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BOX Game: Rules

1. The game board consists of boxes with symbols. For example:

oo | 9o || ool ¢ O

2. We chose two colors, for example purple and

o One color is the winning color, for example purple.
o0 Then the non-winning color is

3. Now we can play: assign the two colors to each symbol such
that its underlined and non-underlined occurrences have a
different color.

4. If each box contains a symbol in purple you won.
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Some Examples

m Wrong coloring!
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Some Examples

m Wrong coloring!

m Again a wrong colo
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Some Terminology

m From now on, we call a box a clause.
m We call a clause with at least one purple symbol satisfied.
m We call a clause with all symbols in green falsified.

m We call a clause with green and uncolored symbols
undecided.

= The game is won if all clauses are satisfied.
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How Many Possibilities?

m 1 symbol, 2 possibilities
1. @
2.9
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How Many Possibilities?
m 1 symbol, 2 possibilities
m 2 symbols, 4 possibilities

m 3 symbols, 8 possibilities
1.
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Guess & Check Problems

observation in our BOX game:
m finding a solution is hard

O 2" solution candidates have to be considered
O a good oracle is needed for guessing

m verifying a given candidate solution is easy
O check that each box contains a purple symbol
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Guess & Check Problems

observation in our BOX game:
m finding a solution is hard

O 2" solution candidates have to be considered
O a good oracle is needed for guessing

m verifying a given candidate solution is easy
O check that each box contains a purple symbol

fundamental question in computer science:
The P = NP Question

Is searching for a solution harder than verifying a solution?
(unfortunately, the answer is not known)
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Famous Guess & Check Problem: SAT

SAT is the decision problem of propositional logic:
m Given a Boolean formula, for example

(xV-HAEXV-YDA(xVIAGYV 2.

m Question: is the formula satisfiable?
l.e., is there an assignment of truth values 1 (true), to
the literals x, y, z, =x, =y, =z such that
o for every variable v € {x, y, z} it holds that the truth value of v
and the truth value of —v are different
O each clause (...) contains at least one true literal
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Famous Guess & Check Problem: SAT

SAT is the decision problem of propositional logic:
m Given a Boolean formula, for example

(xV-HAEXV-YDA(xVIAGYV 2.

m Question: is the formula satisfiable?
l.e., is there an assignment of truth values 1 (true), to
the literals x, y, z, —x, =y, =z such that

O for every variable v € {x, y, z} it holds that the truth value of v
and the truth value of —v are different
O each clause (...) contains at least one true literal

Cook-Levin Theorem [71]: SAT is NP-complete
Searching is as easy as checking if and only if it is for SAT.
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Relating BOX and SAT

There is a correspondence between BOX and SAT, e.g., between
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Relating BOX and SAT

There is a correspondence between BOX and SAT, e.g., between

Qo | e | 2ol ¢ O

and (=x V- )AXV-YDACEXVOAQYV )

B x corresponds to ¥, —x corresponds to ©

m y corresponds to ¢, -y correpsonds to ¢

m 7 corresponds to O, —z corresponds to O

m purple/green coloring corresponds to assignment of literals to
true/false (1/0)

Note:

m assignment of variables gives values of all literals

m_ jf we can solve SAT, we can solve BOX (and vice versa)
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Practical Applications of SAT Solving

L\

bioinformatics

planning & scheduling security theorem proving

encode SAT solver decode
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Logics in this Lecture

In this lecture, we consider different logic-based languages:

m propositional logic (SAT)

O simple language: only atoms and connectives

O low expressiveness, low complexity

O very successful in industry (e.g., verification)
m first-order logic (predicate logic)

O rich language: predicates, functions, terms, quantifiers

O great power of expressiveness, high complexity

O many applications in mathematics and verification
m satisfiability modulo theories (SMT)

O customizable language: user decides

O as much expressiveness as required

as much complexity as necessary
O very popular and successful in industry
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Logic-Based Languages (Logics)

m A logic consists of
O a set of symbols (like vV, A, =, T,1,V,3...)

