FIRST-ORDER LOGIC

Syntax

Wolfgang Schreiner and Wolfgang Windsteiger Wolfgang.(Schreiner|Windsteiger)@risc.jku.at
Research Institute for Symbolic Computation (RISC) Johannes Kepler University (JKU), Linz, Austria http://www.risc.jku.at

JOHANNES KEPLER UNIVERSITY LINZ

Why Not Only Propositional Logic?

■ A propositional formula F describes a "sentence" that can be "true" or "false":

$$
F::=p|\top| \perp|(\neg F)|\left(F_{1} \wedge F_{2}\right)\left|\left(F_{1} \vee F_{2}\right)\right|\left(F_{1} \rightarrow F_{2}\right) \mid\left(F_{1} \leftrightarrow F_{2}\right)
$$Propositional variables $p \in \mathcal{P}$ with given truth values.Propositional constants T and \perp with fixed truth values.Compound formulas constructed from the (logical) connectives $(\neg, \wedge, \vee, \rightarrow, \leftrightarrow)$ whose truth values are determined by corresponding truth tables.

Propositional logic is about the combination of truth values.

Why Not Only Propositional Logic?

For all numbers x and y it is the case that, if x is greater equal zero and y is greater equal zero, then x times y is zero or not less than x.

$$
a \wedge b \rightarrow c \vee \neg d .
$$

- This propositional formula ignores "for all numbers x and y ".

■ It uses propositional variables a, b, c, d to abstract from sentences:
$\square a$: " x is greater equal zero".
$\square b$: " y is greater equal zero".
$\square c$: " x times y is zero".
$\square d$: " x times y is less than x ".

- The formula thus describes the "shape" of the sentence, but not its "content".

Propositional logic is not able to talk about concrete objects, their relationships, and the fact whether a sentence is true for all or just for just some objects of a domain.

The Syntax of First-Order Logic: Terms and Formulas

\square First-order (predicate) logic has two kinds of syntactic phrases ("expressions"):Terms denoting objects (values).
\square Formulas denoting properties of objects (i.e., the truth values "true" or "false").

$$
\begin{aligned}
& t::=v|c| f\left(t_{1}, \ldots, t_{n}\right) \\
& F::=\underline{p\left(t_{1}, \ldots, t_{n}\right)}|\top| \perp|(\neg F)|\left(F_{1} \wedge F_{2}\right)\left|\left(F_{1} \vee F_{2}\right)\right|\left(F_{1} \rightarrow F_{2}\right) \mid\left(F_{1} \leftrightarrow F_{2}\right) \\
& \mid \underline{(\forall v: F) \mid \underline{(\exists v: F)}}
\end{aligned}
$$

- The elements of the phrases:$v \in \mathcal{V}$: a variable to which varying objects can be assigned.$c \in \mathcal{C}$: a constant denoting a fixed object.
$\square f \in \mathcal{F}$: a function symbol of arity n denoting an n-ary function.
$\square p \in \mathcal{P}$: a predicate symbol of arity n denoting an n-ary predicate.
- Functions return objects, while predicates return "true" or "false".\forall and \exists : a quantifier that binds a variable v within a formula F.
- $\forall v: F$: "for all (possible objects assigned to) v, F is true".
- $\exists v: F$: "there exists some (possible object assigned to) v, for which F is true".

Example

Tanja is female and every female is the daughter of her father. $($ isFemale $(\operatorname{Tanja}) \wedge(\forall x:($ isFemale $(x) \rightarrow$ isDaughterOf $(x$, fatherOf $(x)))))$

- "Names":Tanja ... a constantx ... a variableisFemale, isDaughterOf ... predicate symbols of arity $1 / 2$ (return "true" or "false")fatherOf . . . a function symbol of arity 1 (returns a person)
- Terms (denoting persons):Tanja, x , fatherOf (x).
- (Sub)formulas (denoting "true" or "false"):isFemale(Tanja)isFemale (x)isDaughterOf $(x$, fatherOf $(x))$
\square (isFemale $(x) \rightarrow$ isDaughterOf $(x$, fatherOf $(x))$)
$\square(\forall x:(\operatorname{isFemale}(x) \rightarrow$ isDaughterOf $(x$, fatherOf $(x))))$

Formulas and Parentheses

We may reduce the number of parentheses by associating "binding powers" to operators:

- Binding powers:

$$
(\neg) \gg(\wedge) \gg(\vee) \gg(\rightarrow) \gg(\leftrightarrow) \gg(\forall, \exists)
$$

$\square(x) \gg(y)$: "operator x binds stronger than operator y ": $\left(F_{1} x F_{2} y F_{3}\right)$ is interpreted as $\left(\left(F_{1} x F_{2}\right) y F_{3}\right)$, not as $\left(F_{1} x\left(F_{2} y F_{3}\right)\right)$.

