
FIRST-ORDER LOGIC
Semantics

Wolfgang Schreiner and Wolfgang Windsteiger
Wolfgang.(Schreiner|Windsteiger)@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU), Linz, Austria
http://www.risc.jku.at

mailto:Wolfgang.Schreiner@risc.jku.at,Wolfgang.Windsteiger@risc.jku.at
http://www.risc.jku.at

The Semantics of First-Order Logic

In first-order logic, the semantics (meaning) depends on a structure and an assignment.

� A structure (D, I) consists of a domain D and an interpretation I on D:
� A domain is a non-empty collection of objects (e.g., a set D 6= /0).

• The “universe” about which a first-order logic formula talks.
� An interpretation maps every constant and function/predicate symbol to its meaning:

• Constant c ∈ C: I(c) is an object in D (I(c) ∈ D).
• Function symbol f ∈ F of arity n: I(f) is an n-ary function on D (I(f) : Dn→ D).
• Predicate symbol p ∈ P of arity n: I(p) is an n-ary predicate/relation on D (I(p)⊆ Dn).

� An assignment a maps every variable to its meaning:
� Variable v ∈ V: a(v) is an object in D (a(v) ∈ D).

D = N

I = [0 7→ zero,+ 7→ add,< 7→ less-than, . . .]
a = [x 7→ one,y 7→ zero,z 7→ three, . . .]

1/17

Informal Semantics

Terms The meaning of a term is an object in D.
� The meaning of a variable v is the object assigned to it by a, i.e., a(v).
� The meaning of a constant c is its interpretation in I, i.e., I(c).
� The meaning of a function application f (t1, . . . , tn) is the result of

applying its interpretation I(f) to the meanings of t1, . . . , tn.
Formulas The meaning of a formula is “true” or “false”.

� The meaning of an atomic formula p(t1, . . . , tn) is the result of
applying its interpretation I(p) to the meanings of t1, . . . , tn.
� An equality t1 = t2 is “true”, if t1 has the same meaning as t2.

� The meaning of the propositional constructions is as already known.
� (∀x : F) is true if F is true for all possible objects assigned to x in a.
� (∃x : F) is true if F is true for some possible object assigned to x in a.

2/17

The Formal Semantics of Terms

J t K(D, I)
a

d ∈ D

� Term semantics J t KD,I
a ∈ D

� Given structure (D, I) and assignment a, the semantics of term t is an object in D.
t ::= v | c | f (t1, . . . , tn)

� The meaning of a variable is the value given by the assignment:
JvKD,I

a := a(v)

� The meaning of a constant is the value given by the interpretation:
JcKD,I

a := I(c)

� The meaning of a function application is the result of the interpretation of the
function symbol applied to the values of the argument terms:

J f (t1, . . . , tn)KD,I
a := I(f)(J t1 KD,I

a , . . . ,J tn KD,I
a)

The recursive definition of a function evaluating a term. 3/17

Example
D = N= {zero,one, two, three, . . .}
I = [0 7→ zero,+ 7→ add, . . .]
a = [x 7→ one,y 7→ two, . . .]

Jx+(y+0)KD,I
a = add(JxKD,I

a ,Jy+0KD,I
a)

= add(a(x),Jy+0KD,I
a)

= add(one,Jy+0KD,I
a)

= add(one,add(JyKD,I
a ,J0KD,I

a))

= add(one,add(a(y), I(0))
= add(one,add(two,zero))
= add(one, two)
= three.

The meaning of the term with the “usual” interpretation. 4/17

Example
D = P(N) = { /0,{zero},{one},{two}, . . . ,{zero,one}, . . .}
I = [0 7→ /0,+ 7→ union, . . .]
a = [x 7→ {one},y 7→ {two}, . . .]

Jx+(y+0)KD,I
a = union(JxKD,I

a ,Jy+0KD,I
a)

= union(a(x),Jy+0KD,I
a)

= union({one},Jy+0KD,I
a)

= union({one},union(JyKD,I
a ,J0KD,I

a))

= union({one},union(a(y), I(0))
= union({one},union({two}, /0))

= union({one},{two})
= {one, two}

The meaning of the term with another interpretation. 5/17

The Formal Semantics of Formulas

JF K(D, I)
a

true, false

� Formula semantics JF KD,I
a ∈ {true, false}

� Given structure (D, I) and assignment a, the semantics of formula F is a truth value.
F ::= p(t1, . . . , tn) | > | ⊥ | . . . | (∀v : F) | (∃v : F)

� The meaning of an atomic formula is the result of the interpretation of the predicate
symbol applied to the values of the argument terms (fixed interpretation of equality).

