FIRST ORDER PREDICATE LOGIC

Formal Reasoning

Wolfgang Schreiner and Wolfgang Windsteiger Wolfgang.(Schreiner|Windsteiger)@risc.jku.at
Research Institute for Symbolic Computation (RISC) Johannes Kepler University (JKU), Linz, Austria
http://www.risc.jku.at UNIVERSITY LINZ

What is Formal Reasoning?

\square Problem: how to show that the statement $F_{1}, \ldots, F_{n} \models G$ is true?
\square Is formula G true in every model in which the F_{1}, \ldots, F_{n} are true?
$\square F_{1}, \ldots, F_{n}$: the "axioms" that characterize the considered models.
$\square G$: a "conjecture" that might be also true in all these models.
\square If the conjecture is indeed true, then G is actually a "theorem".
\square Since there are infinitely models, how to ensure that G is a theorem?
Solution: derive the "sequent" $F_{1}, \ldots, F_{n} \vdash G$ by a proof calculus.
\square "Sequent" $F_{1}, \ldots, F_{n} \vdash G$: "assumptions" F_{1}, \ldots, F_{n} and "goal" G.
\square Proof calculus: a set of "inference rules" that derive sequents.
\square "Soundness": if a sequent $F_{1}, \ldots, F_{n} \vdash G$ can be derived, then $F_{1}, \ldots, F_{n} \models G$.
\square Inference rules only depend on syntactic structure of the formulas (not on semantics).
\square Proof: a "proof" is a derivation of a sequent $F_{1}, \ldots, F_{n} \vdash G$.
\square Since inference rule are syntactic, correctness of a proof can be mechanically checked.
Formal reasoning is the demonstration of truth by checkable proofs.

What is a Proof?

We call sequents also proof situations.
Proof of G :
\square Series of logical arguments that ascertain that G is true (under certain assumptions F_{1}, \ldots, F_{n}).

- Chain of proof situations.

■ Proof situation captures "status" during a proof.

- Transition between situations corresponds to logical argument.
initial situation $\longrightarrow \sigma_{1} \longrightarrow \sigma_{2} \longrightarrow \sigma_{n} \longrightarrow$ final situation

Formal Reasoning: How to Construct a Proof?

Forward interpretation:
A proof starts from trivial proof situations (obviously true),
progresses step-by-step

- until it reaches the final situa- until it reaches trivial proof tion, where the goal is proved. situations (obviously true).

Formal Reasoning: How to Construct a Proof?

Individual proof steps are guided by inference rules, which are denoted as

where S_{1}, \ldots, S_{n} and S are sequents (proof situations).

Forward interpretation:
If S_{1}, \ldots, S_{n} can be proved, then also S can be proved.

Backward interpretation:
In order to prove S, we need to prove S_{1}, \ldots, S_{n}.

Example (Inference Rules)

Let S_{1} and S be the proof situations

$$
\begin{aligned}
S_{1} & :=\text { "the assumption } A \text { leads to a contradiction" } \\
S & :=\text { "the statement } \neg A \text { holds". }
\end{aligned}
$$

$$
\text { Rule: } \frac{S_{1}}{S}
$$

Forward interpretation: If the assumption A leads to a contradiction then $\neg A$ holds.
Backward interpretation: If we want to prove $\neg A$ then we assume A and derive a contradiction.

Example (Inference Rules)

Let S_{1}, S_{2}, and S be the proof situations

$$
\begin{aligned}
S_{1} & :=\text { "the statement } A \text { holds" } \\
S_{2} & :=\text { "the statement } B \text { holds" } \\
S & :=\text { "the statement } A \wedge B \text { holds". }
\end{aligned}
$$

$$
\text { Rule: } \frac{S_{1} S_{2}}{S}
$$

Forward interpretation: If we can prove A and we can prove B then we can also prove $A \wedge B$.

Backward interpretation: If we want to prove $A \wedge B$ then we have to prove both A and B.

