
PROPOSITIONAL LOGIC
VL Logik: WS 2018/19
(Version 2018.2)

Martina Seidl (martina.seidl@jku.at),
Armin Biere (biere@jku.at)
Institut für Formale Modelle und Verifikation

BOX Game: Rules

1. The game board consists of boxes with symbols. For example:

♥ ♦ ♥ ♦ ♥ � ♦ �

2. We chose two colors, for example purple and green.

� One color is the winning color, for example purple.
� Then the non-winning color is green.

3. Now we can play: assign the two colors to each symbol such
that its underlined and non-underlined occurrences have a
different color.

4. If each box contains a symbol in purple you won.

1/33

BOX Game: Rules

1. The game board consists of boxes with symbols. For example:

♥ ♦ ♥ ♦ ♥ � ♦ �

2. We chose two colors, for example purple and green.

� One color is the winning color, for example purple.
� Then the non-winning color is green.

3. Now we can play: assign the two colors to each symbol such
that its underlined and non-underlined occurrences have a
different color.

4. If each box contains a symbol in purple you won.

1/33

BOX Game: Rules

1. The game board consists of boxes with symbols. For example:

♥ ♦ ♥ ♦ ♥ � ♦ �

2. We chose two colors, for example purple and green.

� One color is the winning color, for example purple.
� Then the non-winning color is green.

3. Now we can play: assign the two colors to each symbol such
that its underlined and non-underlined occurrences have a
different color.

4. If each box contains a symbol in purple you won.

1/33

BOX Game: Rules

1. The game board consists of boxes with symbols. For example:

♥ ♦ ♥ ♦ ♥ � ♦ �

2. We chose two colors, for example purple and green.

� One color is the winning color, for example purple.
� Then the non-winning color is green.

3. Now we can play: assign the two colors to each symbol such
that its underlined and non-underlined occurrences have a
different color.

4. If each box contains a symbol in purple you won.

1/33

Some Examples

� Wrong coloring!

r � r � r � � �

� Again a wrong coloring!

r � r � r � � �

� Lost!

r � r � r � � �

� Won!

r � r � r � � �

2/33

Some Examples

� Wrong coloring!

r � r � r � � �

� Again a wrong coloring!

r � r � r � � �

� Lost!

r � r � r � � �

� Won!

r � r � r � � �

2/33

Some Examples

� Wrong coloring!

r � r � r � � �

� Again a wrong coloring!

r � r � r � � �

� Lost!

r � r � r � � �

� Won!

r � r � r � � �

2/33

Some Examples

� Wrong coloring!

r � r � r � � �

� Again a wrong coloring!

r � r � r � � �

� Lost!

r � r � r � � �

� Won!

r � r � r � � �

2/33

Some Terminology

� From now on, we call a box a clause.

� We call a clause with at least one purple symbol satisfied.

� We call a clause with all symbols in green falsified.

� We call a clause with green and uncolored symbols
undecided.

⇒ The game is won if all clauses are satisfied.

3/33

How Many Possibilities?
� 1 symbol, 2 possibilities

1. r
2. r

� 2 symbols, 4 possibilities

� 3 symbols, 8 possibilities

� 4 symbols, 16 possibilities

� 5 symbols, 32 possibilities

� 6 symbols, 64 possibilities

� ...

� 20 symbols, 1.048.576 possibilities

� 30 symbols, 1.073.741.824
possibilities

4/33

How Many Possibilities?
� 1 symbol, 2 possibilities

� 2 symbols, 4 possibilities
1. r, �
2. r, �
3. r, �
4. r, �

� 3 symbols, 8 possibilities

� 4 symbols, 16 possibilities

� 5 symbols, 32 possibilities

� 6 symbols, 64 possibilities

� ...

� 20 symbols, 1.048.576 possibilities

� 30 symbols, 1.073.741.824
possibilities

4/33

How Many Possibilities?
� 1 symbol, 2 possibilities

� 2 symbols, 4 possibilities

� 3 symbols, 8 possibilities
1. r, �, �
2. r, �, �
3. r, �, �
4. r, �, �
5. r, �, �
6. r, �, �
7. r, �, �
8. r, �, �

� 4 symbols, 16 possibilities

� 5 symbols, 32 possibilities

� 6 symbols, 64 possibilities

� ...

