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The Semantics of First-Order Logic

In first-order logic, the semantics (meaning) depends on a structure and an assignment.

B A structure (D,]) consists of a domain D and an interpretation / on D:
[0 A domain is a non-empty collection of objects (e.g., a set D # 0).
= The "universe” about which a first-order logic formula talks.
O An interpretation maps every constant and function/predicate symbol to its meaning:
= Constant ¢ € C: I(c) is an object in D (I(c) € D).
= Function symbol f € F of arity n: I(f) is an n-ary function on D (I(f): D" — D).
= Predicate symbol p € P of arity n: I(p) is an n-ary predicate/relation on D (I(p) C D").
B An assignment @ maps every variable to its meaning:
O Variable v € V: a(v) is an object in D (a(v) € D).

D=N
I=1[0+ zero,+ — add, < — less-than,.. ]
a =[x+ one,y — zero,z — three, .. ]
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Informal Semantics

Terms The meaning of a term is an object in D.
B The meaning of a variable v is the object assigned to it by q, i.e., a(v).
B The meaning of a constant c¢ is its interpretation in [, i.e., I(c).
B The meaning of a function application f(z;,...,1,) is the result of
applying its interpretation I(f) to the meanings of 1,...,1,.
Formulas The meaning of a formula is “true” or “false”.
B The meaning of an atomic formula p(t1,...,1,) is the result of
applying its interpretation I(p) to the meanings of t1,...,1,.
[0 An equality t; =1 is “true”, if £; has the same meaning as 1.
B The meaning of the propositional constructions is as already known.
B (Vx: F) is true if F is true for all possible objects assigned to x in a.
B (x: F)is true if F is true for some possible object assigned to x in a.
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The Formal Semantics of Terms

(D, 1)

—( [t] —>= d€D

B Term semantics [t]5 € D
O Given structure (D,I) and assignment a, the semantics of term ¢ is an object in D.
tu=vlc| flt,... 1)
[J The meaning of a variable is the value given by the assignment:
V&' =a(v)
[0 The meaning of a constant is the value given by the interpretation:
[e]2 = 1(c)
[0 The meaning of a function application is the result of the interpretation of the
function symbol applied to the values of the argument terms:

[[f(tla"'ﬂtn) HaDJ ::I(f)([[tl ]]5),17.”’[“”]]“&1)

The recursive definition of a function evaluating a term. 3/17



Example

D =N = {zero,one, two, three, ...}
I=1[0r zero,+ — add,...]

a =[x+~ one,y — two,...]

add([x]g"', [y +0]¢")
add(a(x ) [y+0]2%)
add(one, [[y—f—O]]DI)

[x+(y+0)]2 (
(
(
add(one,add([y]24,[0]2))
(
(
dd(

add(one,add(a(y),1(0))
add(one, add(two, zero))
)

one, two

= three.

The meaning of the term with the “usual” interpretation. 4/17



Example
D =P(N)={0,{zero},{one},{two},..., {zero,one},...}
I=[0~ 0,4+ +— union,.. ]

a=[x— {one},y— {two},...]

[x+ (y+0)J&"" = union([x[", [y +0]g")

(

= union(a(x), [y+0[¢")

= union({one}, [y+0]2)

= union({one},union([y]2,[0]21))
= union({one}, union(a(y),1(0))

= union({one}, union({two},0))

= union({one}, {two})

= {one, two}

The meaning of the term with another interpretation. 5/17



The Formal Semantics of Formulas

(D, 1)

—{[F] > true, false

B Formula semantics [F ]2 € {true, false}
O Given structure (D,I) and assignment a, the semantics of formula F is a truth value.

Fu=pty,....ty) | T L] ... | (W:F)| (3v: F)

[0 The meaning of an atomic formula is the result of the interpretation of the predicate
symbol applied to the values of the argument terms (fixed interpretation of equality).

[p(,. ) 1@ = 1(p) ([ ]2 12

DI true if [# ]]aD’l =[n DI
[t=n];" =
false else
[J The meaning of the logical constants:
[T = true [L]2) = false

The meaning of the basic formulas. 6/17



The Semantics of Propositional Formulas
B The meaning of the logical connectives:

true
[-FI2 = {

false

true
[[Fl /\FzﬂaD"I =
false

false
[FVR]D =
true

false
[F — R]P! =
true

true
[F < R]2 =
false

— N —

An embedding of the semantics of propositional logic into first-order logic.

if [[F]]?’I = false
else

if [F]2" = [R]" =true

else

if [F1]2" = [R]2" = false

else

if [F ]2 = true and [F ]2 = false

else

if [F]2" = [R]2

else
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The Semantics of Quantified Formulas

B (Vx: F)is true, if F is true for every possible object d assigned to variable x:

[vx: FIP1 = {

B (x: F)is true, if F is true for at least one possible object d assigned to variable x:

[3x: F]D1 = {

B Assignment a updated by the assignment of object d to variable x:

true if [[F]]aD[;CIHd] =true for all d in D

false else

DI
alx—d

true if [F] | = true for some d in D

false else

d ifx=y
a(y) else

alx = dj(y) = {

The core of the semantics of first-order logic.
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Example

D = N3 = {zero,one,two} [ = [0+ zero,+ — add,..

[Vx: 3y /\+»—<HD1 ?

[ ] [[Hy x—O—yfz]]a[tzero] true
0 [rty=zlg, afszer0szerc] = false
O [x+y= z]] x»—>zeroy—>one] = false
0 Dety=zl, dlere e =Irue

B [Iy:x+y= ]]a[x'_)one] true
O [[x—i—y*z]] XHone}Hzero] = false
O [x+y=zly, afsone-sone] = LU
O [x+y= z]] XHone}HtWO] = false

B [3y:x+y= z]]a[x._)two] true
O [x+y :Z]]a[x»—)two,y>—>zero] =true
O [x+y= Z]]D}IHtwo,yHone] = false
O [[x+y—z]] ]—false

[r—two,y—two

[Vx: 3y: x+y=z]5" = true.