Example (Proof)

S, S_{1}, \ldots, S_{6} : sequents. Consider the following inference rules:

$$
\begin{array}{r}
R_{1}: \frac{S_{2} S_{3}}{S_{1}} \quad R_{2}: \frac{S_{4}}{S_{4}}: \frac{S_{1}}{S} \quad R_{4}: \frac{S_{5}}{S_{2}} \\
R_{5}: \frac{S_{4} S_{5}}{S_{2}}
\end{array}
$$

We want to prove S. Construct chain of sequents ending in $S \ldots$

Example (Proof)

S, S_{1}, \ldots, S_{6} : sequents. Consider the following inference rules:

$$
\begin{array}{r}
R_{1}: \frac{S_{2} S_{3}}{S_{1}} \quad R_{2}: \frac{}{S_{4}} \quad R_{3}: \frac{S_{1}}{S} \quad R_{4}: \frac{}{S_{5}} \\
R_{5}: \frac{S_{4} S_{5}}{S_{2}}
\end{array} R_{6}: \frac{}{S_{6}} \quad R_{7}: \frac{S_{6}}{S_{3}}
$$

We want to prove S. Instead construct tree of sequents...

$$
\begin{array}{ll}
R_{2}: \frac{R_{4}: \frac{S_{5}}{S_{4}}}{R_{1}: \frac{S_{2}}{R_{6}: \frac{\square}{S_{6}}}} & R_{7}: \frac{R_{3}: \frac{S_{1}}{S}}{}
\end{array}
$$

Proof Trees

A formal proof can be seen as a finite tree, where

1. every node is a sequent,
2. if S_{1}, \ldots, S_{n} are the children nodes of a node S, then there must be an inference rule of the form $\frac{S_{1} \ldots S_{n}}{S}$.

Special case $n=0$: A leaf has 0 children, hence

$$
\text { for every leaf } S \text { in the tree there must be a rule } \bar{S} \text {. }
$$

A formal proof of R is a proof tree with root R.

A Sketch of a Simple Proof Generation Procedure

Input: $R \quad$ Output: P such that P is a formal proof of R.
$P:=$ tree containing only the root node R
$Q:=\{R\} / /$ the leaves of the tree, i.e., the still "open" proof situations while $Q \neq \emptyset$
choose $T \in Q$ and choose a rule $\frac{S_{1} \ldots S_{n}}{S}$ such that $S=T$ replace T in Q by S_{1}, \ldots, S_{n} add S_{1}, \ldots, S_{n} as children nodes of T in P
return P
Depending on 1) the rules and 2) the choice of the rule in the loop, the procedure might not terminate.

Proving is the art of selecting the "right" rule applications to elaborate, from the desired goal as a root, a complete proof tree.

Proof Generation vs. Proof Presentation

Proof generation: start with sequent to be proved, then work backwards.
Read and apply rules from bottom to top.

$$
\left.\right|_{R_{5}: \frac{R_{2}: \frac{R_{4}: \frac{S_{5}}{S_{5}}}{R_{1}: \frac{S_{2}}{R_{7}: \frac{\overline{S_{6}}}{S_{3}}}}}{R_{3}: \frac{S_{1}}{S}}}
$$

Backward style proof presentation: In order to prove S, by R_{3}, we have to prove S_{1}. For this, by R_{1}, we have to

1. prove S_{2} : by R_{5} we have to prove S_{4} and S_{5}, which are guaranteed by R_{2} and R_{4}, respectively. Now we still have to
2. prove S_{3} : by R_{7} it is sufficient to prove S_{6}, which we know from R_{6}. QED ("quod erat demonstrandum", "what was to be proved").

Proof Generation vs. Proof Presentation

Proof presentation: often done in forward reasoning style, i.e. start with known facts and work forward until the sequent to be proved is reached.