� 20 symbols, 1.048.576 possibilities

� 30 symbols, 1.073.741.824
possibilities

4/33

How Many Possibilities?

� 1 symbol, 2 possibilities

� 2 symbols, 4 possibilities

� 3 symbols, 8 possibilities

� 4 symbols, 16 possibilities

� 5 symbols, 32 possibilities

� 6 symbols, 64 possibilities

� ...

� 20 symbols, 1.048.576 possibilities

� 30 symbols, 1.073.741.824
possibilities

4/33

How Many Possibilities?

� 1 symbol, 2 possibilities

� 2 symbols, 4 possibilities

� 3 symbols, 8 possibilities

� 4 symbols, 16 possibilities

� 5 symbols, 32 possibilities

� 6 symbols, 64 possibilities

� ...

� 20 symbols, 1.048.576 possibilities

� 30 symbols, 1.073.741.824
possibilities

4/33

How Many Possibilities?

� 1 symbol, 2 possibilities

� 2 symbols, 4 possibilities

� 3 symbols, 8 possibilities

� 4 symbols, 16 possibilities

� 5 symbols, 32 possibilities

� 6 symbols, 64 possibilities

� ...

� 20 symbols, 1.048.576 possibilities

� 30 symbols, 1.073.741.824
possibilities

4/33

How Many Possibilities?

� 1 symbol, 2 possibilities

� 2 symbols, 4 possibilities

� 3 symbols, 8 possibilities

� 4 symbols, 16 possibilities

� 5 symbols, 32 possibilities

� 6 symbols, 64 possibilities

� ...

� 20 symbols, 1.048.576 possibilities

� 30 symbols, 1.073.741.824
possibilities

4/33

How Many Possibilities?

� 1 symbol, 2 possibilities

� 2 symbols, 4 possibilities

� 3 symbols, 8 possibilities

� 4 symbols, 16 possibilities

� 5 symbols, 32 possibilities

� 6 symbols, 64 possibilities

� ...

� 20 symbols, 1.048.576 possibilities

� 30 symbols, 1.073.741.824
possibilities

4/33

How Many Possibilities?

� 1 symbol, 2 possibilities

� 2 symbols, 4 possibilities

� 3 symbols, 8 possibilities

� 4 symbols, 16 possibilities

� 5 symbols, 32 possibilities

� 6 symbols, 64 possibilities

� ...

� 20 symbols, 1.048.576 possibilities

� 30 symbols, 1.073.741.824
possibilities

4/33

How Many Possibilities?

� 1 symbol, 2 possibilities

� 2 symbols, 4 possibilities

� 3 symbols, 8 possibilities

� 4 symbols, 16 possibilities

� 5 symbols, 32 possibilities

� 6 symbols, 64 possibilities

� ...

� 20 symbols, 1.048.576 possibilities

� 30 symbols, 1.073.741.824
possibilities

n symbols
⇒

2n possibilities

4/33

Guess & Check Problems

observation in our BOX game:
� finding a solution is hard

� 2n solution candidates have to be considered
� a good oracle is needed for guessing

� verifying a given candidate solution is easy
� check that each box contains a purple symbol

fundamental question in computer science:

The P = NP Question

Is searching for a solution harder than verifying a solution?
(unfortunately, the answer is not known)

5/33

Guess & Check Problems

observation in our BOX game:
� finding a solution is hard

� 2n solution candidates have to be considered
� a good oracle is needed for guessing

� verifying a given candidate solution is easy
� check that each box contains a purple symbol

fundamental question in computer science:

The P = NP Question

Is searching for a solution harder than verifying a solution?
(unfortunately, the answer is not known)

5/33

Famous Guess & Check Problem: SAT

SAT is the decision problem of propositional logic:
� Given a Boolean formula, for example

(¬x ∨ ¬y) ∧ (x ∨ ¬y) ∧ (¬x ∨ z) ∧ (y ∨ ¬z).

� Question: is the formula satisfiable?
I.e., is there an assignment of truth values 1 (true), 0 (false) to
the literals x, y, z,¬x,¬y,¬z such that
� for every variable v ∈ {x, y, z} it holds that the truth value of v

and the truth value of ¬v are different
� each clause (...) contains at least one true literal

Cook-Levin Theorem [71]: SAT is NP-complete
Searching is as easy as checking if and only if it is for SAT.

