
FIRST-ORDER LOGIC
Pragmatics

Wolfgang Schreiner and Wolfgang Windsteiger
Wolfgang.(Schreiner|Windsteiger)@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU), Linz, Austria
http://www.risc.jku.at

mailto:Wolfgang.Schreiner@risc.jku.at,Wolfgang.Windsteiger@risc.jku.at
http://www.risc.jku.at

Pragmatics

We will now investigate the pragmatics (practical use) of first-order logic in two contexts.

� Defining Models
� Introducing new domains and operations.
� Unique characterizations of their meaning.

� Specifying Problems
� Describing expectations for computations.
� Assumptions on the inputs and guarantees for the outputs.

Highly relevant for computer science and mathematics.

1/18

Standard Models
We assume the following “standard models” as given.

Natural Numbers N= {0,1,2, . . .}, Nn = {0, . . . ,n−1}, N>0 = {1,2, . . .}, etc.
Integer Numbers Z= {. . . ,−2,−1,0,1,2, . . .}.
Real Numbers R, R≥0, R>0.

� Usual arithmetic operations for all number domains.
Sets P(T): all sets with elements of set T .

� Element predicate e ∈ S, set builder term {t | x ∈ S∧ . . .∧F}.
Products T1× . . .×Tn: all tuples (c1, . . . ,cn) with components from T1, . . . ,Tn.

� For t = (c1, . . . ,cn) we have t.1 = c1, . . . , t.n = cn.
Sequences T ∗: all finite sequences with values from T ; T ω all infinite sequences.

� s ∈ T ∗ : s = [s(0),s(1),s(2), . . . ,s(n−1)], length(s) = n.
The “builtin data types” of our models.

2/18

Domain Definitions
From the standard domains, we may build new domains.

� A domain definition
T := t

defines a new domain T from a term t that denotes a set (constructed from
previous sets by the application of set builders and/or domain constructors).

Nat := N232

Int := {i | i ∈ Z∧−231 ≤ i∧ i < 231}
IntArray := Int∗

IntStream := Intω

Primes := {x | x ∈ N∧ x≥ 2∧ (∀y ∈ N : 1 < y∧ y < x→¬(y|x))}

3/18

Explicit Function Definitions

A new function my be introduced by describing its value.

� An explicit function definition
f : T1× . . .×Tn→ T

f (x1, . . . ,xn) := tx

� introduces a new n-ary function symbol f with
� a type signature T1× . . .×Tn→ T with sets T1, . . . ,Tn,T ,
� a list of variables x1, . . . ,xn (the parameters), and
� a term tx (the body) whose free variables occur in x1, . . . ,xn;
� case n = 0: the definition of a constant f : T, f := t.

� We have to show (∀x1 ∈ T1, . . . ,xn ∈ Tn : tx ∈ T) and then know
∀x1 ∈ T1, . . . ,xn ∈ Tn : f (x1, . . . ,xn) = tx

The body tx may only refer to previously defined functions (no recursion).
4/18

Examples
� Definition: Let x and y be natural numbers. Then the square sum of x and y is the

sum of the squares of x and y.
squaresum : N×N→ N

squaresum(x,y) := x2 + y2

� Definition: Let x and y be natural numbers. Then the squared sum of x and y is
the square of z where z is the sum of x and y.

sumsquared : N×N→ N

sumsquared(x,y) := let z = x+ y in z2

� Definition: Let n be a natural number. Then the square sum set of n is the set of
the square sums of all numbers x and y from 1 to n.

squaresumset : N→P(N)
squaresumset(n) := {squaresum(x,y) | x,y ∈ N∧1≤ x≤ n∧1≤ y≤ n}

5/18

Predicate Definitions
A new predicate my be introduced by describing its truth value.

� An explicit predicate definition
p⊆ T1× . . .×Tn

p(x1, . . . ,xn) :⇔ Fx

� introduces a new n-ary predicate symbol p with
� a type signature T1× . . .×Tn with sets T1, . . . ,Tn,
� a list of variables x1, . . . ,xn (the parameters), and
� a formula F (the body) whose free variables occur in x1, . . . ,xn;
� case n = 0: the definition of a truth value constant p :⇔ Fx.

� We then know
∀x1 ∈ T1, . . . ,xn ∈ Tn : p(x1, . . . ,xn)↔ Fx

The body Fx may only refer to previously defined predicates (no recursion).