Read and apply rules from top to bottom.

$$
\underbrace{R_{1}: \frac{S_{2}}{R_{6}: \frac{\overline{S_{6}}}{R_{7}: \frac{S_{1}}{S_{3}}}}}_{R_{5}: \frac{R_{4}}{R_{2}: \frac{S_{4}}{S_{5}}}}
$$

Forward style proof presentation: We know S_{4} and S_{5} can be proved, hence by R_{5}, S_{2} can be proved. Furthermore we know that S_{6} can be proved, hence by R_{7}, also S_{3} can be proved. Together with S_{2}, by R_{1}, we know that S_{1} can be proved, and therefore, by R_{3}, also S. QED.

Proofs are always generated backwards (even if they are later presented in the forward style).

Inference Rules: Patterns and Matching

■ Inference rules: schematic "patterns" to be "matched" against proof situations.

$$
\text { name: } \quad \frac{K_{1} \ldots \vdash G_{1} \ldots \quad K_{n} \ldots \vdash G_{n}}{K \ldots \vdash G}
$$

$\square n$ premises and one conclusion (special case $n=0$: no premises).
\square Premises/conclusions: "patterns" of sequents with schematic variables:
$\square \mathrm{A}$ "sequence variable" (e.g. $K \ldots$): an arbitrary sequence of formulas.
\square A "formula variable" (e.g. F, G, etc.): an arbitrary formula,
$\square \mathrm{A}$ "term variable" (e.g. t, u, etc.): an arbitrary term.

- $K \ldots \vdash G_{1} \wedge G_{2}$ matches a sequent whose goal is an arbitrary conjunction, i.e., a formula with " \wedge " as the outermost symbol and two subformulas G_{1} and G_{2}.
\square Order of assumptions: does not matter.
$\square K \ldots, F_{1} \wedge F_{2} \vdash G$ matches if a conjunction occurs among the assumptions.
- Multiple occurrences of the same variable: denote the same expression.
$\square K \ldots, F \wedge G \vdash G$ matches if among the assumptions a conjunction occurs whose second subformula is identical to the goal.

Example: Patterns and Matching

Let a be a constant, f, g unary function symbols, p, q, r, s unary predicate symbols, and t a schematic term variable.

Consider the following inference rules:

$$
\begin{aligned}
& R_{1}: \frac{\vdash r(t) \vdash s(g(t))}{\vdash r(f(t))} \quad R_{2}: \frac{}{\vdash p(a)} \quad R_{3}: \frac{\vdash r(f(t))}{\vdash s(t)} \quad R_{4}: \frac{}{\vdash q(a)} \\
& R_{5}: \frac{\vdash p(t) \quad \vdash q(t)}{\vdash r(t)} \quad R_{6}: \frac{}{\vdash s(f(a))} \quad R_{7}: \frac{\vdash s(f(t))}{\vdash s(g(t))}
\end{aligned}
$$

We want to derive $\vdash s(a)$.

$$
\begin{aligned}
& R_{2}: \frac{R_{4}: \frac{\vdash p(a)}{\vdash q(a)}}{R_{5}: \frac{\vdash r(a)}{}} \quad \begin{array}{l}
R_{6}: \frac{\square}{\vdash s(f(a))} \\
R_{3}: \frac{\vdash r(f(a))}{\vdash s(g(a))} \\
\end{array}
\end{aligned}
$$

Proof Rules for Predicate Logic

One could give a (minimal) set of inference rules for first order predicate logic, which can be shown to be sound and complete, i.e.,

1. every formula, which has a formal proof, is also semantically true and
2. every semantically true formula has a formal proof.
\leadsto e.g., sequent calculus, Gentzen calculus, natural deduction calculus, etc.
However, we give proof rules that help in practical proving of mathematical statements and checking of given proofs (differences lie in details only).
propositional rules: closing rules, structural rules, connective rules.
\square predicate logic rules: equality rules, quantifier rules.
For every logical connective and every quantifier, we give at least one rule, where the symbol occurs as the outermost symbol in the goal or one of the assumptions.