]

a = [x— one,y — two,z — two, ..

]
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Semantics: Structures and Assignments

B Vn: R(n,n)
[0 The domain of natural numbers with R interpreted as the divisibility relation.
[J “Every natural number is divisible by itself”: true (for every assignment).

B Vn: R(n,n)
[0 The domain of natural numbers with R interpreted as the less-than relation.
O “Every natural number is less than itself”: false (for every assignment).

B Sx: R(y,x) AR(x,z)
[ The domain of natural numbers with R interpreted as the less-than relation.
[l “There exists a natural number x with y <x and x < 7.

O Assignment [y 2,z+ 4]: true (there is the value x =3 with 2 < x and x < 4).
O Assignment [y — 2,z 3]: false (there is no value for x with 2 < x and x < 3).

The truth value of a formula depends on the structure and the assignment.
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Semantics: Nested Quantifiers

Consider the domain of natural numbers with the usual interpretation of <.

B (Vx: dy:x<y): true.
[J "For every natural number x there exists some y such that x is less than y".
[ For every natural number x, there is indeed such a y, namely y:=x-+1.

B (Jy: Vx: x<y): false
[J "There exists some natural number y such that every x is less than y."
[1 We assume that the formula is true and derive a contradiction. Because of the
assumption, there exists some natural number y such that (Vx: x <y) is true. But
then, since x <y is true for every value of x, it is also true for x:=y. Thusy <y is

true, which we know to be false.
The order of nested quantifiers matters.
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Semantic Notions: Satisfiability and Validity

Let F denote a formula, M = (D,I) a structure, a an assignment.

Satisfiability Formula F is satisfiable, if there exists some structure M and
assignment a such that [F]Y = true .

B Example: p(0,x) is satisfiable; g(x) A —g(x) is not.
Model Structure M is a model of formula F, written as M = F, if for every
assignment a, we have [F]¥ = true .

B Example: (N, [0+ zero, p > less-equal]) = p(0,x)

Validity Formula F' is valid, written as |= F, if every structure M is a model of F,
i.e., for every structure M we have M |=F.

B Example: = p(x) A (p(x) = g(x)) — q(x)
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Semantic Notions: Logical Consequence and Equivalence

Logical Consequence Formula F; is a logical consequence of formula Fj, written as F| = F, if

for every structure M and assignment a, the following is true:
If [Fi]M = true, then also [F>]Y = true.

B Example: p(x) A(p(x) = q(x)) = g(x)

Logical Consequence Generalized Formula F is a logical consequence of formulas Fy,..., Fy,

written F,... F, = F, if for every M and a the following is true:
If for every formula F; we have [F;]¥ = true, then [F ¥ = true.

B Example: p(x),q(x) = p(x) Aq(x)

Logical Equivalence Formulas F| and F; are logically equivalent, written as F| < F,, if and
only if Fy is a logical consequence of F> and vice versa, i.e., F| =EF; and F> = F}.

B Example: p(x) = g(x) & —p(x) Vg(x)
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Semantic Notions: Propositions

Satisfiability and Validity
B F is satisfiable, if —=F is not valid.
B F is valid, if —=F is not satisfiable.
Logical Consequence and Equivalence

B Formula F; is a logical consequence of formula Fj (i.e., F| = F) if
and only if the formula (F] — F») is valid.

B Formula F is a logical consequence of formulas Fy,...,F, (i.e.,
Fi,...,F, =F) if and only if the formula (Fi1 A...AF, — F) is valid.

B Formula Fi and formula F, are logically equivalent (i.e., F1 < F,) if
and only if the formula (F} <> F>) is valid.

Logical consequence/equivalence reduced to validity of an implication/equivalence.
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Logical Equivalence: Formula Substitutions

Assume F < F' and G < G'. Then we have the following equivalences:
—F < —F'

FAG& F'AG

FVG&F' VG
F—-G&F =G
F&GeF G

Vx: F & Vx: F

dx: F < 3x: F/

Logically equivalent formulas can be subsituted in any context.
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Logical Equivalence: Rules

In addition to the logical equivalences for connectives in propositional logic:

—Vx: F < 3x: -F (De Morgan's Law)
—3dx: F & Vx: -F (De Morgan's Law)
Vx: (FIAF) < (Vx: Fi)A(Vx: Fa)
dIx: (AVFE)e (3 F)V(Ex: R)
Vx: (FIVF) S RV (Vx: F) if x is not free in F}
I (AAR)< FAGx: B) if x is not free in F}
For a finite domain {vy,...,v,}:
Vx: F< Flvi/x|\...\NF[vy/x]
dx: F < Flvi/x]V...VF[v,/x]
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Logical Equivalence: Examples

B Push negations from the outside to the inside:
—(Vx: p(x) = Jy: q(x,y)) & Ix: ~(p(x) = Ty: q(x,y))
& Jx: =((=p(x) vV Iy: glx,y))
& e ((7=p(x) ATyt g(x,y)
& Jx: (p(x) A=y q(x,y))
& dx: (p(x) AVy: =q(x,y))
B Reduce the scope of quantifiers:
Vx,y: (p(x) = q(x,y)) < Vx,y: (-p(x) V4(x,y))
& Vx: (2p(x) VVy: g(x,))
& Vx: (p(x) = Vy: q(x,y))
B Replace quantification in a finite domain D = {0, 1,2}:
Vx: p(x) € p(0) Ap(1) A p(2)
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