6/18

Examples
� Definition: Let x,y be natural numbers. Then x divides y (written as x|y) if x · z = y

for some natural number z.
| ⊆ N×N

x|y :⇔∃z ∈ N : x · z = y

� Definition: Let x be a natural number. Then x is prime if x is at least two and the
only divisors of x are one and x itself.

isprime⊆ N

isprime(x) :⇔ x≥ 2∧∀y ∈ N : y|x→ y = 1∨ y = x

� Definition: Let p,n be a natural numbers. Then p is a prime factor of n, if p is
prime and divides n.

isprimefactor⊆ N×N

isprimefactor(p,n) :⇔ isprime(p)∧ p|n

7/18

Implicit Function Definitions
A new function may be introduced by a condition on its result value.

� An implicit function definition
f : T1× . . .×Tn→ T

f (x1, . . . ,xn) := such y : Fx,y (or: the y : Fx,y)

� introduces a new n-ary function constant f with
� a type signature T1× . . .×Tn→ T with sets T1, . . . ,Tn,T ,
� a list of variables x1, . . . ,xn (the parameters),
� a variable y (the result variable),
� a formula Fx,y (the result condition) whose free variables occur in x1, . . . ,xn,y.

� We then know
∀x1 ∈ T1, . . . ,xn ∈ Tn : (∃y ∈ T : Fx,y)→ (∃y ∈ T : Fx,y∧ y = f (x1, . . . ,xn))

� If some value satisfies the condition, the function result is such a value.
� With the we claim that the value of f always exists and is unique.

The definition of a function by a formula (rather than a term). 8/18

Examples

� Definition: A root of real number x is a real number y such that the square of y is x.
aRoot : R→ R
aRoot(x) := such y : y2 = x

� Definition: The root of non-negative real x is that real y such that the square of y and y≥ 0.
theRoot : R≥0→ R
theRoot(x) := the y : y2 = x∧ y≥ 0

� Definition: Let m,n ∈ N with n positive. Then the (truncated) quotient q ∈ N of m and n is such
that m = n ·q+ r for some r ∈ N with r < n.

quotient : N×N>0→ N
quotient(m,n) := the q : ∃r ∈ N : m = n ·q+ r∧ r < n

� Definition: Let x,y be positive natural numbers. The greatest common divisor of x and y is the
greatest such number that divides both x and y.

gcd : N>0×N>0→ N>0
gcd(x,y) := the z : z|x∧ z|y∧∀z′ ∈ N>0 : z′|x∧ z′|y→ z′ ≤ z

9/18

Predicates versus Functions
A predicate can give rise to functions in two ways.

� A predicate:
isprimefactor⊆ N×N

isprimefactor(p,n) :⇔ isprime(p)∧ p|n

� An implicitly defined function:
someprimefactor : N→ N

someprimefactor(n) := such p : isprime(p)∧ p|n

� An explicitly defined function whose result is a set:
allprimefactors : N→P(N)
allprimefactors(n) := {p ∈ N | isprime(p)∧ p|n}

The preferred style of definition is a matter of taste and purpose.
10/18

Specifying Problems

An important role of logic in computer science is to specify problems.

� The specification of a (computational) problem
Input: x1 ∈ T1, . . . ,xn ∈ Tn where Ix

Output: y1 ∈U1, . . . ,ym ∈Um where Ox,y

� consists of a list of input variables x1, . . . ,xn with types T1, . . . ,Tn,
� a formula Ix (the input condition or precondition) whose free variables occur in

x1, . . . ,xn

� a list of output variables y1, . . . ,ym with types U1, . . . ,Um, and
� a formula Ox,y (the output condition or postcondition) whose free variables occur in

x1, . . . ,xn,y1, . . . ,ym

The specification is expressed with the help of auxiliary functions and predicates.

11/18

Example
Problem: extract from a finite sequence s of natural numbers a subsequence t of length n
starting at position p.

s

t

n
p

Example: s = [2,3,5,7,5,11], p = 2,n = 3 ; t = [5,7,5]

Input: s ∈ N∗,n ∈ N, p ∈ N where
n+ p≤ length(s) (subsequence is in range of array)

Output: t ∈ N∗ where
length(t) = n ∧ (length of result sequence)
∀i ∈ Nn : t(i) = s(i+ p) (content of result sequence)

12/18

The Adequacy of Specifications
Input: x where Ix Output: y where Ox,y

� Is precondition satisfiable? (∃x : Ix)
Otherwise no input is allowed.

� Is precondition not trivial? (∃x : ¬Ix)
Otherwise every input is allowed, why then the precondition?

