FIRST-ORDER LOGIC

Syntax

4

Wolfgang Schreiner and Wolfgang Windsteiger
Wolfgang.(Schreiner|Windsteiger)@risc. jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU), Linz, Austria
http://www.risc.jku.at

JxU .

JOHANNES KEPLER
UNIVERSITY LINZ L

mailto:Wolfgang.Schreiner@risc.jku.at,Wolfgang.Windsteiger@risc.jku.at
http://www.risc.jku.at

Why Not Only Propositional Logic?

B A propositional formula F describes a “sentence” that can be “true” or “false”:

Fo=p|T[L|IF) | (FAR) | (AVE)|(F—R)| (R R)

[J Propositional variables p € P with given truth values.

[Propositional constants T and L with fixed truth values.

[0 Compound formulas constructed from the (logical) connectives (=, A,V,—, <) whose
truth values are determined by corresponding truth tables.

Propositional logic is about the combination of truth values.

1/20

Why Not Only Propositional Logic?

For all numbers x and y it is the case that, if x is greater equal zero and y is
greater equal zero, then x times y is zero or not less than x.

alNb—cV—d.

B This propositional formula ignores “for all numbers x and y".
B [t uses propositional variables a, b, ¢, d to abstract from sentences:
[a: "x is greater equal zero".
[b: "y is greater equal zero".
[J ¢: “x times y is zero™.
[0 d: "x times y is less than x".

B The formula thus describes the “shape” of the sentence, but not its “content”.

Propositional logic is not able to talk about concrete objects, their relationships, and the
fact whether a sentence is true for all or just for just some objects of a domain.

2/20

The Syntax of First-Order Logic: Terms and Formulas
B First-order (predicate) logic has two kinds of syntactic phrases (“expressions”):
[0 Terms denoting objects (values).
0 Formulas denoting properties of objects (i.e., the truth values “true” or “false”).

tu=vi]cl| ftr,- tn)
Fi=pt,,....ta) | T|L|(=F) | (FAR) | (FIVE) | (FL—F) | (FF<FR)

| (Wv: F) | (3v: F)

B The elements of the phrases:

[0 v e V: a variable to which varying objects can be assigned.

[0 ¢ €C: a constant denoting a fixed object.

[0 f € F: a function symbol of arity n denoting an n-ary function.

[l p € P: a predicate symbol of arity n denoting an n-ary predicate.
= Functions return objects, while predicates return “true” or “false”.

[V and 3: a quantifier that binds a variable v within a formula F.
= Vv: F: “for all (possible objects assigned to) v, F is true”,

= Jv: F: “there exists some (possible object assigned to) v, for which F is true”.
3/20

Example

Tanja is female and every female is the daughter of her father.
(isFemale(Tanja) A (Vx: (isFemale(x) — isDaughterOf(x, fatherOf(x)))))

B “Names":
[J Tanja ...a constant
O x ...avariable
[isFemale,isDaughterOf ... predicate symbols of arity 1/2 (return “true” or “false”)
[J fatherOf ...a function symbol of arity 1 (returns a person)
B Terms (denoting persons):
[Tanja, x, fatherOf(x).
B (Sub)formulas (denoting “true” or “false”):
O isFemale(Tanja)
O isFemale(x)
O isDaughterOf(x, fatherOf(x))
O (isFemale(x) — isDaughterOf(x, fatherOf(x)))
O (Vx: (isFemale(x) — isDaughterOf(x, fatherOf(x)))) 4/20

Formulas and Parentheses

We may reduce the number of parentheses by associating “binding powers” to operators:

B Binding powers:
> A)>(V)> (—=)> («=)>(7v,3)
O (x) > (y): “operator x binds stronger than operator y": (F| x F» y F3) is interpreted
as (Fi x F2) y F3), not as (Fi x (F, y F3)).
B Quantified formulas:
[J Without parentheses, the scope of a quantified formula Yv: F or Jv: F reaches to the
end of the enclosing formula.
B Formula simplification:
(isFemale(Tanja) A (Vx: (isFemale(x) — isDaughterOf(x, fatherOf(x)))))

~ isFemale(Tanja) AVx: isFemale(x) — isDaughterOf(x, fatherOf(x))

If in doubt, use parentheses (respectively ask!).

5/20

Example

For all numbers x and y it is the case that, if x is greater equal zero and y is

greater equal zero, then x times y is zero or not less than x.

alAb—cV—d.

N

Vx: Vy: greaterEqual(x, zero) A greaterEqual(y, zero) —

equal(times(x,y),zero) V —lessThan(times(x,y), x)

First-order logic is able to talk about objects and their properties.