O
[m]
[m]

a set of variables (like x,y,z,...)
concise syntax: well-formedness of expressions
concise semantics: meaning of expressions

m Logics support reasoning for

[m]
O

derivation of “new” knowledge
proving the truth/falsity of a statement (satisfiability checking)

m Different logics differ in their

JXU

]

truth values: binary (true, false), multi-valued (true, false,
unknown), fuzzy (between 0 and 1, e.g., [0, 1] as subset of the
real numbers)

expressiveness (what can be formulated in the logic?)
complexity (how expensive is reasoning?)
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PROPOSITIONAL LOGIC
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Propositions

a proposition is an atomic statement that is either true or false

example:
m Alice comes to the party.

m It rains.

with connectives, propositions can be combined

example:
m Alice comes to the party, Bob as well, but not Cecile.

m [f it rains, the street is wet.
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Propositional Logic

m two truth values (Boolean domain): true/false, verum/falsum,
on/off, 1/0
m language elements
O atomic propositions (atoms, variables)
e no internal structure
e either true or false
O logic connectives: not (—), and (A), or (V), ...
e operators for construction of composite propositions
e concise meaning
e argument(s) and return value from Boolean domain
O parenthesis

example: formula of propositional logic: (=t vV s) A (tV s) A (=t V —s)

atoms: t, s, connectives: —, V, A, parenthesis for structuring the expression
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Background

m historical origins: ancient Greeks

m in philosophy, mathematics, and computer science

m two very basic principles:
O Law of Excluded Middle:
a proposition is true or its negation is true
O Law of Contradiction:
no expression is both true and false at the same time

m very simple language
O no objects, no arguments to propositions
O no functions, no quantifiers

m solving is easy (relative to other logics)

m many applications in industry
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Syntax: Structure of Propositional Formulas

we build a propositional formula using the following components:

m literals:
O variables x,y,z,...
O negated variables —x, 1y, -z, . ..
o truth constants: T (verum) and L (falsum)
O negated truth constants: =T and —L
m clauses: disjunction (V) of literals
O xVy
O xVyV-g
Oz
oT

JXU 14/33



Syntax: Structure of Propositional Formulas

A propositional formula is a conjunction (A) of clauses.

examples of formulas:

T B XAYAZ

" L H (-xVyV-ogAz

X B (xV-)AXV-YyVOAQYV2)

u -y B (V.. Vi) A AT VY )

Remark: For the moment, we consider formulas of a restricted structure called CNF, e.g., we do not consider formulas like
(x Ay) V (=x A 2). Any propositional formula can be translated into this structure. We will relax this restriction later.

JXU 15/33



Conventions

we use the following conventions unless stated otherwise:

a,b,c, x,y,z denote variables and /, k denote literals
¢, ¥,y denote arbitrary formulas

[
[
m C, D denote clauses
m clauses are also written as sets

oy v...vl)={,...1,}

O to add a literal [ to clause C, we write C U {/}

O to remove a literal [ from clause C, we write C\{/}
formulas in CNF are also written as sets of sets

O @ Ve Vi) Ao c Al VooV L)) =

h -l ds oAbty - 1Y
O to add a clause C to CNF ¢, we write ¢ U {C}

O to remove a clause C from CNF ¢, we write ¢\{C}
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Negation

B unary connective — (operator with exactly one argument)
m negating the truth value of its argument

m alternative notation: !x, x, —x, NOT x

X —X
truth table: 0| 1
110

example:
m If the atom “lt rains.” is true then the negation “It does not rain.” is false.
m [f the propositional variable a is true then —a is false.

m [f the propositional variable a is false then —a is true.
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Disjunction

m a disjunction is true iff at least one of the arguments is true
m alternative notationfor [ v k: [ || k,l+ k,l OR k
m For (I; v...V1,) we also write \/7_, I;.

