FIRST-ORDER LOGIC

Pragmatics

Wolfgang Schreiner and Wolfgang Windsteiger Wolfgang.(Schreiner|Windsteiger)@risc.jku.at Research Institute for Symbolic Computation (RISC) Johannes Kepler University (JKU), Linz, Austria

http://www.risc.jku.at

Pragmatics

We will now investigate the pragmatics (practical use) of first-order logic in two contexts.

Defining Models

- □ Introducing new domains and operations.
- Unique characterizations of their meaning.

Specifying Problems

- Describing expectations for computations.
- □ Assumptions on the inputs and guarantees for the outputs.

Highly relevant for computer science and mathematics.

Standard Models

We assume the following "standard models" as given.

Natural Numbers $\mathbb{N} = \{0, 1, 2, ...\}$, $\mathbb{N}_n = \{0, ..., n-1\}$, $\mathbb{N}_{>0} = \{1, 2, ...\}$, etc. Integer Numbers $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$.

Real Numbers \mathbb{R} , $\mathbb{R}_{\geq 0}$, $\mathbb{R}_{>0}$.

Usual arithmetic operations for all number domains.

Sets $\mathcal{P}(T)$: all sets with elements of set *T*.

Element predicate $e \in S$, set builder term $\{t \mid x \in S \land ... \land F\}$.

Products $T_1 \times \ldots \times T_n$: all tuples (c_1, \ldots, c_n) with components from T_1, \ldots, T_n .

For $t = (c_1, ..., c_n)$ we have $t \cdot 1 = c_1, ..., t \cdot n = c_n$.

Sequences T^* : all finite sequences with values from T; T^{ω} all infinite sequences. $s \in T^*$: $s = [s(0), s(1), s(2), \dots, s(n-1)]$, length(s) = n.

The "builtin data types" of our models.

Domain Definitions

From the standard domains, we may build new domains.

A domain definition

T := t

defines a new domain T from a term t that denotes a set (constructed from previous sets by the application of set builders and/or domain constructors).

$$\begin{split} \mathsf{Nat} &:= \mathbb{N}_{2^{32}} \\ \mathsf{Int} &:= \{i \mid i \in \mathbb{Z} \land -2^{31} \leq i \land i < 2^{31} \} \\ \mathsf{IntArray} &:= \mathsf{Int}^* \\ \mathsf{IntStream} &:= \mathsf{Int}^{\varpi} \\ \mathsf{Primes} &:= \{x \mid x \in \mathbb{N} \land x \geq 2 \land (\forall y \in \mathbb{N} : 1 < y \land y < x \to \neg(y|x)) \} \end{split}$$

Explicit Function Definitions

A new function my be introduced by describing its value.

An explicit function definition

$$f: T_1 \times \ldots \times T_n \to T$$
$$f(x_1, \ldots, x_n) := t_x$$

 \Box introduces a new *n*-ary function symbol *f* with

- \Box a type signature $T_1 \times \ldots \times T_n \to T$ with sets T_1, \ldots, T_n, T ,
- \Box a list of variables x_1, \ldots, x_n (the parameters), and
- \Box a term t_x (the body) whose free variables occur in x_1, \ldots, x_n ;
- □ case n = 0: the definition of a constant f : T, f := t.
- We have to show $(\forall x_1 \in T_1, \dots, x_n \in T_n : t_x \in T)$ and then know

$$\forall x_1 \in T_1, \ldots, x_n \in T_n \colon f(x_1, \ldots, x_n) = t_x$$

The body t_x may only refer to previously defined functions (no recursion).

Examples

Definition: Let x and y be natural numbers. Then the square sum of x and y is the sum of the squares of x and y.

squaresum: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ squaresum $(x, y) := x^2 + y^2$

Definition: Let x and y be natural numbers. Then the squared sum of x and y is the square of z where z is the sum of x and y.

```
\mathsf{sumsquared} \colon \mathbb{N} 	imes \mathbb{N} 	o \mathbb{N}
```

```
sumsquared(x, y) := let z = x + y in z^2
```

Definition: Let n be a natural number. Then the square sum set of n is the set of the square sums of all numbers x and y from 1 to n.

```
squaresumset: \mathbb{N} \to \mathcal{P}(\mathbb{N})
```

 $\mathsf{squaresumset}(n) := \{\mathsf{squaresum}(x, y) \ | \ x, y \in \mathbb{N} \land 1 \le x \le n \land 1 \le y \le n\}$

Predicate Definitions

A new predicate my be introduced by describing its truth value.