� Is postcondition always satisfiable? (∀x : Ix→∃y : Ox,y)

Otherwise no implementation is legal.
� Is postcondition not always trivial? (∃x,y : Ix∧¬Ox,y)

Otherwise every implementation is legal.
� Is result unique? (∀x,y1,y2 : (Ix∧Ox,y[y1/y]∧Ox,y[y2/y]→ y1 = y2))

Whether this is required, depends on our expectations.

Ask these questions to ensure that specification expresses your intentions.

13/18

Example: The Problem of Integer Division
Input: m ∈ N,n ∈ N Output: q ∈ N,r ∈ N where m = n ·q+ r

� The postcondition is always satisfiable but not trivial.
� For m = 13,n = 5, e.g. q = 2,r = 3 is legal but q = 2,r = 4 is not.

� But the result is not unique.
� For m = 13,n = 5, both q = 2,r = 3 and q = 1,r = 8 are legal.

Input: m ∈ N,n ∈ N Output: q ∈ N,r ∈ N where m = n ·q+ r∧ r < n

� Now the postcondition is not always satisfiable.
� For m = 13,n = 0, no output is legal.

Input: m ∈ N,n ∈ N where n 6= 0 Output: q ∈ N,r ∈ N where m = n ·q+ r∧ r < n

� The precondition is not trival but satisfiable.
� m = 13,n = 0 is not legal but m = 13,n = 5 is.

� The postcondition is always satisfiable and result is unique.
� For m = 13,n = 5, only q = 2,r = 3 is legal.

14/18

Example: The Problem of Linear Search
Problem: given a finite integer sequence a and an integer x, determine the smallest position p at
which x occurs in a (p =−1, if x does not occur in a).

Example: a = [2,3,5,7,5,11],x = 5 ; p = 2

Input: a ∈ Z∗,x ∈ Z

Output: p ∈ N∪{−1} where
let n = length(a) in
if ∃p ∈ Nn : a(p) = x (x occurs in a)
then p ∈ Nn∧a(p) = x∧ (p is the index of some occurrence of x)

(∀q ∈ Nn : a(q) = x→ p≤ q) (p is the smallest such index)
else p =−1

All inputs are legal; the result always exists and is uniquely determined.

15/18

Example: The Problem of Binary Search
Problem: given a finite integer sequence a that is sorted in ascending order and an integer x,
determine some position p at which x occurs in a (p =−1, if x does not occur in a).

Example: a = [2,3,5,5,5,7,11],x = 5 ; p ∈ {2,3,4}

Input: a ∈ Z∗,x ∈ Z where
let n = length(a) in
∀k ∈ Nn−1 : a(k)≤ a(k+1) (a is sorted)

Output: p ∈ N∪{−1} where
let n = length(a) in
if ∃p ∈ Nn : a(p) = x (x occurs in a)
then p ∈ Nn∧a(p) = x (p is the index of some occurrence of x)
else p =−1

Not all inputs are legal; for every legal input, the result exists but is not unique. 16/18

Example: The Problem of Sorting
Problem: given a finite integer sequence a, determine that permutation b of a that is sorted in
ascending order.

Example: a = [5,3,7,2,3] ; b = [2,3,3,5,7]

Input: a ∈ Z∗

Output: b ∈ N∗ where
let n = length(a) in
length(b) = n ∧
(∀k ∈ Nn−1 : b(k)≤ b(k+1)) ∧ (b is sorted)
∃p ∈ Nn

∗ : (b is a permutation of a)
(∀k1 ∈ Nn,k2 ∈ Nn : k1 6= k2→ p(k1) 6= p(k2)) ∧
(∀k ∈ Nn : a(k) = b(p(k)))

All inputs are legal; the result always exists and is uniquely determined.
17/18

Implementing Problem Specifications

Input: x1 ∈ T1, . . . ,xn ∈ Tn where Ix

Output: y1 ∈U1, . . . ,ym ∈Um where Ox,y

� Specification demands definition of function f : T1× . . .×Tn→U1× . . .×Um with property
∀x1 ∈ T1, . . . ,xn ∈ Tn : Ix→ let (y1, . . . ,ym) = f (x1, . . . ,xn) in Ox,y

� For all arguments x1, . . . ,xn that satisfy the input condition,
� the result (y1, . . . ,ym) of f satisfies the output condition.

� The specification itself already implicitly defines such a function:
f (x1, . . . ,xn) := such y1, . . . ,ym : Ix→ Ox,y

� However, actually we want an explicitly defined function (computer program):
f (x1, . . . ,xn) := tx

A core goal of computer science is to specify problems, to implement the specifications, and to
verify the correctness of the implementation (e.g., by formal methods). 18/18