J p(t1, . . . , tn)KD,I
a := I(p)

(
J t1 KD,I

a , . . . ,J tn KD,I
a
)

J t1 = t2 KD,I
a :=

{
true if J t1 KD,I

a = J t2 KD,I
a

false else
� The meaning of the logical constants:

J>KD,I
a := true J⊥KD,I

a := false
The meaning of the basic formulas. 6/17

The Semantics of Propositional Formulas
� The meaning of the logical connectives:

J¬F KD,I
a :=

true if JF KD,I
a = false

false else

JF1∧F2 KD,I
a :=

true if JF1 KD,I
a = JF2 KD,I

a = true
false else

JF1∨F2 KD,I
a :=

false if JF1 KD,I
a = JF2 KD,I

a = false
true else

JF1→ F2 KD,I
a :=

false if JF1 KD,I
a = true and JF2 KD,I

a = false
true else

JF1↔ F2 KD,I
a :=

true if JF1 KD,I
a = JF2 KD,I

a

false else

An embedding of the semantics of propositional logic into first-order logic.
7/17

The Semantics of Quantified Formulas

� (∀x : F) is true, if F is true for every possible object d assigned to variable x:

J∀x : F KD,I
a :=

true if JF KD,I
a[x 7→d] = true for all d in D

false else

� (∃x : F) is true, if F is true for at least one possible object d assigned to variable x:

J∃x : F KD,I
a :=

true if JF KD,I
a[x 7→d] = true for some d in D

false else

� Assignment a updated by the assignment of object d to variable x:

a[x 7→ d](y) =

{
d if x = y

a(y) else

The core of the semantics of first-order logic.

8/17

Example
D = N3 = {zero,one,two} I = [0 7→ zero,+ 7→ add, . . .] a = [x 7→ one,y 7→ two,z 7→ two, . . .]

J∀x : ∃y : x+ y = zKD,I
a = ?

� J∃y : x+ y = zKD,I
a[x 7→zero] = true

� Jx+ y = zKD,I
a[x 7→zero,y7→zero] = false

� Jx+ y = zKD,I
a[x 7→zero,y7→one] = false

� Jx+ y = zKD,I
a[x 7→zero,y7→two] = true

� J∃y : x+ y = zKD,I
a[x 7→one] = true

� Jx+ y = zKD,I
a[x 7→one,y7→zero] = false

� Jx+ y = zKD,I
a[x 7→one,y7→one] = true

� Jx+ y = zKD,I
a[x 7→one,y7→two] = false

� J∃y : x+ y = zKD,I
a[x 7→two] = true

� Jx+ y = zKD,I
a[x 7→two,y7→zero] = true

� Jx+ y = zKD,I
a[x 7→two,y7→one] = false

� Jx+ y = zKD,I
a[x 7→two,y7→two] = false

J∀x : ∃y : x+ y = zKD,I
a = true. 9/17

Semantics: Structures and Assignments

� ∀n : R(n,n)
� The domain of natural numbers with R interpreted as the divisibility relation.
� “Every natural number is divisible by itself”: true (for every assignment).

� ∀n : R(n,n)
� The domain of natural numbers with R interpreted as the less-than relation.
� “Every natural number is less than itself”: false (for every assignment).

� ∃x : R(y,x)∧R(x,z)
� The domain of natural numbers with R interpreted as the less-than relation.
� “There exists a natural number x with y < x and x < z”.
� Assignment [y 7→ 2,z 7→ 4]: true (there is the value x = 3 with 2 < x and x < 4).
� Assignment [y 7→ 2,z 7→ 3]: false (there is no value for x with 2 < x and x < 3).

The truth value of a formula depends on the structure and the assignment.

10/17

Semantics: Nested Quantifiers

Consider the domain of natural numbers with the usual interpretation of <.

� (∀x : ∃y : x < y): true.
� “For every natural number x there exists some y such that x is less than y”.
� For every natural number x, there is indeed such a y, namely y := x+1.

� (∃y : ∀x : x < y): false
� “There exists some natural number y such that every x is less than y.”
� We assume that the formula is true and derive a contradiction. Because of the

assumption, there exists some natural number y such that (∀x : x < y) is true. But
then, since x < y is true for every value of x, it is also true for x := y. Thus y < y is
true, which we know to be false.

The order of nested quantifiers matters.

11/17

Semantic Notions: Satisfiability and Validity

Let F denote a formula, M = (D, I) a structure, a an assignment.