Closing Rules

For closing a proof, we need inference rules without premises.
If the goal is among the assumptions, the goal can be proved.

$$
\text { GoalAssum: } \overline{K \ldots, G \vdash G}
$$

\square If the assumptions are contradictory, any goal can be proved.

$$
\text { ContrAssum: } \overline{K \ldots, A, \neg A \vdash G}
$$

- If the assumptions include "false", any goal can be proved.

$$
\text { FalseAssum: } \overline{K \ldots, \perp \vdash G}
$$

The leaves of a proof tree are constructed by application of these rules.

Structural Rules

- Any assumption may be dropped:

$$
\text { Drop: } \frac{K \ldots \vdash G}{K \ldots, A \vdash G}
$$

- Any assumption may be added, if it is also proved (the "cut rule"):

$$
\text { Cut: } \frac{K \ldots \vdash A \quad K \ldots, A \vdash G}{K \ldots \vdash G}
$$

We have to prove G. First we prove $A: \ldots$. Now we prove G with the additional assumption A.

- Rather than proving G, we may assume $\neg G$ and derive a contradiction (an "indirect proof"):

$$
\text { Indirect: } \frac{K \ldots, \neg G \vdash \perp}{K \ldots \vdash G}
$$

We have to prove G. Thus we may assume $\neg G$ and derive a contradiction.

Connective Rules: Negation

- Prove a negation as goal:

$$
\mathrm{P}-\neg: \frac{K \ldots, G \vdash \perp}{K \ldots \vdash \neg G}
$$

We have to prove $\neg G$. Thus we may assume G and derive a contradiction.
■ Use a negation as an assumption:

$$
\text { A-ᄀ: } \frac{K \ldots, \neg G \vdash A}{K \ldots, \neg A \vdash G}
$$

We know $\neg A$ and have to prove G. Thus we may assume $\neg G$ and prove A.

Example

$$
\mathrm{P}-\neg: \frac{\sqrt{2} \in \mathbb{Q}, \ldots \vdash \perp}{\ldots \vdash \sqrt{2} \notin \mathbb{Q}}
$$

We have to prove that $\sqrt{2}$ is not rational. We do a proof by contradiction, hence, we assume that $\sqrt{2}$ was rational and derive a contradiction.

Connective Rules: Conjunction

- Prove a conjunction as a goal:

$$
\text { P-^: } \frac{K \ldots \vdash F_{1} \quad K \ldots \vdash F_{2}}{K \ldots \vdash F_{1} \wedge F_{2}}
$$

We have to prove $F_{1} \wedge F_{2}$. First we prove $F_{1}: \ldots$ Now we prove $F_{2}: \ldots$.
■ Use a conjunction as an assumption:

$$
\mathrm{A}-\wedge: \frac{K \ldots, F_{1}, F_{2} \vdash G}{K \ldots, F_{1} \wedge F_{2} \vdash G}
$$

We know $F_{1} \wedge F_{2}$, therefore we know F_{1} and we know F_{2}.

Connective Rules: Disjunction

- Prove a disjunction as a goal:

$$
\mathrm{P}-\mathrm{V}: \frac{K \ldots, \neg F_{1} \vdash F_{2}}{K \ldots \vdash F_{1} \vee F_{2}} \quad \mathrm{P}-\mathrm{V}: \frac{K \ldots, \neg F_{2} \vdash F_{1}}{K \ldots \vdash F_{1} \vee F_{2}}
$$

We have to prove $F_{1} \vee F_{2}$. Thus we may assume $\neg F_{1}$ and prove $\neg F_{2}$. (or: Thus we may assume $\neg F_{2}$ and prove $\neg F_{1}$).