I k|IVk
0 0| O
truth table: 0o 1 1
1 0| 1
1 1 1
example:

® (aV —a)is always true.
m (T Va)is always true.

m (L Va)istrueif ais true.
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Conjunction

m a conjunction is true iff both arguments are true

m alternative notation for C A D: C && D,
CD,C+«D,C-D,CAND D

m for (Cy A ... ACy) we also write A\, C;.

C D|CAD
0 0 0
truth table: 0 1 0
1 0 0
1 1 1
example:

m (a A —a) is always false.

B (T Aa)istrueif aistrue. (L A @) is always false.

!U If (a v b) is true and (=c V d) is true then (a vV b) A (=c V d) is true. o33
1




Properties of Connectives

m rules of precedence:

O - binds stronger than A
O A binds stronger than v

example

O —-aVbA-cVdisthe same as (—a) VvV (b A (=¢)) V d, but not
(ma) VD) A ((=c) vV d)
= put clauses into parentheses!
m associativity:

O A is associative and commutative
O V is associative and commutative

example

O (a Ab) A—cisthesameasaA (b A —c)
O (avb)V-cisthesameasaV (bV —c)
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Assignment

m a variable can be assigned one of two values from the
two-valued domain B, where B = {1, 0}

m the mapping v : # — B is called assignment, where # is the
set of atomic propositions

m we sometimes write an assignment v as set V with
V C P U {—x|x € P} such that

O xeViffv(x) =1
O -xeViffv(x)=0

m for n variables, there are 2" assignments possible

®m an assignment corresponds to one line in the truth table
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Assighment: Example

X y z|xVy =z (xVyA-z
0 0O 0 1 0
0 0 1 0 0 0
01 0 1 1 1
0o 1 1 1 0 0
1 0 0 1 1 1
1 0 1 1 0 0
11 0 1 1 1
1 1 1 1 0 0

m one assignment: v(x) = 1,v(y) = 0,v(z) = 1
m alternative notation: V = {x, -y, 7}
m observation: A variable assignment determines the truth value

of the formulas containing these variables.
22/33



Semantics of Propositional Logic

Let P be the set of atomic propositions (variables) and L be the set
of all propositional formulas over # that are syntactically correct
(i.e., all possible conjunctions of clauses over P).

Given assignment v : # — B, the interpretation [.], : L —> B is
defined by:

[T, =1,[1],=0

if x € P then [x], = v(x)

[-x], =1iff [x], =0

[C], =1 (where C is a clause) iff

there is at least one literal [with /€ C and [/], = 1
[¢], =1 (where ¢ is in CNF) iff

for all clauses C € ¢ it holds that [C], =1
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Satisfying/Falsifying Assignments

m an assignment v is called

o satisfying a formula ¢ iff [¢], = 1
o falsifying a formula ¢ iff [¢], = 0

m a satisfying assignment for ¢ is a model of ¢

m a falsifying assignment for ¢ is a counter-model of ¢

example:

For formula ((x V y) A =2),
® {x,y,z} is a counter-model,

m {x,y,—z}is a model.
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SAT-Solver Limboole

m available at http://fmv. jku.at/limboole
m input:’
O variables are strings over letters, digitsand—_ . []$ @
O negation symbol - is !
O disjunction symbol V is |
O conjunction symbol A is &

example

(aVv bV =c)A(—aVb)Acis represented as
(a| b] e &(la] b) &c

"For now, we will only use subset of the language supported by Limboole.
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http://fmv.jku.at/limboole

Properties of Propositional Formulas (1/2)

m formula ¢ is satisfiable iff
there exists an assignment v with [¢], = 1
check with 1imboole -s

m formula ¢ is valid iff
for all assignments v it holds that [¢], = 1
check with 1limboole

m formula ¢ is refutable iff
there exists an assignment v with [¢], =0
check with 1imboole

m formula ¢ is unsatisfiable iff
for all assignments v it holds that [¢], = 0
check with 1imboole -s
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Properties of Propositional Formulas (2/2)

m avalid formula is called tautology

m an unsatisfiable formula is called contradiction

example:
m Tis valid. m 1 is unsatisfiable.
B aV —ais a tautology. B a A —ais a contradiction.
m (aV-b)A(—-aVb)is B (aV-b)A(—aVb)is
refutable. satisfiable.
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SAT: The Boolean Satisfiability Problem