Satisfiability Formula F is satisfiable, if there exists some structure M and
assignment a such that JF KM

a = true .
� Example: p(0,x) is satisfiable; q(x)∧¬q(x) is not.

Model Structure M is a model of formula F , written as M |= F , if for every
assignment a, we have JF KM

a = true .
� Example: (N, [0 7→ zero, p 7→ less-equal]) |= p(0,x)

Validity Formula F is valid, written as |= F , if every structure M is a model of F ,
i.e., for every structure M we have M |= F .
� Example: |= p(x)∧ (p(x)→ q(x))→ q(x)

12/17

Semantic Notions: Logical Consequence and Equivalence

Logical Consequence Formula F2 is a logical consequence of formula F1, written as F1 |= F2, if
for every structure M and assignment a, the following is true:

If JF1 KM
a = true, then also JF2 KM

a = true.
� Example: p(x)∧ (p(x)→ q(x)) |= q(x)

Logical Consequence Generalized Formula F is a logical consequence of formulas F1, . . . ,Fn,
written F1, . . . ,Fn |= F , if for every M and a the following is true:

If for every formula Fi we have JFi KM
a = true, then JF KM

a = true.
� Example: p(x),q(x) |= p(x)∧q(x)

Logical Equivalence Formulas F1 and F2 are logically equivalent, written as F1⇔ F2, if and
only if F1 is a logical consequence of F2 and vice versa, i.e., F1 |= F2 and F2 |= F1.

� Example: p(x)→ q(x)⇔¬p(x)∨q(x)

13/17

Semantic Notions: Propositions

Satisfiability and Validity
� F is satisfiable, if ¬F is not valid.
� F is valid, if ¬F is not satisfiable.

Logical Consequence and Equivalence
� Formula F2 is a logical consequence of formula F1 (i.e., F1 |= F2) if

and only if the formula (F1→ F2) is valid.
� Formula F is a logical consequence of formulas F1, . . . ,Fn (i.e.,

F1, . . . ,Fn |= F) if and only if the formula (F1∧ . . .∧Fn→ F) is valid.
� Formula F1 and formula F2 are logically equivalent (i.e., F1 ⇔ F2) if

and only if the formula (F1↔ F2) is valid.

Logical consequence/equivalence reduced to validity of an implication/equivalence.

14/17

Logical Equivalence: Formula Substitutions

Assume F ⇔ F ′ and G⇔ G′. Then we have the following equivalences:
¬F ⇔¬F ′

F ∧G⇔ F ′∧G′

F ∨G⇔ F ′∨G′

F → G⇔ F ′→ G′

F ↔ G⇔ F ′↔ G′

∀x : F ⇔∀x : F ′

∃x : F ⇔∃x : F ′

Logically equivalent formulas can be subsituted in any context.

15/17

Logical Equivalence: Rules
In addition to the logical equivalences for connectives in propositional logic:

¬∀x : F ⇔∃x : ¬F (De Morgan’s Law)
¬∃x : F ⇔∀x : ¬F (De Morgan’s Law)

∀x : (F1∧F2)⇔ (∀x : F1)∧ (∀x : F2)

∃x : (F1∨F2)⇔ (∃x : F1)∨ (∃x : F2)

∀x : (F1∨F2)⇔ F1∨ (∀x : F2) if x is not free in F1

∃x : (F1∧F2)⇔ F1∧ (∃x : F2) if x is not free in F1

For a finite domain {v1, . . . ,vn}:

∀x : F ⇔ F [v1/x]∧ . . .∧F [vn/x]

∃x : F ⇔ F [v1/x]∨ . . .∨F [vn/x]

16/17

Logical Equivalence: Examples
� Push negations from the outside to the inside:

¬(∀x : p(x)→∃y : q(x,y))⇔∃x : ¬(p(x)→∃y : q(x,y))

⇔∃x : ¬((¬p(x))∨∃y : q(x,y))

⇔∃x : ((¬¬p(x))∧¬∃y : q(x,y))

⇔∃x : (p(x)∧¬∃y : q(x,y))

⇔∃x : (p(x)∧∀y : ¬q(x,y))

� Reduce the scope of quantifiers:
∀x,y : (p(x)→ q(x,y))⇔∀x,y : (¬p(x)∨q(x,y))

⇔∀x : (¬p(x)∨∀y : q(x,y))

⇔∀x : (p(x)→∀y : q(x,y))

� Replace quantification in a finite domain D = {0,1,2}:
∀x : p(x)⇔ p(0)∧ p(1)∧ p(2)

17/17