6,20

First-Order Logic and Natural Language

B “Alex is Tom's sister™:
isSisterOf(Alex, Tom)

B “Tom has a sister in Linz":
Jx: isSisterOf(x, Tom) A livesin(x, Linz)

B “Tom has two sisters":
Tx,y: x # y AisSisterOf(x, Tom) A isSisterOf(y, Tom)

B “Tom has no brother":
—3x: isBrotherOf(x, Tom) (there does not exist a brother of Tom)

Vx: —isBrotherOf(x, Tom) (everybody is not a brother of Tom)

Many natural language statements can be expressed in first-order logic.

7/20

Abstract Syntax versus Concrete Syntax

Terms and formulas are not always given in the syntax presented so far.

B Abstract syntax: a “standard form" of expressions.

[0 Prefix notation: atomic formulas p(fy,...,t,) and function applications f(z1,...,t,).
O Predicate/function symbol p/f appears before the subexpressions 71, ... ,t,.
[Unique identification of the “type of the expression” (p/f) and its “subexpressions”.

B Concrete syntax: any particular “notation” to write expressions.

[0 One expression in abstract syntax can have many different forms in concrete syntax.
O Infix notation (a+1, ali]), postfix notation (r*), subscript notation (a;),

For understanding their meaning, we need to be able to translate expressions from
concrete syntax to abstract syntax.

8/20

Abstract Syntax versus Concrete Syntax

Concrete Syntax Abstract Syntax

a/b /(a,b) quotient(a,b)
5 /(a,b) quotient(a,b)
alb |(a,b) divides(a,b)
a=b =(a,b) equals(a,b)
a<b <(a,b) less(a,b)

Ja /@) sart(a)

ali] [(a,i) index(a, i)

a; [[(a,i) index(a, i)
[a,b] [1(a,b) interval(a,b)
S "(f) derivative(f)
I 1) integralf)
f—a —(f,a) converges(f,a)

Concrete: ;%5 <1~ abstract: <(/(a,+(a,b)),1) or: less(quotient(a,sum(a,b)),one).

9/20

Abstract Syntax versus Concrete Syntax

B The concrete syntax not always determines the abstract syntax uniquely:

Concrete Syntax Abstract Syntax

a+b+c +(a,b,c)
+(a,+(b,c))
+(+(a,b),c)

sum3(a,b,c)
sum(a,sum(b,c))
sum(sum(a,b),c)

B Translation of natural language to abstract syntax:

Concrete Syntax

Abstract Syntax

the sum of all values from a to b
the remainder of a divided by b
a is a divisor of b

f converges to a

summation(a,b)
remainder(a, b)
divides(a,b)
converges(f,a)

10/20

Conditions and Quantifiers

B Statements with constrained domain:
Every natural number is greater equal zero.

There exists a natural number whose predecessor is zero.
B Corresponding formulas with filtering condition:
VxeN: x>0 Vx: xeN—-x>0
>
dJxeN:x—1=0 dx:xeNAx—1=0
B General pattern:
VC: F Vx:C—F
N
ic: F dx: CAF
B Quantified variable must be deduced from context:

VxeN:Ix<y:y<x+2 ~ Vx:ixeN-=dyrx<yAy<x+2

11/20

Free and Bound Variables

B Non-closed formula:
equal(x,zero)
[0 Truth value depends on value we assign to x: “true” for x = zero, “false”, otherwise.
[0 Variable x is free in the formula.
[J If some of its variables are free, a formula is non-closed.
B Closed formulas:
Vx: equal(x,zero)
Jx: equal(x,zero)
[Truth values do not depend on x: first formula is “false”, second one is “true”.
[J Variable x is bound in both formulas (by the quantifier V respectively 3).
[J If all of its variables are bound, a formula is closed.

The truth value of a formula only depends on the values assigned to the formula’s free

variables; the truth value is independent of the values of the bound variables.
12/20

The Free Variables of a Formula

The computation of the free variables proceeds “inside-out™:

Vx: p(x,w) = Jy: q(x,,2)
N—— S~

free: x,w free: x,y,z
free: x,z
free: x,w,z
free: wz

This computation can be formally described.