■ Use a disjunction as an assumption ("proof by cases"):

$$
\mathrm{A}-\mathrm{V}: \frac{K \ldots, F_{1} \vdash G \quad K \ldots, F_{2} \vdash G}{K \ldots, F_{1} \vee F_{2} \vdash G}
$$

We know $F_{1} \vee F_{2}$. We proceed by case distinction. Case $F_{1}: \ldots$ Case $F_{2}: \ldots$.

Example

$$
\mathrm{A}-\mathrm{V}: \frac{P_{1}}{\frac{\operatorname{even}(m) \vdash G}{\operatorname{even}(m) \vee \operatorname{odd}(m) \vdash G} \frac{P_{2}}{\operatorname{odd}(m) \vdash G}}
$$

We already know that m is even or m is odd. Thus, we can distinguish the two cases:

1. m is even: ... (insert proof P_{1} here)
2. m is odd: . . (insert proof P_{2} here)

Connective Rules: Implication

- Prove implication as a goal.

$$
\mathrm{P}-\rightarrow: \frac{K \ldots, F_{1} \vdash F_{2}}{K \ldots \vdash F_{1} \rightarrow F_{2}}
$$

We have to prove $F_{1} \rightarrow F_{2}$. Thus we may assume F_{1} and prove F_{2}.

Connective Rules: Implication

- Use an implication as an assumption:

$$
\mathrm{A}-\rightarrow: \frac{K \ldots \vdash F_{1} \quad K \ldots, F_{2} \vdash G}{K \ldots, F_{1} \rightarrow F_{2} \vdash G}
$$

We know $F_{1} \rightarrow F_{2}$. First we prove $F_{1}: \ldots$. Now we know F_{2}.
■ Often used instead: "modus ponens" and "modus tollens"

$$
\text { MP: } \frac{K \ldots, F_{1}, F_{2} \vdash G}{K \ldots, F_{1} \rightarrow F_{2}, F_{1} \vdash G}
$$

We know $F_{1} \rightarrow F_{2}$ and we know F_{1}. Therefore we know F_{2}.

$$
\text { MT: } \frac{K \ldots, \neg F_{2}, \neg F_{1} \vdash G}{K \ldots, F_{1} \rightarrow F_{2}, \neg F_{2} \vdash G}
$$

We know $F_{1} \rightarrow F_{2}$ and we know $\neg F_{2}$. Therefore we know $\neg F_{1}$.

Example

Prove $((A \rightarrow(B \vee C)) \wedge \neg C) \rightarrow(A \rightarrow B)$,
where A, B, and C are abbreviations for complex predicate logic formulas.
Develop proof tree top-down with root on top (convenient in practice).

$$
\begin{aligned}
\mathrm{P}-\rightarrow: & \frac{\vdash((A \rightarrow(B \vee C)) \wedge \neg C) \rightarrow(A \rightarrow B)}{\text { A-^: } \frac{(A \rightarrow(B \vee C)) \wedge \neg C \vdash A \rightarrow B}{A \rightarrow(B \vee C), \neg C \vdash A \rightarrow B}} \\
\mathrm{P}-\rightarrow: \frac{A \rightarrow(B \vee C), \neg C, A \vdash B}{A-\vee:} & \frac{\mathrm{MP}: \frac{\neg C, A, B \vee C \vdash B}{\text { SoalAssum: }}}{} \frac{\cdots, B \vdash B}{} \quad \text { ContrAssum: } \frac{\cdots, \neg C, C \vdash B}{}
\end{aligned}
$$

Connective Rules: Equivalence

\square Prove equivalence as a goal:

$$
\mathrm{P}-\leftrightarrow: \frac{K \ldots \vdash F_{1} \rightarrow F_{2} \quad K \ldots \vdash F_{2} \rightarrow F_{1}}{K \ldots \vdash F_{1} \leftrightarrow F_{2}}
$$