6/33

Famous Guess & Check Problem: SAT

SAT is the decision problem of propositional logic:
� Given a Boolean formula, for example

(¬x ∨ ¬y) ∧ (x ∨ ¬y) ∧ (¬x ∨ z) ∧ (y ∨ ¬z).

� Question: is the formula satisfiable?
I.e., is there an assignment of truth values 1 (true), 0 (false) to
the literals x, y, z,¬x,¬y,¬z such that
� for every variable v ∈ {x, y, z} it holds that the truth value of v

and the truth value of ¬v are different
� each clause (...) contains at least one true literal

Cook-Levin Theorem [71]: SAT is NP-complete
Searching is as easy as checking if and only if it is for SAT.

6/33

Relating BOX and SAT

There is a correspondence between BOX and SAT, e.g., between

♥ ♦ ♥ ♦ ♥ � ♦ �

and (¬x ∨ ¬y) ∧ (x ∨ ¬y) ∧ (¬x ∨ z) ∧ (y ∨ ¬z) :

� x corresponds to ♥, ¬x corresponds to ♥
� y corresponds to ♦, ¬y correpsonds to ♦
� z corresponds to �, ¬z corresponds to �
� purple/green coloring corresponds to assignment of literals to

true/false (1/0)

Note:

� assignment of variables gives values of all literals
� if we can solve SAT, we can solve BOX (and vice versa)

7/33

Relating BOX and SAT

There is a correspondence between BOX and SAT, e.g., between

♥ ♦ ♥ ♦ ♥ � ♦ �

and (¬x ∨ ¬y) ∧ (x ∨ ¬y) ∧ (¬x ∨ z) ∧ (y ∨ ¬z) :

� x corresponds to ♥, ¬x corresponds to ♥
� y corresponds to ♦, ¬y correpsonds to ♦
� z corresponds to �, ¬z corresponds to �
� purple/green coloring corresponds to assignment of literals to

true/false (1/0)

Note:

� assignment of variables gives values of all literals
� if we can solve SAT, we can solve BOX (and vice versa)

7/33

Relating BOX and SAT

There is a correspondence between BOX and SAT, e.g., between

♥ ♦ ♥ ♦ ♥ � ♦ �

and (¬x ∨ ¬y) ∧ (x ∨ ¬y) ∧ (¬x ∨ z) ∧ (y ∨ ¬z) :

� x corresponds to ♥, ¬x corresponds to ♥
� y corresponds to ♦, ¬y correpsonds to ♦
� z corresponds to �, ¬z corresponds to �
� purple/green coloring corresponds to assignment of literals to

true/false (1/0)

Note:

� assignment of variables gives values of all literals
� if we can solve SAT, we can solve BOX (and vice versa)

7/33

Relating BOX and SAT

There is a correspondence between BOX and SAT, e.g., between

♥ ♦ ♥ ♦ ♥ � ♦ �

and (¬x ∨ ¬y) ∧ (x ∨ ¬y) ∧ (¬x ∨ z) ∧ (y ∨ ¬z) :

� x corresponds to ♥, ¬x corresponds to ♥
� y corresponds to ♦, ¬y correpsonds to ♦
� z corresponds to �, ¬z corresponds to �
� purple/green coloring corresponds to assignment of literals to

true/false (1/0)

Note:

� assignment of variables gives values of all literals
� if we can solve SAT, we can solve BOX (and vice versa)

7/33

Practical Applications of SAT Solving

formal verification bioinformatics train safety

planning & scheduling security theorem proving

SAT solverencode decode

8/33

Logics in this Lecture

In this lecture, we consider different logic-based languages:

� propositional logic (SAT)
� simple language: only atoms and connectives
� low expressiveness, low complexity
� very successful in industry (e.g., verification)

� first-order logic (predicate logic)
� rich language: predicates, functions, terms, quantifiers
� great power of expressiveness, high complexity
� many applications in mathematics and verification

� satisfiability modulo theories (SMT)
� customizable language: user decides
� as much expressiveness as required

as much complexity as necessary
� very popular and successful in industry

9/33

Logic-Based Languages (Logics)