An explicit predicate definition

 $p \subseteq T_1 \times \ldots \times T_n$ $p(x_1, \ldots, x_n) :\Leftrightarrow F_x$

 \Box introduces a new *n*-ary predicate symbol *p* with

- \square a type signature $T_1 imes \ldots imes T_n$ with sets T_1, \ldots, T_n ,
- \Box a list of variables x_1, \ldots, x_n (the parameters), and
- \Box a formula *F* (the body) whose free variables occur in x_1, \ldots, x_n ;

□ case n = 0: the definition of a truth value constant $p : \Leftrightarrow F_x$.

We then know

$$\forall x_1 \in T_1, \dots, x_n \in T_n \colon p(x_1, \dots, x_n) \leftrightarrow F_x$$

The body F_x may only refer to previously defined predicates (no recursion).

Examples

Definition: Let x, y be natural numbers. Then x divides y (written as x|y) if $x \cdot z = y$ for some natural number z.

```
|\subseteq \mathbb{N} \times \mathbb{N}x|y: \Leftrightarrow \exists z \in \mathbb{N} : x \cdot z = y
```

Definition: Let x be a natural number. Then x is prime if x is at least two and the only divisors of x are one and x itself.

isprime $\subseteq \mathbb{N}$ isprime $(x) :\Leftrightarrow x \ge 2 \land \forall y \in \mathbb{N} : y | x \to y = 1 \lor y = x$

Definition: Let p,n be a natural numbers. Then p is a *prime factor* of n, if p is prime and divides n.

```
\label{eq:sprime} \begin{split} & \text{isprimefactor} \subseteq \mathbb{N} \times \mathbb{N} \\ & \text{isprimefactor}(p,n) :\Leftrightarrow \text{isprime}(p) \wedge p | n \end{split}
```

Implicit Function Definitions

A new function may be introduced by a condition on its result value.

An implicit function definition

 $f: T_1 \times \ldots \times T_n \to T$

 $f(x_1,\ldots,x_n) :=$ such $y: F_{x,y}$ (or: the $y: F_{x,y}$)

 \Box introduces a new *n*-ary function constant *f* with

 \square a type signature $T_1 imes \ldots imes T_n o T$ with sets T_1, \ldots, T_n, T ,

 \Box a list of variables x_1, \ldots, x_n (the parameters),

 \Box a variable y (the result variable),

□ a formula $F_{x,y}$ (the result condition) whose free variables occur in x_1, \ldots, x_n, y . We then know

 $\forall x_1 \in T_1, \dots, x_n \in T_n : (\exists y \in T : F_{x,y}) \to (\exists y \in T : F_{x,y} \land y = f(x_1, \dots, x_n))$

□ If some value satisfies the condition, the function result is such a value.

 \Box With **the** we claim that the value of f always exists and is unique.

The definition of a function by a formula (rather than a term).

Examples

Definition: A root of real number x is a real number y such that the square of y is x.

aRoot: $\mathbb{R} \to \mathbb{R}$ aRoot(x) := such $y: y^2 = x$

Definition: The root of non-negative real x is that real y such that the square of y and $y \ge 0$.

theRoot:
$$\mathbb{R}_{\geq 0} \to \mathbb{R}$$

theRoot(x) := **the** y : $y^2 = x \land y \ge 0$

Definition: Let $m, n \in \mathbb{N}$ with n positive. Then the *(truncated) quotient* $q \in \mathbb{N}$ of m and n is such that $m = n \cdot q + r$ for some $r \in \mathbb{N}$ with r < n.

quotient: $\mathbb{N} \times \mathbb{N}_{>0} \to \mathbb{N}$ quotient(m,n) := **the** q: $\exists r \in \mathbb{N}$: $m = n \cdot q + r \wedge r < n$

Definition: Let x, y be positive natural numbers. The greatest common divisor of x and y is the greatest such number that divides both x and y.

$$gcd: \mathbb{N}_{>0} \times \mathbb{N}_{>0} \to \mathbb{N}_{>0}$$
$$gcd(x,y) := \mathbf{the} \ z: \ z|x \wedge z|y \wedge \forall z' \in \mathbb{N}_{>0}: \ z'|x \wedge z'|y \to z' \le z$$
$$9/18$$

Predicates versus Functions

A predicate can give rise to functions in two ways.

