
FIRST-ORDER LOGIC
Syntax

Wolfgang Schreiner and Wolfgang Windsteiger
Wolfgang.(Schreiner|Windsteiger)@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU), Linz, Austria
http://www.risc.jku.at

mailto:Wolfgang.Schreiner@risc.jku.at,Wolfgang.Windsteiger@risc.jku.at
http://www.risc.jku.at

Why Not Only Propositional Logic?

� A propositional formula F describes a “sentence” that can be “true” or “false”:
F ::= p | > | ⊥ | (¬F) | (F1∧F2) | (F1∨F2) | (F1→ F2) | (F1↔ F2)

� Propositional variables p ∈ P with given truth values.
� Propositional constants > and ⊥ with fixed truth values.
� Compound formulas constructed from the (logical) connectives (¬,∧,∨,→,↔) whose

truth values are determined by corresponding truth tables.

Propositional logic is about the combination of truth values.

1/20

Why Not Only Propositional Logic?
For all numbers x and y it is the case that, if x is greater equal zero and y is
greater equal zero, then x times y is zero or not less than x.

a∧b→ c∨¬d.

� This propositional formula ignores “for all numbers x and y”.
� It uses propositional variables a, b, c, d to abstract from sentences:

� a: “x is greater equal zero”.
� b: “y is greater equal zero”.
� c: “x times y is zero”.
� d: “x times y is less than x”.

� The formula thus describes the “shape” of the sentence, but not its “content”.

Propositional logic is not able to talk about concrete objects, their relationships, and the
fact whether a sentence is true for all or just for just some objects of a domain.

2/20

The Syntax of First-Order Logic: Terms and Formulas
� First-order (predicate) logic has two kinds of syntactic phrases (“expressions”):

� Terms denoting objects (values).
� Formulas denoting properties of objects (i.e., the truth values “true” or “false”).

t ::= v | c | f (t1, . . . , tn)

F ::= p(t1, . . . , tn) | > | ⊥ | (¬F) | (F1∧F2) | (F1∨F2) | (F1→ F2) | (F1↔ F2)

| (∀v : F) | (∃v : F)

� The elements of the phrases:
� v ∈ V: a variable to which varying objects can be assigned.
� c ∈ C: a constant denoting a fixed object.
� f ∈ F : a function symbol of arity n denoting an n-ary function.
� p ∈ P: a predicate symbol of arity n denoting an n-ary predicate.

• Functions return objects, while predicates return “true” or “false”.
� ∀ and ∃: a quantifier that binds a variable v within a formula F .

• ∀v : F: “for all (possible objects assigned to) v, F is true”.
• ∃v : F: “there exists some (possible object assigned to) v, for which F is true”.

3/20

Example
Tanja is female and every female is the daughter of her father.(

isFemale(Tanja)∧ (∀x : (isFemale(x)→ isDaughterOf(x, fatherOf(x))))
)

� “Names”:
� Tanja . . . a constant
� x . . . a variable
� isFemale, isDaughterOf . . . predicate symbols of arity 1/2 (return “true” or “false”)
� fatherOf . . . a function symbol of arity 1 (returns a person)

� Terms (denoting persons):
� Tanja, x, fatherOf(x).

� (Sub)formulas (denoting “true” or “false”):
� isFemale(Tanja)
� isFemale(x)
� isDaughterOf(x, fatherOf(x))
� (isFemale(x)→ isDaughterOf(x, fatherOf(x)))
�
(
∀x : (isFemale(x)→ isDaughterOf(x, fatherOf(x)))

)
4/20

Formulas and Parentheses
We may reduce the number of parentheses by associating “binding powers” to operators:

� Binding powers:
(¬)� (∧)� (∨)� (→)� (↔)� (∀,∃)

� (x)� (y): “operator x binds stronger than operator y”: (F1 x F2 y F3) is interpreted
as ((F1 x F2) y F3), not as (F1 x (F2 y F3)).

