient (nicht genügend)

Lecturers

Armin **Biere**

Wolfgang Schreiner

Wolfgang Windsteiger

Martina Seidl

Contacts

- Armin Biere biere@jku.at
 Institute for Formal Models and Verification (FMV),
 Science Park 3 (SP3), Linz
- Martina SeidI martina.seidl@jku.at Institute for Formal Models and Verification (FMV), Science Park 3 (SP3), Linz
- Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at Research Institute for Symbolic Computation (RISC), Hagenberg Castle, Hagenberg im Mühlkreis
- Wolfgang Windsteiger Wolfgang.Windsteiger@risc.jku.at Research Institute for Symbolic Computation (RISC), Hagenberg Castle, Hagenberg im Mühlkreis

Questions?

- 1. ask your colleagues
- 2. ask in the Moodle forum if you have a question of general interest
- 3. for questions regarding weekly challenges or lab exercises consult the teaching assistants (time and location is announced in Moodle)
- 4. write an email if you have a personal question that is not of interest to your colleagues (otherwise use the forum)

Resources:

http://fmv.jku.at/logik