A predicate:

```
\mathsf{isprimefactor} \subseteq \mathbb{N} \times \mathbb{N}
```

 $\mathsf{isprimefactor}(p,n):\Leftrightarrow \mathsf{isprime}(p) \land p | n$

An implicitly defined function:

someprime factor : $\mathbb{N} \to \mathbb{N}$

someprime factor(n) := such p: isprime(p) $\land p|n$

An explicitly defined function whose result is a set:

allprime factors: $\mathbb{N} \to \mathcal{P}(\mathbb{N})$

 $\operatorname{allprimefactors}(n) := \{ p \in \mathbb{N} \mid \operatorname{isprime}(p) \land p | n \}$

The preferred style of definition is a matter of taste and purpose.

Specifying Problems

An important role of logic in computer science is to specify problems.

The specification of a (computational) problem

Input: $x_1 \in T_1, \dots, x_n \in T_n$ where I_x Output: $y_1 \in U_1, \dots, y_m \in U_m$ where $O_{x,y}$

 \Box consists of a list of input variables x_1, \ldots, x_n with types T_1, \ldots, T_n ,

 \Box a formula I_x (the input condition or precondition) whose free variables occur in

 x_1,\ldots,x_n

 \Box a list of output variables y_1, \ldots, y_m with types U_1, \ldots, U_m , and

 \Box a formula $O_{x,y}$ (the output condition or postcondition) whose free variables occur in

 $x_1,\ldots,x_n,y_1,\ldots,y_m$

The specification is expressed with the help of auxiliary functions and predicates.

Example

Problem: extract from a finite sequence s of natural numbers a subsequence t of length n starting at position p.

Input: $s \in \mathbb{N}^*, n \in \mathbb{N}, p \in \mathbb{N}$ where(subsequence is in range of array) $n + p \leq \text{length}(s)$ (subsequence is in range of array) $\text{Output: } t \in \mathbb{N}^*$ where(length of result sequence) $\forall i \in \mathbb{N}_n : t(i) = s(i + p)$ (content of result sequence)

The Adequacy of Specifications

Input: x where I_x Output: y where $O_{x,y}$

- Is precondition satisfiable? $(\exists x: I_x)$ Otherwise no input is allowed.
- Is precondition not trivial? $(\exists x: \neg I_x)$ Otherwise every input is allowed, why then the precondition?
- Is postcondition always satisfiable? $(\forall x : I_x \rightarrow \exists y : O_{x,y})$ Otherwise no implementation is legal.
- Is postcondition not always trivial? $(\exists x, y: I_x \land \neg O_{x,y})$ Otherwise every implementation is legal.
- Is result unique? $(\forall x, y_1, y_2: (I_x \land O_{x,y}[y_1/y] \land O_{x,y}[y_2/y] \rightarrow y_1 = y_2))$ Whether this is required, depends on our expectations.

Ask these questions to ensure that specification expresses your intentions.

Example: The Problem of Integer Division

Input: $m \in \mathbb{N}, n \in \mathbb{N}$ Output: $q \in \mathbb{N}, r \in \mathbb{N}$ where $m = n \cdot q + r$

The postcondition is always satisfiable but not trivial.

 \Box For m = 13, n = 5, e.g. q = 2, r = 3 is legal but q = 2, r = 4 is not.

But the result is not unique.

 \Box For m = 13, n = 5, both q = 2, r = 3 and q = 1, r = 8 are legal.

Input: $m \in \mathbb{N}, n \in \mathbb{N}$ **Output:** $q \in \mathbb{N}, r \in \mathbb{N}$ where $m = n \cdot q + r \wedge r < n$

Now the postcondition is not always satisfiable.

 \Box For m = 13, n = 0, no output is legal.

