
FIRST ORDER PREDICATE LOGIC
Formal Reasoning

Wolfgang Schreiner and Wolfgang Windsteiger
Wolfgang.(Schreiner|Windsteiger)@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU), Linz, Austria
http://www.risc.jku.at

mailto:Wolfgang.Schreiner@risc.jku.at,Wolfgang.Windsteiger@risc.jku.at
http://www.risc.jku.at

What is Formal Reasoning?

� Problem: how to show that the statement F1, . . . ,Fn |= G is true?
� Is formula G true in every model in which the F1, . . . ,Fn are true?
� F1, . . . ,Fn: the “axioms” that characterize the considered models.
� G: a “conjecture” that might be also true in all these models.
� If the conjecture is indeed true, then G is actually a “theorem”.
� Since there are infinitely models, how to ensure that G is a theorem?

� Solution: derive the “sequent” F1, . . . ,Fn ` G by a proof calculus.
� “Sequent” F1, . . . ,Fn ` G: “assumptions” F1, . . . ,Fn and “goal” G.
� Proof calculus: a set of “inference rules” that derive sequents.
� “Soundness”: if a sequent F1, . . . ,Fn ` G can be derived, then F1, . . . ,Fn |= G.
� Inference rules only depend on syntactic structure of the formulas (not on semantics).

� Proof: a “proof” is a derivation of a sequent F1, . . . ,Fn ` G.
� Since inference rule are syntactic, correctness of a proof can be mechanically checked.

Formal reasoning is the demonstration of truth by checkable proofs. 1/38

What is a Proof?

We call sequents also proof situations.

Proof of G:

� Series of logical arguments that ascertain that G is true (under certain assumptions
F1, . . . ,Fn).

� Chain of proof situations.
� Proof situation captures “status” during a proof.
� Transition between situations corresponds to logical argument.

initial situation σ1 σ2 . . . σn final situation

2/38

Formal Reasoning: How to Construct a Proof?

?

6

Forward interpretation: Backward interpretation:

A proof starts from trivial
proof situations (obviously
true),

A proof starts from the goal
to be proved,

progresses step-by-step

until it reaches the final situa-
tion, where the goal is proved.

until it reaches trivial proof
situations (obviously true).

3/38

Formal Reasoning: How to Construct a Proof?

Individual proof steps are guided by inference rules, which are denoted as

S1 . . . Sn
S

��9 premises
� conclusion

where S1, . . . ,Sn and S are sequents (proof situations).

Forward interpretation: Backward interpretation:
If S1, . . . ,Sn can be proved,
then also S can be proved.

In order to prove S,
we need to prove S1, . . . ,Sn.

4/38

Example (Inference Rules)

Let S1 and S be the proof situations

S1 := “the assumption A leads to a contradiction”
S := “the statement ¬A holds”.

Rule: S1
S

Forward interpretation: If the assumption A leads to a contradiction then ¬A holds.
Backward interpretation: If we want to prove ¬A then we assume A and derive a

contradiction.

5/38

Example (Inference Rules)

Let S1,S2, and S be the proof situations

S1 := “the statement A holds”
S2 := “the statement B holds”
S := “the statement A∧B holds”.

Rule: S1 S2
S

Forward interpretation: If we can prove A and we can prove B then we can also prove
A∧B.

Backward interpretation: If we want to prove A∧B then we have to prove both A
and B.

6/38

Example (Proof)

S,S1, . . . ,S6: sequents. Consider the following inference rules:
S2 S3R1: S1

R2: S4
S1R3: S

R4: S5

S4 S5R5: S2

R6: S6
S6R7: S3

We want to prove S. Construct chain of sequents ending in S . . .

SS1

S2

S3

· · ·

· · ·
R1

R1

R3

7/38

Example (Proof)

S,S1, . . . ,S6: sequents. Consider the following inference rules:
S2 S3R1: S1

R2: S4
S1R3: S

R4: S5

S4 S5R5: S2

R6: S6
S6R7: S3

We want to prove S. Instead construct tree of sequents . . .

R2:
S4

R4:
S5R5:

S2

R6:
S6R7:
S3R1:

S1R3:
S

8/38

Proof Trees

A formal proof can be seen as a finite tree, where

1. every node is a sequent,
2. if S1, . . . ,Sn are the children nodes of a node S, then there must be an inference rule

of the form S1 . . . Sn
S

.

Special case n = 0: A leaf has 0 children, hence

for every leaf S in the tree there must be a rule S .

A formal proof of R is a proof tree with root R.

9/38

A Sketch of a Simple Proof Generation Procedure

Input: R Output: P such that P is a formal proof of R.