- Quantified formulas:Without parentheses, the scope of a quantified formula $\forall v: F$ or $\exists v: F$ reaches to the end of the enclosing formula.
- Formula simplification:
$($ isFemale $(\operatorname{Tanja}) \wedge(\forall x:(\operatorname{isFemale}(x) \rightarrow$ isDaughterOf $(x$, fatherOf $(x)))))$
\leadsto isFemale $($ Tanja $) \wedge \forall x:$ isFemale $(x) \rightarrow$ isDaughterOf $(x$, fatherOf $(x))$
If in doubt, use parentheses (respectively ask!).

Example

For all numbers x and y it is the case that, if x is greater equal zero and y is greater equal zero, then x times y is zero or not less than x.

$$
a \wedge b \rightarrow c \vee \neg d
$$

$$
\begin{aligned}
\forall x: \forall y: & \text { greaterEqual }(x, \text { zero }) \wedge \text { greaterEqual }(y, \text { zero }) \rightarrow \\
& \text { equal }(\text { times }(x, y), \text { zero }) \vee \neg \operatorname{less} \operatorname{Than}(\operatorname{times}(x, y), x)
\end{aligned}
$$

First-order logic is able to talk about objects and their properties.

First-Order Logic and Natural Language

■ "Alex is Tom's sister":
isSisterOf(Alex, Tom)

■ "Tom has a sister in Linz":

$$
\exists x: \text { isSisterOf }(x, \text { Tom }) \wedge \operatorname{lives} \ln (x, \text { Linz })
$$

■ "Tom has two sisters":

$$
\exists x, y: x \neq y \wedge \operatorname{isSisterOf}(x, \text { Tom }) \wedge \text { isSisterOf }(y, \text { Tom })
$$

■ "Tom has no brother":

$$
\begin{array}{ll}
\neg \exists x: \text { is BrotherOf }(x, \text { Tom }) & \text { (there does not exist a brother of Tom) } \\
\forall x: \neg \text { is } \operatorname{BrotherOf}(x, \text { Tom }) & \text { (everybody is not a brother of Tom) }
\end{array}
$$

Many natural language statements can be expressed in first-order logic.

Abstract Syntax versus Concrete Syntax

Terms and formulas are not always given in the syntax presented so far.

- Abstract syntax: a "standard form" of expressions.
\square Prefix notation: atomic formulas $p\left(t_{1}, \ldots, t_{n}\right)$ and function applications $f\left(t_{1}, \ldots, t_{n}\right)$.Predicate/function symbol p / f appears before the subexpressions t_{1}, \ldots, t_{n}.Unique identification of the "type of the expression" (p / f) and its "subexpressions".
■ Concrete syntax: any particular "notation" to write expressions.
\square One expression in abstract syntax can have many different forms in concrete syntax.
\square Infix notation $(a+i, a[i])$, postfix notation $\left(r^{*}\right)$, subscript notation $\left(a_{i}\right), \ldots$.
For understanding their meaning, we need to be able to translate expressions from concrete syntax to abstract syntax.

Abstract Syntax versus Concrete Syntax

Concrete Syntax	Abstract Syntax	
a / b	$/(a, b)$	quotient (a, b)
$\frac{a}{b}$	$/(a, b)$	quotient (a, b)
$a \mid b$	$\mid(a, b)$	divides (a, b)
$a=b$	$=(a, b)$	equals (a, b)
$a<b$	$<(a, b)$	less (a, b)
\sqrt{a}	$\sqrt{ }(a)$	$\operatorname{sqrt}(a)$
$a[i]$	[](a, i)	index (a, i)
a_{i}	[](a, i)	index (a, i)
$[a, b]$	[](a, b)	interval (a, b)
f^{\prime}	$\prime(f)$	derivative (f)
$\int f$	$\int(f)$	integral (f)
$f \rightarrow a$	$\rightarrow(f, a)$	converges (f, a)

Concrete: $\frac{a}{a+b}<1 \sim$ abstract: $<(/(a,+(a, b)), 1)$ or: less(quotient $(a$, sum $(a, b))$, one).

Abstract Syntax versus Concrete Syntax

■ The concrete syntax not always determines the abstract syntax uniquely:

Concrete Syntax	Abstract Syntax	
$a+b+c$	$+(a, b, c)$	$\operatorname{sum} 3(a, b, c)$
	$+(a,+(b, c))$	$\operatorname{sum}(a, \operatorname{sum}(b, c))$
	$+(+(a, b), c)$	$\operatorname{sum}(\operatorname{sum}(a, b), c)$

- Translation of natural language to abstract syntax:

Concrete Syntax	Abstract Syntax
the sum of all values from a to b	summation (a, b)
the remainder of a divided by b	remainder (a, b)
a is a divisor of b	divides (a, b)
f converges to a	converges (f, a)

Conditions and Quantifiers

■ Statements with constrained domain:
Every natural number is greater equal zero.
There exists a natural number whose predecessor is zero.