We prove $F_{1} \leftrightarrow F_{2}$. First we prove $F_{1} \rightarrow F_{2}: \ldots$ Now we prove $F_{2} \rightarrow F_{1}: \ldots$
\square Use equivalence as an assumption ("substitution"):

$$
\begin{array}{ll}
\mathrm{A}-\leftrightarrow: \frac{K \ldots\left[F_{2} / F_{1}\right], F_{1} \leftrightarrow F_{2} \vdash G}{K \ldots, F_{1} \leftrightarrow F_{2} \vdash G} & \text { А-↔: } \frac{K \ldots, F_{1} \leftrightarrow F_{2} \vdash G\left[F_{2} / F_{1}\right]}{K \ldots, F_{1} \leftrightarrow F_{2} \vdash G} \\
\mathrm{~A}-\leftrightarrow: \frac{K \ldots\left[F_{1} / F_{2}\right], F_{1} \leftrightarrow F_{2} \vdash G}{K \ldots, F_{1} \leftrightarrow F_{2} \vdash G} & \text { А-↔: } \frac{K \ldots, F_{1} \leftrightarrow F_{2} \vdash G\left[F_{1} / F_{2}\right]}{K \ldots, F_{1} \leftrightarrow F_{2} \vdash G}
\end{array}
$$

$\square \Gamma\left[F_{2} / F_{1}\right]$: replace in some formula(s) in Γ some occurrence of F_{1} by F_{2}.
We know $F_{1} \leftrightarrow F_{2}$ and we know, e.g., $\neg F_{2} \wedge F_{3}$. Therefore we know $\neg F_{1} \wedge F_{3}$.

Equality Rules

- Prove an equality as a goal:

$$
\mathrm{P}-=: \overline{K \ldots \vdash t=t}
$$

We have to prove $t=t$ and are therefore done.
■ Use an equality as assumption ("substitution"):

$$
\begin{array}{ll}
\text { A- }=: \frac{K \ldots\left[t_{2} / t_{1}\right], t_{1}=t_{2} \vdash G}{K \ldots, t_{1}=t_{2} \vdash G} & \text { А- }=: \frac{K \ldots, t_{1}=t_{2} \vdash G\left[t_{2} / t_{1}\right]}{K \ldots, t_{1}=t_{2} \vdash G} \\
\text { А- }=: \frac{K \ldots\left[t_{1} / t_{2}\right], t_{1}=t_{2} \vdash G}{K \ldots, t_{1}=t_{2} \vdash G} & \text { А- }=: \frac{K \ldots, t_{1}=t_{2} \vdash G\left[t_{1} / t_{2}\right]}{K \ldots, t_{1}=t_{2} \vdash G}
\end{array}
$$

$\square \Gamma\left[t_{2} / t_{1}\right]$: replace in some formula(s) in Γ some occurrence of t_{1} by t_{2}.
We know $t_{1}=t_{2}$ and we know (for example) $p\left(a, f\left(t_{1}\right)\right)$. Therefore we know $p\left(a, f\left(t_{2}\right)\right)$.

Example

$$
\mathrm{A}-=: \frac{\ldots, \operatorname{even}(m), n=m^{2} \vdash \operatorname{even}\left(m^{2}\right)}{\ldots, \operatorname{even}(m), n=m^{2} \vdash \operatorname{even}(n)}
$$

We have to prove that n is even. Since we know $n=m^{2}$, it suffices to prove that m^{2} is even.

Quantifier Rules: Universal Quantifier

- Prove universally quantified formula as a goal ("skolemization").

$$
\text { P- }-: \frac{K \ldots \vdash F[\bar{x} / x]}{K \ldots \vdash(\forall x: F)} \quad \text { where } \bar{x} \text { does not occur in } K \ldots, F
$$

We prove $(\forall x: p(x, f(x)))$. We take arbitrary but fixed \bar{x} and prove $p(\bar{x}, f(\bar{x}))$."fixed": "Skolem constant" \bar{x} in contrast to variable x."arbitrary": \bar{x} is a new constant about which nothing is known (it does not appear anywhere else in the proof situation).