� A logic consists of
� a set of symbols (like ∨,∧,¬,>,⊥,∀,∃ . . .)
� a set of variables (like x, y, z, . . .)
� concise syntax: well-formedness of expressions
� concise semantics: meaning of expressions

� Logics support reasoning for
� derivation of “new” knowledge
� proving the truth/falsity of a statement (satisfiability checking)

� Different logics differ in their

� truth values: binary (true, false), multi-valued (true, false,
unknown), fuzzy (between 0 and 1, e.g., [0, 1] as subset of the
real numbers)

� expressiveness (what can be formulated in the logic?)
� complexity (how expensive is reasoning?)

10/33

PROPOSITIONAL LOGIC

Propositions

a proposition is an atomic statement that is either true or false

example:

� Alice comes to the party.

� It rains.

with connectives, propositions can be combined

example:

� Alice comes to the party, Bob as well, but not Cecile.

� If it rains, the street is wet.

11/33

Propositional Logic

� two truth values (Boolean domain): true/false, verum/falsum,
on/off, 1/0

� language elements
� atomic propositions (atoms, variables)

• no internal structure
• either true or false

� logic connectives: not (¬), and (∧), or (∨), . . .
• operators for construction of composite propositions
• concise meaning
• argument(s) and return value from Boolean domain

� parenthesis

example: formula of propositional logic: (¬t ∨ s) ∧ (t ∨ s) ∧ (¬t ∨ ¬s)

atoms: t, s, connectives: ¬, ∨, ∧, parenthesis for structuring the expression

12/33

Background

� historical origins: ancient Greeks

� in philosophy, mathematics, and computer science

� two very basic principles:
� Law of Excluded Middle:

a proposition is true or its negation is true
� Law of Contradiction:

no expression is both true and false at the same time

� very simple language
� no objects, no arguments to propositions
� no functions, no quantifiers

� solving is easy (relative to other logics)

� many applications in industry

13/33

Syntax: Structure of Propositional Formulas

we build a propositional formula using the following components:

� literals:
� variables x, y, z, . . .
� negated variables ¬x,¬y,¬z, . . .
� truth constants: > (verum) and ⊥ (falsum)
� negated truth constants: ¬> and ¬⊥

� clauses: disjunction (∨) of literals
� x ∨ y
� x ∨ y ∨ ¬z
� z
� >

14/33

Syntax: Structure of Propositional Formulas

A propositional formula is a conjunction (∧) of clauses.

examples of formulas:
� >

� ⊥

� x

� ¬y

� x ∧ y ∧ z

� (¬x ∨ y ∨ ¬z) ∧ z

� (x ∨ ¬y) ∧ (x ∨ ¬y ∨ z) ∧ (y ∨ ¬z)

� ((l11 ∨ . . . ∨ l1m1) ∧ . . . ∧ (ln1 ∨ . . . ∨ lnmn))

Remark: For the moment, we consider formulas of a restricted structure called CNF, e.g., we do not consider formulas like
(x ∧ y) ∨ (¬x ∧ z). Any propositional formula can be translated into this structure. We will relax this restriction later.

15/33

Conventions

we use the following conventions unless stated otherwise:

� a, b, c, x, y, z denote variables and l, k denote literals

� φ, ψ, γ denote arbitrary formulas

� C,D denote clauses
� clauses are also written as sets

� (l1 ∨ . . . ∨ ln) = {l1, . . . ln}
� to add a literal l to clause C, we write C ∪ {l}
� to remove a literal l from clause C, we write C\{l}

� formulas in CNF are also written as sets of sets
� ((l11 ∨ . . . ∨ l1m1) ∧ . . . ∧ (ln1 ∨ . . . ∨ lnmn)) =
{{l11, . . . l1m1 }, . . . , {ln1, . . . lnmn }}

� to add a clause C to CNF φ, we write φ ∪ {C}
� to remove a clause C from CNF φ, we write φ\{C}

16/33

Negation

� unary connective ¬ (operator with exactly one argument)

� negating the truth value of its argument

� alternative notation: !x, x,−x,NOT x

truth table:
x ¬x
0 1
1 0

example:
� If the atom “It rains.” is true then the negation “It does not rain.” is false.