� Quantified formulas:
� Without parentheses, the scope of a quantified formula ∀v : F or ∃v : F reaches to the

end of the enclosing formula.
� Formula simplification:(

isFemale(Tanja)∧
(
∀x : (isFemale(x)→ isDaughterOf(x, fatherOf(x)))

))
; isFemale(Tanja)∧∀x : isFemale(x)→ isDaughterOf(x, fatherOf(x))

If in doubt, use parentheses (respectively ask!).

5/20

Example

For all numbers x and y it is the case that, if x is greater equal zero and y is
greater equal zero, then x times y is zero or not less than x.

a∧b→ c∨¬d.

;

∀x : ∀y : greaterEqual(x,zero)∧greaterEqual(y,zero)→
equal(times(x,y),zero)∨¬lessThan(times(x,y),x)

First-order logic is able to talk about objects and their properties.

6/20

First-Order Logic and Natural Language

� “Alex is Tom’s sister”:
isSisterOf(Alex,Tom)

� “Tom has a sister in Linz”:
∃x : isSisterOf(x,Tom)∧ livesIn(x,Linz)

� “Tom has two sisters”:
∃x,y : x 6= y∧ isSisterOf(x,Tom)∧ isSisterOf(y,Tom)

� “Tom has no brother”:
¬∃x : isBrotherOf(x,Tom) (there does not exist a brother of Tom)
∀x : ¬isBrotherOf(x,Tom) (everybody is not a brother of Tom)

Many natural language statements can be expressed in first-order logic.

7/20

Abstract Syntax versus Concrete Syntax

Terms and formulas are not always given in the syntax presented so far.

� Abstract syntax: a “standard form” of expressions.
� Prefix notation: atomic formulas p(t1, . . . , tn) and function applications f (t1, . . . , tn).
� Predicate/function symbol p/ f appears before the subexpressions t1, . . . , tn.
� Unique identification of the “type of the expression” (p/ f) and its “subexpressions”.

� Concrete syntax: any particular “notation” to write expressions.
� One expression in abstract syntax can have many different forms in concrete syntax.
� Infix notation (a+ i, a[i]), postfix notation (r∗), subscript notation (ai),

For understanding their meaning, we need to be able to translate expressions from
concrete syntax to abstract syntax.

8/20

Abstract Syntax versus Concrete Syntax
Concrete Syntax Abstract Syntax
a/b /(a,b) quotient(a,b)
a
b /(a,b) quotient(a,b)
a|b |(a,b) divides(a,b)
a = b =(a,b) equals(a,b)
a < b <(a,b) less(a,b)√

a √
(a) sqrt(a)

a[i] [](a, i) index(a, i)
ai [](a, i) index(a, i)
[a,b] [](a,b) interval(a,b)
f ′ ′(f) derivative(f)∫

f
∫
(f) integral(f)

f → a →(f ,a) converges(f ,a)

Concrete: a
a+b < 1 ; abstract: <(/(a,+(a,b)),1) or: less(quotient(a,sum(a,b)),one).

9/20

Abstract Syntax versus Concrete Syntax

� The concrete syntax not always determines the abstract syntax uniquely:
Concrete Syntax Abstract Syntax
a+b+ c +(a,b,c) sum3(a,b,c)

+(a,+(b,c)) sum(a,sum(b,c))
+(+(a,b),c) sum(sum(a,b),c)

� Translation of natural language to abstract syntax:
Concrete Syntax Abstract Syntax
the sum of all values from a to b summation(a,b)
the remainder of a divided by b remainder(a,b)
a is a divisor of b divides(a,b)
f converges to a converges(f ,a)

10/20

Conditions and Quantifiers

� Statements with constrained domain:
Every natural number is greater equal zero.
There exists a natural number whose predecessor is zero.

� Corresponding formulas with filtering condition:

∀x ∈ N : x≥ 0
∃x ∈ N : x−1 = 0

;
∀x : x ∈ N→ x≥ 0
∃x : x ∈ N∧ x−1 = 0

� General pattern:
∀C : F
∃C : F

;
∀x : C→ F
∃x : C∧F

� Quantified variable must be deduced from context:

∀x ∈ N : ∃x < y : y < x+2 ; ∀x : x ∈ N→∃y : x < y∧ y < x+2

11/20

Free and Bound Variables
� Non-closed formula:

equal(x,zero)

� Truth value depends on value we assign to x: “true” for x = zero, “false”, otherwise.
� Variable x is free in the formula.
� If some of its variables are free, a formula is non-closed.