P := tree containing only the root node R
Q := {R} // the leaves of the tree, i.e., the still “open” proof situations
while Q 6= /0

choose T ∈ Q and choose a rule S1 . . . Sn
S

such that S = T

replace T in Q by S1, . . . ,Sn

add S1, . . . ,Sn as children nodes of T in P
return P

Depending on 1) the rules and 2) the choice of the rule in the loop, the procedure might
not terminate.

Proving is the art of selecting the “right” rule applications to elaborate, from the desired
goal as a root, a complete proof tree. 10/38

Proof Generation vs. Proof Presentation
Proof generation: start with sequent to be proved, then work backwards.

Read and apply rules from bottom to top.
6R2:

S4
R4:

S5R5:
S2

R6:
S6R7:
S3R1:

S1R3:
S

Backward style proof presentation: In order to prove S, by R3, we have to prove S1. For
this, by R1, we have to

1. prove S2: by R5 we have to prove S4 and S5, which are guaranteed by R2 and R4,
respectively. Now we still have to

2. prove S3: by R7 it is sufficient to prove S6, which we know from R6. QED (“quod
erat demonstrandum”, “what was to be proved”).

11/38

Proof Generation vs. Proof Presentation
Proof presentation: often done in forward reasoning style, i.e. start with known facts
and work forward until the sequent to be proved is reached.

Read and apply rules from top to bottom.

?

R2:
S4

R4:
S5R5:

S2

R6:
S6R7:
S3R1:

S1R3:
S

Forward style proof presentation: We know S4 and S5 can be proved, hence by R5, S2

can be proved. Furthermore we know that S6 can be proved, hence by R7, also S3 can
be proved. Together with S2, by R1, we know that S1 can be proved, and therefore, by
R3, also S. QED.

Proofs are always generated backwards (even if they are later presented in the forward
style). 12/38

Inference Rules: Patterns and Matching

� Inference rules: schematic “patterns” to be “matched” against proof situations.
K1 . . . ` G1 . . . Kn . . . ` Gnname:

K . . . ` G
� n premises and one conclusion (special case n = 0: no premises).

� Premises/conclusions: “patterns” of sequents with schematic variables:
� A “sequence variable” (e.g. K . . .): an arbitrary sequence of formulas.
� A “formula variable” (e.g. F , G, etc.): an arbitrary formula,
� A “term variable” (e.g. t, u, etc.): an arbitrary term.

• K . . . ` G1∧G2 matches a sequent whose goal is an arbitrary conjunction, i.e., a
formula with “∧” as the outermost symbol and two subformulas G1 and G2.

� Order of assumptions: does not matter.
� K . . . ,F1∧F2 ` G matches if a conjunction occurs among the assumptions.

� Multiple occurrences of the same variable: denote the same expression.
� K . . . ,F ∧G ` G matches if among the assumptions a conjunction occurs whose

second subformula is identical to the goal. 13/38

Example: Patterns and Matching

Let a be a constant, f ,g unary function symbols, p,q,r,s unary predicate symbols, and t
a schematic term variable.
Consider the following inference rules:

` r(t) ` s(g(t))
R1: ` r(f (t))

R2: ` p(a)
` r(f (t))

R3: ` s(t)
R4: ` q(a)

` p(t) ` q(t)
R5: ` r(t)

R6: ` s(f (a))
` s(f (t))

R7: ` s(g(t))

We want to derive ` s(a).

R2:
` p(a)

R4:
` q(a)

R5:
` r(a)

R6:
` s(f (a))

R7:
` s(g(a))

R1:
` r(f (a))

R3:
` s(a)

14/38

Proof Rules for Predicate Logic

One could give a (minimal) set of inference rules for first order predicate logic, which
can be shown to be sound and complete, i.e.,

1. every formula, which has a formal proof, is also semantically true and
2. every semantically true formula has a formal proof.

; e.g., sequent calculus, Gentzen calculus, natural deduction calculus, etc.

However, we give proof rules that help in practical proving of mathematical statements
and checking of given proofs (differences lie in details only).

� propositional rules: closing rules, structural rules, connective rules.
� predicate logic rules: equality rules, quantifier rules.

For every logical connective and every quantifier, we give at least one rule, where the
symbol occurs as the outermost symbol in the goal or one of the assumptions. 15/38

Closing Rules

For closing a proof, we need inference rules without premises.

� If the goal is among the assumptions, the goal can be proved.
GoalAssum:

K . . . ,G ` G

� If the assumptions are contradictory, any goal can be proved.
ContrAssum:

K . . . ,A,¬A ` G

� If the assumptions include “false”, any goal can be proved.
FalseAssum:

K . . . ,⊥ ` G

The leaves of a proof tree are constructed by application of these rules.