� If the propositional variable a is true then ¬a is false.

� If the propositional variable a is false then ¬a is true.

17/33

Disjunction

� a disjunction is true iff at least one of the arguments is true
� alternative notation for l ∨ k: l || k, l + k, l OR k
� For (l1 ∨ . . . ∨ ln) we also write

∨n
i=1 li.

truth table:

l k l ∨ k
0 0 0
0 1 1
1 0 1
1 1 1

example:
� (a ∨ ¬a) is always true.

� (> ∨ a) is always true.

� (⊥ ∨ a) is true if a is true.

18/33

Conjunction

� a conjunction is true iff both arguments are true
� alternative notation for C ∧ D: C && D,

CD,C ∗ D,C · D,C AND D
� for (C1 ∧ . . . ∧Cn) we also write

∧n
i=1 Ci.

truth table:

C D C ∧ D
0 0 0
0 1 0
1 0 0
1 1 1

example:
� (a ∧ ¬a) is always false.

� (> ∧ a) is true if a is true. (⊥ ∧ φ) is always false.

� If (a ∨ b) is true and (¬c ∨ d) is true then (a ∨ b) ∧ (¬c ∨ d) is true.
19/33

Properties of Connectives

� rules of precedence:

� ¬ binds stronger than ∧
� ∧ binds stronger than ∨

example
� ¬a ∨ b ∧ ¬c ∨ d is the same as (¬a) ∨ (b ∧ (¬c)) ∨ d, but not

((¬a) ∨ b) ∧ ((¬c) ∨ d)

⇒ put clauses into parentheses!
� associativity:

� ∧ is associative and commutative
� ∨ is associative and commutative

example

� (a ∧ b) ∧ ¬c is the same as a ∧ (b ∧ ¬c)
� (a ∨ b) ∨ ¬c is the same as a ∨ (b ∨ ¬c)

20/33

Assignment

� a variable can be assigned one of two values from the
two-valued domain B, where B = {1, 0}

� the mapping ν : P → B is called assignment, where P is the
set of atomic propositions

� we sometimes write an assignment ν as set V with
V ⊆ P ∪ {¬x|x ∈ P} such that
� x ∈ V iff ν(x) = 1
� ¬x ∈ V iff ν(x) = 0

� for n variables, there are 2n assignments possible

� an assignment corresponds to one line in the truth table

21/33

Assignment: Example

x y z x ∨ y ¬z (x ∨ y) ∧ ¬z
0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 1 1 1
0 1 1 1 0 0
1 0 0 1 1 1
1 0 1 1 0 0
1 1 0 1 1 1
1 1 1 1 0 0

� one assignment: ν(x) = 1, ν(y) = 0, ν(z) = 1
� alternative notation: V = {x,¬y, z}
� observation: A variable assignment determines the truth value

of the formulas containing these variables.
22/33

Semantics of Propositional Logic

Let P be the set of atomic propositions (variables) and L be the set
of all propositional formulas over P that are syntactically correct
(i.e., all possible conjunctions of clauses over P).

Given assignment ν : P → B, the interpretation [.]ν : L → B is
defined by:

� [>]ν = 1, [⊥]ν = 0

� if x ∈ P then [x]ν = ν(x)

� [¬x]ν = 1 iff [x]ν = 0

� [C]ν = 1 (where C is a clause) iff
there is at least one literal l with l ∈ C and [l]ν = 1

� [φ]ν = 1 (where φ is in CNF) iff
for all clauses C ∈ φ it holds that [C]ν = 1

23/33

Satisfying/Falsifying Assignments

� an assignment ν is called
� satisfying a formula φ iff [φ]ν = 1
� falsifying a formula φ iff [φ]ν = 0

� a satisfying assignment for φ is a model of φ

� a falsifying assignment for φ is a counter-model of φ

example:

For formula ((x ∨ y) ∧ ¬z),

� {x, y, z} is a counter-model,

� {x, y,¬z} is a model.

24/33

SAT-Solver Limboole

� available at http://fmv.jku.at/limboole

� input:1

� variables are strings over letters, digits and – _ . [] $ @
� negation symbol ¬ is !
� disjunction symbol ∨ is |
� conjunction symbol ∧ is &

example

(a ∨ b ∨ ¬c) ∧ (¬a ∨ b) ∧ c is represented as
(a | b | !c) & (!a | b) & c

1For now, we will only use subset of the language supported by Limboole.