Input: $m \in \mathbb{N}, n \in \mathbb{N}$ where $n \neq 0$ **Output:** $q \in \mathbb{N}, r \in \mathbb{N}$ where $m = n \cdot q + r \wedge r < n$

The precondition is not trival but satisfiable.

 \square m = 13, n = 0 is not legal but m = 13, n = 5 is.

The postcondition is always satisfiable and result is unique.

 \Box For m = 13, n = 5, only q = 2, r = 3 is legal.

Example: The Problem of Linear Search

Problem: given a finite integer sequence *a* and an integer *x*, determine the smallest position *p* at which *x* occurs in *a* (p = -1, if *x* does not occur in *a*).

Example: $a = [2, 3, 5, 7, 5, 11], x = 5 \rightsquigarrow p = 2$

Input: $a \in \mathbb{Z}^*, x \in \mathbb{Z}$ Output: $p \in \mathbb{N} \cup \{-1\}$ where let n = length(a) in if $\exists p \in \mathbb{N}_n : a(p) = x$ (x occurs in a) then $p \in \mathbb{N}_n \land a(p) = x \land$ (p is the index of some occurrence of x) $(\forall q \in \mathbb{N}_n : a(q) = x \rightarrow p \leq q)$ (p is the smallest such index) else p = -1

All inputs are legal; the result always exists and is uniquely determined.

Example: The Problem of Binary Search

Problem: given a finite integer sequence *a* that is sorted in ascending order and an integer *x*, determine some position *p* at which *x* occurs in *a* (p = -1, if *x* does not occur in *a*).

Example:
$$a = [2,3,5,5,5,7,11], x = 5 \rightsquigarrow p \in \{2,3,4\}$$

Input:
$$a \in \mathbb{Z}^*, x \in \mathbb{Z}$$
 wherelet $n = \text{length}(a)$ in $\forall k \in \mathbb{N}_{n-1}: a(k) \le a(k+1)$ (a is sorted)Output: $p \in \mathbb{N} \cup \{-1\}$ wherelet $n = \text{length}(a)$ inif $\exists p \in \mathbb{N}_n: a(p) = x$ then $p \in \mathbb{N}_n \land a(p) = x$ (p is the index of some occurrence of x)else $p = -1$

Not all inputs are legal; for every legal input, the result exists but is not unique.

Example: The Problem of Sorting

Problem: given a finite integer sequence a, determine that permutation b of a that is sorted in ascending order.

Example: $a = [5,3,7,2,3] \rightsquigarrow b = [2,3,3,5,7]$ Input: $a \in \mathbb{Z}^*$ Output: $b \in \mathbb{N}^*$ where let n = length(a) in length $(b) = n \land$ $(\forall k \in \mathbb{N}_{n-1}: b(k) \le b(k+1)) \land$ (b is sorted) $\exists p \in \mathbb{N}_n^*:$ (b is a permutation of a) $(\forall k1 \in \mathbb{N}_n, k2 \in \mathbb{N}_n: k1 \ne k2 \rightarrow p(k1) \ne p(k2)) \land$ $(\forall k \in \mathbb{N}_n: a(k) = b(p(k)))$

All inputs are legal; the result always exists and is uniquely determined.

Implementing Problem Specifications

Input: $x_1 \in T_1, \dots, x_n \in T_n$ where I_x Output: $y_1 \in U_1, \dots, y_m \in U_m$ where $O_{x,y}$

Specification demands definition of function $f: T_1 \times \ldots \times T_n \to U_1 \times \ldots \times U_m$ with property $\forall x_1 \in T_1, \ldots, x_n \in T_n : I_x \to \text{let } (y_1, \ldots, y_m) = f(x_1, \ldots, x_n)$ in $O_{x,y}$

 \Box For all arguments x_1, \ldots, x_n that satisfy the input condition,

 \Box the result (y_1, \ldots, y_m) of f satisfies the output condition.

The specification itself already implicitly defines such a function:

 $f(x_1,\ldots,x_n) :=$ **such** $y_1,\ldots,y_m : I_x \to O_{x,y}$

However, actually we want an explicitly defined function (computer program): $f(x_1,...,x_n) := t_x$

A core goal of computer science is to specify problems, to implement the specifications, and to verify the correctness of the implementation (e.g., by formal methods). 18/18