13/20

The Free Variables of a Formula

fv(F) and fv(t) compute the set of free vars of formula F and term t.

fv(p(ry,..., 1)) ="fv(r)U...Ufv(t,) fv(v) ={v} fv(c)=0
fv(T)=0 V(f(t1,. . tn)) =fv(t) U...Ufv()
-
» e ; i:i?) o ula(,2) = {02}
e ’ fv(3y: q(x,y,2)) = fv(g(x,y,2)\{}
fV(Fl \/Fz) = fV(Fl) UfV(Fz) _ {x y Z}\{y} _ {x Z}
fV(F — F) =f(F) Ufv(F) fe(p(s,) = {x’w’} ’
fV(F) < Fy) = fv(F) UR(F) R
fv(p(x,w dy: q(x,y,2)) = fv(p(x,w)) Ufv(Iy: g(x,y,
(vt F) = 6P\ (o) O S
fu(@v: F) = fv(F)\{v} ’ ’ .

fv(Vx: px,w) = 3y: q(x,y,2)) = fv(p(x,w) = Jy: q(x,y,2))\{x}
Quantifiers bind variables. = {x,w,z}\{x} = {w,z}
14/20

Syntax Analysis

Generate from a formula’s concrete syntax (a linear text with multiple interpretations)
its abstract syntax tree (a data structure with only a single interpretation).

B Syntax analyisis of formula proceeds in top-down fashion by analyzing the formula’s
[quantified formulas (constructed by quantifiers from variables and sub-formulas),
[J propositional formulas (constructed by logical connectives from sub-formulas),
O atomic formulas (constructed by predicate symbols from terms),
[J terms (variables or constants or constructed by function symbols from sub-terms).
B Determines the roles of names as variables, constants, function/predicate symbols.
[0 Names like x,y,z,... are often used for variables.
] Names like a,b,c,... are often used for constants.
[0 Names like f,g,h,... are often used for function symbols.
[0 Names like p,q,r,... are often used for predicate symbols.

B Determines the free variables of every formula and term.

15/20

Syntax Analysis: Formal Definition

X\{V} Q¢ {V,H} tree(f(tl,...,ln)) =

(F)| x X1

H Xi1UXy

tree(Qv:F) =

tree(c tree(v
tree(FioF,) = o€ {N,V,—, ¢} l { l {v}

tree(—F) =

tree(T) = 0 tree(L) = 0

tree(p(ty,. ..,

16/20

Syntax Analysis: Example
VxeN:x>0—-dyeN:y+1=x
~ VxixeN—->x>0—-3Jy:yeNAy+1=x)
(Vx: (reN) = ((x>0) = (Fy: (VeN)A(y+1=1x))))))

a2
Vx: x € N -(x>0 —=3: y e N A y+1 = x)
NG NG NG AN N NN
v c v c v c v ¢ v
— SN—— —_——— ——
FS -+, Ts (1)

PS €, Ts (x,N) PS >, Ts (x,0) PS &, Ts (y,N)
—_—

PS = Ts (y+1.x)

LC A, Fs (yEN,y+1=2x)

Q3,Vy FyeNA..)

LC =, Fs (x>0,3y:...)

LC -, Fs (xeN,x>0—...)

QV,Vx, F(xeN—..))

Q ...quantifier, V ...variable, F(s) ... formula(s), LC ... logical connective
T(s) ...term(s), PS ... predicate symbol, FS ... function symbol

Syntax Analysis: Pitfalls

Vx: p(x) = 3y q(x,y)

By the precedence rules, the formula has to be parenthesized as Vx: (p(x) — Jy: q(x,y)),
not as (Vx: p(x)) — (3y: q(x,y)); therefore the left syntax tree is the correct one.

18/20

Further Constructs: Language Extensions

B Local definition: (let v=tin E) (also: (E where v=t) or (E|,—))
[0 E can be a formula or a term, phrase is correspondingly a formula or a term.
O Phrase means E[t/v] (every free occurrence of v in E is replaced by ¢); thus v is bound.
O Formula (let v=t in F) is equivalent to:

Iv: (v=tAF)

B Conditional expression: (if F then E; else E»)

[0 Ej,E; can be both formulas or both terms, phrase is correspondingly formula or term.
[0 Phrase means Eq, if F is true, and E,, otherwise.
O Formula (if F then F else F,) is equivalent to:

(F—)Fl)/\(ﬁF—>F2)

Not strictly necessary but often convenient in practice.

19/20

Further Constructs: Mathematical Quantifiers

b
B) 7 binds variable i; its meaning is the sum t[a/i|+---+[b/i].

i=a

b
[17 binds variable i; its meaning is the product t[a/i] - --xt[b/i].

[|
i=a
B {xc S| F} binds x; it denotes the set of all x from set S for which F is true.
B {7 | x€ SAF} binds x; it denotes the set of all # where x is from S and F is true.
B lim7 binds variable x; its meaning is the limit of term ¢t when x goes to value v.
X—V
[| magt binds x; it denotes the maximum of all values of ¢t where x is from S.
XELS
[| miélt binds x; it denotes the minimum of all values of ¢ where x is from S.
xeS
[

Mathematics provides a great variety of variable binding constructs (i.e., quantifiers).

20/20