25/33

http://fmv.jku.at/limboole

Properties of Propositional Formulas (1/2)

� formula φ is satisfiable iff
there exists an assignment ν with [φ]ν = 1

check with limboole -s

� formula φ is valid iff
for all assignments ν it holds that [φ]ν = 1

check with limboole

� formula φ is refutable iff
there exists an assignment ν with [φ]ν = 0

check with limboole

� formula φ is unsatisfiable iff
for all assignments ν it holds that [φ]ν = 0

check with limboole -s

26/33

Properties of Propositional Formulas (2/2)

� a valid formula is called tautology

� an unsatisfiable formula is called contradiction

example:

� > is valid.

� a ∨ ¬a is a tautology.

� (a ∨ ¬b) ∧ (¬a ∨ b) is
refutable.

� ⊥ is unsatisfiable.

� a ∧ ¬a is a contradiction.

� (a ∨ ¬b) ∧ (¬a ∨ b) is
satisfiable.

27/33

SAT: The Boolean Satisfiability Problem

Given a propositional formula φ.
Is there an assignment that satisfies φ?

different formulation: can we find an assignment such that each
clause contains at least one true literal?

28/33

Encoding the k-Coloring Problem

Given graph (V, E) with vertices V and edges E. Color each node with one of k
colors, such that there is no edge (v,w) ∈ E, with vertices v and w colored in the
same color.

encoding:

1. propositional variables: v j ... node v ∈ V has color j (1 ≤ j ≤ k)

2. each node has a color: ∧
v∈V

(
∨

1≤ j≤k

v j)

3. each node has just one color: (¬vi ∨ ¬v j) with v ∈ V, 1 ≤ i < j ≤ k

4. neighbors have different colors: (¬vi ∨ ¬wi) with (v,w) ∈ E, 1 ≤ i ≤ k

29/33

Encoding the k-Coloring Problem: Example

task: find 2-coloring of graph ({a, b, c}, {(a, b), (b, c)}) with SAT
possible solution:

a b c

encoding in SAT:

� variables: a1, a2, b1, b2, c1, c2

� clauses:
1. each node has a color: (a1 ∨ a2), (b1 ∨ b2), (c1 ∨ c2)
2. no node has two colors: (¬a1 ∨ ¬a2), (¬b1 ∨ ¬b2), (¬c1 ∨ ¬c2)
3. connected nodes have a different color:

(¬a1 ∨ ¬b1), (¬a2 ∨ ¬b2), (¬b1 ∨ ¬c1), (¬b2 ∨ ¬c2)
� full formula:

(a1 ∨ a2) ∧ (b1 ∨ b2) ∧ (c1 ∨ c2) ∧ (¬a1 ∨ ¬a2) ∧ (¬b1 ∨ ¬b2) ∧ (¬c1 ∨ ¬c2) ∧
(¬a1 ∨ ¬b1) ∧ (¬a2 ∨ ¬b2) ∧ (¬b1 ∨ ¬c1) ∧ (¬b2 ∨ ¬c2)

30/33

Encoding the k-Coloring Problem: Example

task: find 2-coloring of graph ({a, b, c}, {(a, b), (b, c)}) with SAT
possible solution:

a b c

encoding in SAT:

� variables: a1, a2, b1, b2, c1, c2

� clauses:
1. each node has a color: (a1 ∨ a2), (b1 ∨ b2), (c1 ∨ c2)
2. no node has two colors: (¬a1 ∨ ¬a2), (¬b1 ∨ ¬b2), (¬c1 ∨ ¬c2)
3. connected nodes have a different color:

(¬a1 ∨ ¬b1), (¬a2 ∨ ¬b2), (¬b1 ∨ ¬c1), (¬b2 ∨ ¬c2)
� full formula:

(a1 ∨ a2) ∧ (b1 ∨ b2) ∧ (c1 ∨ c2) ∧ (¬a1 ∨ ¬a2) ∧ (¬b1 ∨ ¬b2) ∧ (¬c1 ∨ ¬c2) ∧
(¬a1 ∨ ¬b1) ∧ (¬a2 ∨ ¬b2) ∧ (¬b1 ∨ ¬c1) ∧ (¬b2 ∨ ¬c2)