- Corresponding formulas with filtering condition:

$$
\begin{aligned}
& \forall x \in \mathbb{N}: x \geq 0 \\
& \exists x \in \mathbb{N}: x-1=0
\end{aligned} \quad \sim \quad \forall x: x \in \mathbb{N} \rightarrow x \geq 0, ~ \exists x: x \in \mathbb{N} \wedge x-1=0
$$

■ General pattern:

$$
\begin{array}{ll}
\forall C: F & \forall x: C \rightarrow F \\
\exists C: F & \sim \\
\exists x: C \wedge F
\end{array}
$$

■ Quantified variable must be deduced from context:

$$
\forall x \in \mathbb{N}: \exists x<y: y<x+2 \quad \sim \quad \forall x: x \in \mathbb{N} \rightarrow \exists y: x<y \wedge y<x+2
$$

Free and Bound Variables

- Non-closed formula:

$$
\text { equal }(x, z e r o)
$$

\square Truth value depends on value we assign to x : "true" for $x=$ zero, "false", otherwise.
\square Variable x is free in the formula.
\square If some of its variables are free, a formula is non-closed.

- Closed formulas:

$$
\begin{aligned}
& \forall x: \text { equal }(x, \text { zero }) \\
& \exists x: \text { equal }(x, \text { zero })
\end{aligned}
$$Truth values do not depend on x : first formula is "false", second one is "true".Variable x is bound in both formulas (by the quantifier \forall respectively \exists).If all of its variables are bound, a formula is closed.

The truth value of a formula only depends on the values assigned to the formula's free variables; the truth value is independent of the values of the bound variables.

The Free Variables of a Formula

The computation of the free variables proceeds "inside-out":

This computation can be formally described.

The Free Variables of a Formula

$\mathrm{fv}(F)$ and $\mathrm{fv}(t)$ compute the set of free vars of formula F and term t.

$$
\begin{aligned}
\mathrm{fv}\left(p\left(t_{1}, \ldots, t_{n}\right)\right) & =\mathrm{fv}\left(t_{1}\right) \cup \ldots \cup \mathrm{fv}\left(t_{n}\right) \\
\mathrm{fv}(\top) & =\emptyset \\
\mathrm{fv}(\perp) & =\emptyset \\
\mathrm{fv}(\neg F) & =\mathrm{fv}(F) \\
\mathrm{fv}\left(F_{1} \wedge F_{2}\right) & =\mathrm{fv}\left(F_{1}\right) \cup \mathrm{fv}\left(F_{2}\right) \\
\mathrm{fv}\left(F_{1} \vee F_{2}\right) & =\mathrm{fv}\left(F_{1}\right) \cup \mathrm{fv}\left(F_{2}\right) \\
\mathrm{fv}\left(F_{1} \rightarrow F_{2}\right) & =\mathrm{fv}\left(F_{1}\right) \cup \mathrm{fv}\left(F_{2}\right) \\
\mathrm{fv}\left(F_{1} \leftrightarrow F_{2}\right) & =\mathrm{fv}\left(F_{1}\right) \cup \mathrm{fv}\left(F_{2}\right) \\
\mathrm{fv}(\forall v: F) & =\underline{\mathrm{fv}(F) \backslash\{v\}} \\
\mathrm{fv}(\exists v: F) & =\underline{\mathrm{fv}(F) \backslash\{v\}}
\end{aligned}
$$

Quantifiers bind variables.

$$
\begin{aligned}
& \mathrm{fv}(v)=\{v\} \quad \mathrm{fv}(c)=\emptyset \\
& \mathrm{fv}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=\mathrm{fv}\left(t_{1}\right) \cup \ldots \cup \mathrm{fv}\left(t_{n}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
\mathrm{fv}(q(x, y, z)) & =\{x, y, z\} \\
\mathrm{fv}(\exists y: q(x, y, z)) & =\mathrm{fv}(q(x, y, z)) \backslash\{y\} \\
& =\{x, y, z\} \backslash\{y\}=\{x, z\} \\
\mathrm{fv}(p(x, w)) & =\{x, w\} \\
\mathrm{fv}(p(x, w) \rightarrow \exists y: q(x, y, z)) & =\mathrm{fv}(p(x, w)) \cup \mathrm{fv}(\exists y: q(x, y, z)) \\
& =\{x, w\} \cup\{x, z\}=\{x, w, z\} \\
\mathrm{fv}(\forall x: p(x, w) \rightarrow \exists y: q(x, y, z)) & =\mathrm{fv}(p(x, w) \rightarrow \exists y: q(x, y, z)) \backslash\{x\} \\
& =\{x, w, z\} \backslash\{x\}=\{w, z\}
\end{aligned}
$$

Syntax Analysis

Generate from a formula's concrete syntax (a linear text with multiple interpretations) its abstract syntax tree (a data structure with only a single interpretation).