� Closed formulas:
∀x : equal(x,zero)
∃x : equal(x,zero)

� Truth values do not depend on x: first formula is “false”, second one is “true”.
� Variable x is bound in both formulas (by the quantifier ∀ respectively ∃).
� If all of its variables are bound, a formula is closed.

The truth value of a formula only depends on the values assigned to the formula’s free
variables; the truth value is independent of the values of the bound variables.

12/20

The Free Variables of a Formula

The computation of the free variables proceeds “inside-out”:
∀x : p(x,w)︸ ︷︷ ︸

free: x,w

→∃y : q(x,y,z)︸ ︷︷ ︸
free: x,y,z︸ ︷︷ ︸

free: x,z︸ ︷︷ ︸
free: x,w,z︸ ︷︷ ︸

free: w,z

This computation can be formally described.

13/20

The Free Variables of a Formula
fv(F) and fv(t) compute the set of free vars of formula F and term t.
fv(p(t1, . . . , tn)) = fv(t1)∪ . . .∪ fv(tn)

fv(>) = /0

fv(⊥) = /0

fv(¬F) = fv(F)

fv(F1∧F2) = fv(F1)∪ fv(F2)

fv(F1∨F2) = fv(F1)∪ fv(F2)

fv(F1→ F2) = fv(F1)∪ fv(F2)

fv(F1↔ F2) = fv(F1)∪ fv(F2)

fv(∀v : F) = fv(F)\{v}

fv(∃v : F) = fv(F)\{v}

Quantifiers bind variables.

fv(v) = {v} fv(c) = /0

fv(f (t1, . . . , tn)) = fv(t1)∪ . . .∪ fv(tn)

Example
fv(q(x,y,z)) = {x,y,z}

fv(∃y : q(x,y,z)) = fv(q(x,y,z))\{y}
= {x,y,z}\{y}= {x,z}

fv(p(x,w)) = {x,w}

fv(p(x,w)→∃y : q(x,y,z)) = fv(p(x,w))∪ fv(∃y : q(x,y,z))

= {x,w}∪{x,z}= {x,w,z}

fv(∀x : p(x,w)→∃y : q(x,y,z)) = fv(p(x,w)→∃y : q(x,y,z))\{x}

= {x,w,z}\{x}= {w,z}

14/20

Syntax Analysis

Generate from a formula’s concrete syntax (a linear text with multiple interpretations)
its abstract syntax tree (a data structure with only a single interpretation).

� Syntax analyisis of formula proceeds in top-down fashion by analyzing the formula’s
� quantified formulas (constructed by quantifiers from variables and sub-formulas),
� propositional formulas (constructed by logical connectives from sub-formulas),
� atomic formulas (constructed by predicate symbols from terms),
� terms (variables or constants or constructed by function symbols from sub-terms).

� Determines the roles of names as variables, constants, function/predicate symbols.
� Names like x,y,z, . . . are often used for variables.
� Names like a,b,c, . . . are often used for constants.
� Names like f ,g,h, . . . are often used for function symbols.
� Names like p,q,r, . . . are often used for predicate symbols.

� Determines the free variables of every formula and term.

15/20

Syntax Analysis: Formal Definition

tree(Qv : F) =
Q X\{v}

tree(F) Xv

Q ∈ {∀,∃}

tree(F1 ◦F2) =
◦ X1∪X2

tree(F) X2
tree(F) X1

◦ ∈ {∧,∨,→,↔}

tree(¬F) =
¬ X

tree(F) X

tree(>) = > {}
tree(⊥) = ⊥ {}

tree(p(t1, . . . , tn)) =
p X1∪ . . .∪Xn

tree(tn) Xn
. . .tree(t1) X1

tree(f (t1, . . . , tn)) =
f X1∪ . . .∪Xn

tree(tn) Xn
. . .tree(t1) X1

tree(c) = c {}
tree(v) = v {v}

16/20

Syntax Analysis: Example
∀x ∈ N : x > 0→∃y ∈ N : y+1 = x

; ∀x : x ∈ N→ (x > 0→∃y : y ∈ N∧ y+1 = x)