30/33

Encoding the k-Coloring Problem: Example

task: find 2-coloring of graph ({a, b, c}, {(a, b), (b, c)}) with SAT
possible solution:

a b c

encoding in SAT:

� variables: a1, a2, b1, b2, c1, c2

� clauses:
1. each node has a color: (a1 ∨ a2), (b1 ∨ b2), (c1 ∨ c2)
2. no node has two colors: (¬a1 ∨ ¬a2), (¬b1 ∨ ¬b2), (¬c1 ∨ ¬c2)
3. connected nodes have a different color:

(¬a1 ∨ ¬b1), (¬a2 ∨ ¬b2), (¬b1 ∨ ¬c1), (¬b2 ∨ ¬c2)

� full formula:
(a1 ∨ a2) ∧ (b1 ∨ b2) ∧ (c1 ∨ c2) ∧ (¬a1 ∨ ¬a2) ∧ (¬b1 ∨ ¬b2) ∧ (¬c1 ∨ ¬c2) ∧
(¬a1 ∨ ¬b1) ∧ (¬a2 ∨ ¬b2) ∧ (¬b1 ∨ ¬c1) ∧ (¬b2 ∨ ¬c2)

30/33

Encoding the k-Coloring Problem: Example

task: find 2-coloring of graph ({a, b, c}, {(a, b), (b, c)}) with SAT
possible solution:

a b c

encoding in SAT:

� variables: a1, a2, b1, b2, c1, c2

� clauses:
1. each node has a color: (a1 ∨ a2), (b1 ∨ b2), (c1 ∨ c2)
2. no node has two colors: (¬a1 ∨ ¬a2), (¬b1 ∨ ¬b2), (¬c1 ∨ ¬c2)
3. connected nodes have a different color:

(¬a1 ∨ ¬b1), (¬a2 ∨ ¬b2), (¬b1 ∨ ¬c1), (¬b2 ∨ ¬c2)
� full formula:

(a1 ∨ a2) ∧ (b1 ∨ b2) ∧ (c1 ∨ c2) ∧ (¬a1 ∨ ¬a2) ∧ (¬b1 ∨ ¬b2) ∧ (¬c1 ∨ ¬c2) ∧
(¬a1 ∨ ¬b1) ∧ (¬a2 ∨ ¬b2) ∧ (¬b1 ∨ ¬c1) ∧ (¬b2 ∨ ¬c2)

30/33

Resolution

� the resolution calculus consists of the single resolution rule

x ∨C ¬x ∨ D
C ∨ D

� C and D are (possibly empty) clauses
� the clause C ∨ D is called resolvent
� variable x is called pivot
� antecedent clauses x ∨C and ¬x ∨ D are NOT tautological

� the resolution calculus works only on formulas in CNF
� if the empty clause can be derived then the formula is

unsatisfiable
� if the formula is unsatisfiable, then the empty clause can be

derived
31/33

Examples of Applying the Resolution Rule

one application of resolution

x ∨ y ∨ ¬z ¬x ∨ y′ ∨ ¬z
y ∨ ¬z ∨ y′

derivation of empty clause:
y ¬y
⊥

derivation of tautology:

x ∨ a ¬x ∨ ¬a
a ∨ ¬a

incorrect application of the resolution rule:

x ∨ a ∨ ¬x ¬x ∨ ¬a
????

32/33

Resolution Example

We prove unsatisfiability of

{(¬x1∨¬x5), (x4∨x5), (x2∨¬x4), (x3∨¬x4), (¬x2∨¬x3), (x1∨x4∨¬x6), (x6)}

as follows:

x1 ∨ x4 ∨ ¬x6¬x2 ∨ ¬x3 x6

x1

¬x2 ∨ ¬x4

x3 ∨ ¬x4

¬x4

x2 ∨ ¬x4

x5

x4 ∨ x5

¬x1

¬x1 ∨ ¬x5

∅

¬x4

x2 ∨ ¬x4

x5

x4 ∨ x5

¬x1

¬x1 ∨ ¬x5

x1 ∨ ¬x6

∅

33/33

	Propositional Logic