- Syntax analyisis of formula proceeds in top-down fashion by analyzing the formula's
\square quantified formulas (constructed by quantifiers from variables and sub-formulas),propositional formulas (constructed by logical connectives from sub-formulas),atomic formulas (constructed by predicate symbols from terms),terms (variables or constants or constructed by function symbols from sub-terms).
\square Determines the roles of names as variables, constants, function/predicate symbols.
\square Names like x, y, z, \ldots are often used for variables.
\square Names like a, b, c, \ldots are often used for constants.
\square Names like f, g, h, \ldots are often used for function symbols.
\square Names like p, q, r, \ldots are often used for predicate symbols.
\square Determines the free variables of every formula and term.

Syntax Analysis: Formal Definition

$\operatorname{tree}\left(p\left(t_{1}, \ldots, t_{n}\right)\right)=\underbrace{\square}_{\operatorname{tree}\left(t_{1}\right) X_{X_{1}} \cdots} \frac{\square X_{X_{1} \cup \ldots \cup X_{n}}}{\text { tree }\left(t_{n}\right)} X_{X_{n}}$

Syntax Analysis: Example

$$
\begin{aligned}
& \forall x \in \mathbb{N}: x>0 \rightarrow \exists y \in \mathbb{N}: y+1=x \\
\sim & \forall x: x \in \mathbb{N} \rightarrow(x>0 \rightarrow \exists y: y \in \mathbb{N} \wedge y+1=x) \\
\sim & (\forall x:((x \in \mathbb{N}) \rightarrow((x>0) \rightarrow(\exists y:((y \in \mathbb{N}) \wedge(y+1=x))))))
\end{aligned}
$$

Q ... quantifier, V ...variable, F(s) ... formula(s), LC ... logical connective, T(s) ... term(s), PS ... predicate symbol, FS ... function symbol

Syntax Analysis: Pitfalls

$$
\forall x: p(x) \rightarrow \exists y: q(x, y)
$$

By the precedence rules, the formula has to be parenthesized as $\forall x:(p(x) \rightarrow \exists y: q(x, y))$, not as $(\forall x: p(x)) \rightarrow(\exists y: q(x, y))$; therefore the left syntax tree is the correct one.

Further Constructs: Language Extensions

\square Local definition: (let $v=t$ in E) (also: $\left(E\right.$ where $v=t$) or $\left(\left.E\right|_{v=t}\right)$)
$\square E$ can be a formula or a term, phrase is correspondingly a formula or a term.
\square Phrase means $E[t / v]$ (every free occurrence of v in E is replaced by t); thus v is bound.
\square Formula (let $v=t$ in F) is equivalent to:

$$
\exists v:(v=t \wedge F)
$$

- Conditional expression: (if F then E_{1} else E_{2})
$\square E_{1}, E_{2}$ can be both formulas or both terms, phrase is correspondingly formula or term.Phrase means E_{1}, if F is true, and E_{2}, otherwise.
\square Formula (if F then F_{1} else F_{2}) is equivalent to:

$$
\left(F \rightarrow F_{1}\right) \wedge\left(\neg F \rightarrow F_{2}\right)
$$

Not strictly necessary but often convenient in practice.

Further Constructs: Mathematical Quantifiers

- $\sum_{i=a}^{b} t$ binds variable i; its meaning is the sum $t[a / i]+\cdots+t[b / i]$.
$\square \prod_{i=a}^{b} t$ binds variable i; its meaning is the product $t[a / i] * \cdots * t[b / i]$.
- $\{x \in S \mid F\}$ binds x; it denotes the set of all x from set S for which F is true.
$\square\{t \mid x \in S \wedge F\}$ binds x; it denotes the set of all t where x is from S and F is true.
$\square \lim _{x \rightarrow v} t$ binds variable x; its meaning is the limit of term t when x goes to value v.
\square max t binds x; it denotes the maximum of all values of t where x is from S. $x \in S$
$\square \min _{x \in S} t$ binds x; it denotes the minimum of all values of t where x is from S.
\qquad
Mathematics provides a great variety of variable binding constructs (i.e., quantifiers).