Quantifier Rules: Universal Quantifier

■ Use universally quantified formula as an assumption ("instantiation"):

$$
\text { A- }-\frac{K \ldots,(\forall x: F), F[t / x] \vdash G}{K \ldots,(\forall x: F) \vdash G} \quad \begin{aligned}
& \text { where } t \text { is some term made up of } \\
& \text { symbols occuring in } K \ldots, F
\end{aligned}
$$

We know $(\forall x: p(x, f(x))$). Thus we know (for $x:=a) p(a, f(a))$ and (for $x:=g(a)) p(g(a), f(g(a))$.
$\square(\forall x: F)$ stays in the assumptions and can be instantiated again.A "knowlege generating engine" that can be applied arbitrarily often.The problem is to find suitable t that lets the proof make progress.If an unsuitable t is chosen, the additional knowledge does not help.

Quantifier Rules: Existential Quantifier

Prove an existentially quantified formula as a goal ("instantiation"):

$$
\text { P- } \exists: \frac{K \ldots \vdash F[t / x]}{K \ldots \vdash(\exists x: F)} \quad \begin{aligned}
& \text { where } t \text { is some term made up of } \\
& \text { symbols occuring in } K \ldots, F
\end{aligned}
$$

We have to prove $(\exists x: p(x, f(x)))$. We prove (for $x:=g(a)) p(g(a), f(g(a)))$.
\square The problem is to find a "witness term" t that lets the proof succeed.If an unsuitable t is chosen, the proof fails.

Quantifier Rules: Existential Quantifier

■ Use existentially quantified formula as an assumption ("skolemization"):

$$
\text { A- } \exists \frac{K \ldots, F[\bar{x} / x] \vdash G}{K \ldots,(\exists x: F) \vdash G} \quad \text { where } \bar{x} \text { does not occur in } K \ldots, F, G
$$

We know $\exists x: p(x, f(x))$. Thus we know $p(\bar{x}, f(\bar{x}))$ for some \bar{x}.\bar{x} is an "arbitrary but fixed" Skolem constant.
$\square(\exists x: F)$ disappears from assumptions and cannot be skolemized again.A "knowlege generating engine" that can be applied only once.

Example: A Quantifier Proof

We prove

$$
\begin{aligned}
& \text { P- } \rightarrow: \frac{\vdash(\exists x: \forall y: p(x, y)) \rightarrow(\forall y: \exists x: p(x, y))}{} \downarrow \\
& \quad \text { P- } \forall: \frac{\exists x: \forall y: p(x, y) \vdash \forall y: \exists x: p(x, y)}{\exists x: \forall y: p(x, y) \vdash \exists x: p(x, \bar{y})} \\
& \quad \text { A- } \forall: \frac{\forall y: p(\bar{x}, y) \vdash \exists x: p(x, \bar{y})}{\forall y: p(\bar{x}, y), p(\bar{x}, \bar{y}) \vdash \exists x: p(x, \bar{y})} \\
& \quad \text { P- }
\end{aligned}
$$

$$
\begin{equation*}
\exists x: \forall y: p(x, y)) \rightarrow(\forall y: \exists x: p(x, y)) \tag{a}
\end{equation*}
$$

We assume

$$
\begin{equation*}
\exists x: \forall y: p(x, y) \tag{1}
\end{equation*}
$$

and prove

$$
\begin{equation*}
\forall y: \exists x: p(x, y) \tag{b}
\end{equation*}
$$

We take arbitrary but fixed \bar{y} and prove

$$
\begin{equation*}
\exists x: p(x, \bar{y}) \tag{c}
\end{equation*}
$$

From (1), we know $\forall y: p(\bar{x}, y)$ for some \bar{x}, and from that, we know (for $y:=\bar{y}$) (3) $p(\bar{x}, \bar{y})$. In order to prove (c), let $x:=\bar{x}$ and prove $p(\bar{x}, \bar{y})$. QED (3).