; (∀x : ((x ∈ N)→ ((x > 0)→ (∃y : ((y ∈ N)∧ (y+1 = x))))))

∀x : x︸︷︷︸
V

∈ N︸︷︷︸
C︸ ︷︷ ︸

PS ∈, Ts (x,N)

→ (x︸︷︷︸
V

> 0︸︷︷︸
C︸ ︷︷ ︸

PS >, Ts (x,0)

→∃y : y︸︷︷︸
V

∈ N︸︷︷︸
C︸ ︷︷ ︸

PS ∈, Ts (y,N)

∧ y︸︷︷︸
V

+ 1︸︷︷︸
C︸ ︷︷ ︸

FS +, Ts (y,1)

= x︸︷︷︸
V

︸ ︷︷ ︸
PS =, Ts (y+1,x)︸ ︷︷ ︸

LC ∧, Fs (y ∈ N,y+1 = x)︸ ︷︷ ︸
Q ∃, V y, F (y ∈ N∧ . . .)

)

︸ ︷︷ ︸
LC →, Fs (x > 0,∃y : . . .)︸ ︷︷ ︸

LC →, Fs (x ∈ N,x > 0→ . . .)︸ ︷︷ ︸
Q ∀, V x, F (x ∈ N→ . . .)

Q . . . quantifier, V . . . variable, F(s) . . . formula(s), LC . . . logical connective,
T(s) . . . term(s), PS . . . predicate symbol, FS . . . function symbol

∀ {}

→ {x}

→ {x}

∃ {x}

∧ {x,y}

= {x,y}

x {x}+ {y}

1 {}y {y}

∈ {y}

N {}y {y}

y

> {x}

0 {}x {x}

∈ {x}

N {}x {x}

x

17/20

Syntax Analysis: Pitfalls

∀x : p(x)→∃y : q(x,y)

∀ {}

→ {x}

∃ {x}

q {x,y}

y {y}x {x}

y

p {x}

x {x}

x

→ {x}

∃ {x}

q {x,y}

y {y}x {x}

y

∀ {}

p {x}

x {x}

x

By the precedence rules, the formula has to be parenthesized as ∀x : (p(x)→∃y : q(x,y)),
not as (∀x : p(x))→ (∃y : q(x,y)); therefore the left syntax tree is the correct one.

18/20

Further Constructs: Language Extensions

� Local definition: (let v = t in E) (also: (E where v = t) or (E|v=t))
� E can be a formula or a term, phrase is correspondingly a formula or a term.
� Phrase means E[t/v] (every free occurrence of v in E is replaced by t); thus v is bound.
� Formula (let v = t in F) is equivalent to:

∃v : (v = t ∧F)

� Conditional expression: (if F then E1 else E2)

� E1,E2 can be both formulas or both terms, phrase is correspondingly formula or term.
� Phrase means E1, if F is true, and E2, otherwise.
� Formula (if F then F1 else F2) is equivalent to:

(F → F1)∧ (¬F → F2)

Not strictly necessary but often convenient in practice.

19/20

Further Constructs: Mathematical Quantifiers

�
b
∑

i=a
t binds variable i; its meaning is the sum t[a/i]+ · · ·+ t[b/i].

�
b
∏
i=a

t binds variable i; its meaning is the product t[a/i]∗ · · · ∗ t[b/i].

� {x ∈ S | F} binds x; it denotes the set of all x from set S for which F is true.
� {t | x ∈ S∧F} binds x; it denotes the set of all t where x is from S and F is true.
� lim

x→v
t binds variable x; its meaning is the limit of term t when x goes to value v.

� max
x∈S

t binds x; it denotes the maximum of all values of t where x is from S.

� min
x∈S

t binds x; it denotes the minimum of all values of t where x is from S.

� . . .

Mathematics provides a great variety of variable binding constructs (i.e., quantifiers).

20/20