Given a propositional formula ¢.
Is there an assignment that satisfies ¢?

different formulation: can we find an assignment such that each
clause contains at least one true literal?
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Encoding the k-Coloring Problem

Given graph (V, E) with vertices V and edges E. Color each node with one of k
colors, such that there is no edge (v,w) € E, with vertices v and w colored in the
same color.

encoding:

1. propositional variables: v; ... node v € V has color j (1 < j < k)

2. each node has a color:

/\( \/ v))

veV 1< j<k
3. each node has just one color: (—v; V -v)) withve V1 <i< j<k

4. neighbors have different colors: (—=v; vV —=w;) with (v,w) e E,1 <i<k

JXU 29/33



Encoding the k-Coloring Problem: Example

task: find 2-coloring of graph ({a, b, c}, {(a, b), (b, ¢)}) with SAT

possible solution:

encoding in SAT:
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Encoding the k-Coloring Problem: Example

task: find 2-coloring of graph ({a, b, ¢}, {(a, b), (b, ¢)}) with SAT

possible solution:

encoding in SAT:

m variables: ay, az, b1, by, c1, 2
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Encoding the k-Coloring Problem: Example

task: find 2-coloring of graph ({a, b, ¢}, {(a, b), (b, ¢)}) with SAT
possible solution:

encoding in SAT:

m variables: ay, ap, bl, bz, C1,C2
m clauses:
1. each node has a color: (a V @), (b V b)), (c) V )
2. no node has two colors: (—=a; V —ay), (=b; V =by), (=cy V =¢3)
3. connected nodes have a different color:
(=ay vV =by), (maz V =by), (=by V =¢y), (=by V =¢2)
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Encoding the k-Coloring Problem: Example

task: find 2-coloring of graph ({a, b, c}, {(a, b), (b, ¢)}) with SAT
possible solution:

encoding in SAT:

m variables: ay, az, b1, ba,c1, 02
m clauses:
1. each node has a color: (a V @), (b V b)), (c) V )
2. no node has two colors: (—=a; V —ay), (=b; V =by), (=cy V =¢3)
3. connected nodes have a different color:
(=ay vV =by), (maz V =by), (=by V =¢y), (=by V =¢2)
m full formula:
(ay V ar) A (by V by) A (e Vo) A(=ay V =ar) A (=by V =by) A (=cy V =cp) A
(=ay V =by) A (may V =by) A (=by V =cy) A (mby V —¢y)
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Resolution

m the resolution calculus consists of the single resolution rule

xvC -xV D
cCvD

O C and D are (possibly empty) clauses

O the clause C Vv D is called resolvent

O variable x is called pivot

0O antecedent clauses x v C and —x v D are NOT tautological

m the resolution calculus works only on formulas in CNF

m if the empty clause can be derived then the formula is
unsatisfiable

m if the formula is unsatisfiable, then the empty clause can be
derived
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Examples of Applying the Resolution Rule

one application of resolution

xXVyV -z -xVYy V-z

yVvV-ozVvy
derivation of empty clause:
y -y
1
derivation of tautology:
xVa =XV —a
aV —a

incorrect application of the resolution rule:

xVaV x XV -a
2227

JXU
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Resolution Example

We prove unsatisfiability of

{(mx1Vxs5), (X2 VX5), (X2Vx4), (X3Vxg), (mx2V-x3), (X1 VX4V X)), (X6)}

as follows:

X1 V-aXxs x4 VXxs xpV —l)C4 X3V —|X4 Xy Voxs o X Vg Vooxg

\ —|x2 \Y ﬁ/
/ x5

)Cl \ _l)C6

\0
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