Example: Another Quantifier Proof

In order to prove the goal we assume
From (1), we know (2) $(\exists x: p(x))$ and

$$
(\exists x: p(x)) \wedge(\forall x: p(x) \rightarrow \exists y: q(x, y))
$$

(1) (4) $p(\bar{x})$ for some \bar{x}. From (3) we know (for $x:=\bar{x}$) $(p(\bar{x}) \rightarrow \exists y: q(\bar{x}, y))$ and together with (4), this gives $\exists y: q(\bar{x}, y)$. From this, we know (7) $q(\bar{x}, \bar{y})$
and show

$$
\begin{equation*}
\exists x, y: q(x, y) \tag{b}
\end{equation*}
$$ for some \bar{y}. In order to prove (b), let $x:=\bar{x}$ and $y:=\bar{y}$ and prove $q(\bar{x}, \bar{y})$. QED (7).

Example: A Quantifier Proof with Branches

In order to prove the goal we assume

$$
\begin{gather*}
p(a) \vee q(b) \\
(\forall x: p(x) \rightarrow r(x)) \\
(\forall x: q(x) \rightarrow r(f(x))) \tag{3}
\end{gather*}
$$

and prove

$$
\exists x: r(x)
$$

From (1), we have two cases:
(1) 1. Assume $p(a)$: From (2), we know $p(a) \rightarrow r(a)$
(2) (for $x:=a$), and together with the case assumption, this gives $r(a)$ and therefore (b) for $x:=a$.
2. Assume $q(b)$: From (3), we know $q(b) \rightarrow r(f(b))$ (for $x:=b$), and together with the case assumption, this gives $r(f(b))$ and therefore (b) for $x:=f(b)$.

Proving Strategies

- Proving: partially "art" but mostly "craft".
\square Most of a proof is guided by the structure of proof situations.
\square Only in a few places really "creativity" or "ingenuity" is required.
\square First: apply only the "goal-oriented" rules.
\square Decompose the complex goal into one or more simpler goals.
\square Stop when goals become atomic or existentially quantified.
\square Then: apply the "assumption-oriented" rules.
\square Decompose complex assumptions into simpler ones.
\square Skolemize existentially quantified assumptions.
\square Instantiate universally quantified assumptions.
■ Ultimately: "close the gap" between assumptions and goal.
\square Derive atomic goal as an assumption.Instantiate existentially quantified goal s.t. body of the formula is an assumption.

[^0]
Mathematical Proofs

Mathematical proofs are typically written in a much more informal style.

- Do not mention all steps.
- Combine several steps into one.
- Reuse name of variable for name of Skolem constant.

■ Use hidden assumptions. ...

A mathematical proof is an easily readable "sketch" that just gives the essential information to reconstruct a corresponding formal proof.

Mathematical Proofs: An Example

Theorem: Suppose a divides b if and only if, for some $t \in \mathbb{N}, b=t \cdot a$. Then, if a divides b it also divides every multiple of b.

Proof: Assume $a, b, s \in \mathbb{N}$ arbitrary but fixed such that a divides b. We show that a divides $s \cdot b$, i.e. $\exists t \in \mathbb{N}: s \cdot b=t \cdot a$. Since a divides b, we know $b=\bar{t} \cdot a$ for some $\bar{t} \in \mathbb{N}$, thus, we have to find $t \in \mathbb{N}$ with $s \cdot \bar{t} \cdot a=t \cdot a$. Let now $t:=s \cdot \bar{t} \in \mathbb{N}$, we have to show $s \cdot \bar{t} \cdot a=s \cdot \bar{t} \cdot a$.

Every sentence in the proof is justified by one or more proof rules. Trivial steps (e.g. split conjunction in assumptions) are not mentioned explicitly.

[^0]: By considering proving as a "syntactic" process, already a major part of a proof can be elaborated (possibly even completed).