16/38

Structural Rules

� Any assumption may be dropped:
K . . . ` GDrop:

K . . . ,A ` G
� Any assumption may be added, if it is also proved (the “cut rule”):

K . . . ` A K . . . ,A ` G
Cut:

K . . . ` G
We have to prove G. First we prove A: Now we prove G with the additional
assumption A.

� Rather than proving G, we may assume ¬G and derive a contradiction (an “indirect
proof”):

K . . . ,¬G ` ⊥
Indirect:

K . . . ` G
We have to prove G. Thus we may assume ¬G and derive a contradiction.

17/38

Connective Rules: Negation

� Prove a negation as goal:
K . . . ,G ` ⊥

P-¬:
K . . . ` ¬G

We have to prove ¬G. Thus we may assume G and derive a contradiction.

� Use a negation as an assumption:
K . . . ,¬G ` A

A-¬:
K . . . ,¬A ` G

We know ¬A and have to prove G. Thus we may assume ¬G and prove A.

18/38

Example

√
2 ∈Q, . . . ` ⊥

P-¬:
. . . `

√
2 6∈Q

We have to prove that
√

2 is not rational. We do a proof by contradiction,
hence, we assume that

√
2 was rational and derive a contradiction.

19/38

Connective Rules: Conjunction

� Prove a conjunction as a goal:
K . . . ` F1 K . . . ` F2P-∧:

K . . . ` F1∧F2

We have to prove F1∧F2. First we prove F1: Now we prove F2:

� Use a conjunction as an assumption:
K . . . ,F1,F2 ` G

A-∧:
K . . . ,F1∧F2 ` G

We know F1∧F2, therefore we know F1 and we know F2.

20/38

Connective Rules: Disjunction

� Prove a disjunction as a goal:

K . . . ,¬F1 ` F2P-∨:
K . . . ` F1∨F2

K . . . ,¬F2 ` F1P-∨:
K . . . ` F1∨F2

We have to prove F1∨F2. Thus we may assume ¬F1 and prove ¬F2. (or: Thus
we may assume ¬F2 and prove ¬F1).

� Use a disjunction as an assumption (“proof by cases”):
K . . . ,F1 ` G K . . . ,F2 ` G

A-∨:
K . . . ,F1∨F2 ` G

We know F1∨F2. We proceed by case distinction. Case F1: Case F2:

21/38

Example

P1

even(m) ` G
P2

odd(m) ` G
A-∨:

even(m)∨odd(m) ` G

We already know that m is even or m is odd. Thus, we can distinguish the two
cases:
1. m is even: . . . (insert proof P1 here)
2. m is odd: . . . (insert proof P2 here)

22/38

Connective Rules: Implication

� Prove implication as a goal.
K . . . ,F1 ` F2P-→:

K . . . ` F1→ F2

We have to prove F1→ F2. Thus we may assume F1 and prove F2.

23/38

Connective Rules: Implication

� Use an implication as an assumption:
K . . . ` F1 K . . . ,F2 ` G

A-→:
K . . . ,F1→ F2 ` G

We know F1→ F2. First we prove F1: Now we know F2.

� Often used instead: “modus ponens” and “modus tollens”
K . . . ,F1,F2 ` G

MP:
K . . . ,F1→ F2,F1 ` G

We know F1→ F2 and we know F1. Therefore we know F2.

K . . . ,¬F2,¬F1 ` G
MT:

K . . . ,F1→ F2,¬F2 ` G

We know F1→ F2 and we know ¬F2. Therefore we know ¬F1.

24/38

Example

Prove ((A→ (B∨C))∧¬C)→ (A→ B),

where A,B, and C are abbreviations for complex predicate logic formulas.

Develop proof tree top-down with root on top (convenient in practice).

` ((A→ (B∨C))∧¬C)→ (A→ B)
P-→: ↓

(A→ (B∨C))∧¬C ` A→ B
A-∧:

A→ (B∨C),¬C ` A→ B
P-→:

A→ (B∨C),¬C,A ` B
MP: ¬C,A,B∨C ` B

A-∨:
. . . ,B ` B

GoalAssum:
. . . ,¬C,C ` B

ContrAssum:

25/38

Connective Rules: Equivalence

� Prove equivalence as a goal:
K . . . ` F1→ F2 K . . . ` F2→ F1P-↔:

K . . . ` F1↔ F2

We prove F1↔ F2. First we prove F1→ F2: . . . Now we prove F2→ F1: . . .

� Use equivalence as an assumption (“substitution”):
K . . . [F2/F1],F1↔ F2 ` G

A-↔:
K . . . ,F1↔ F2 ` G

K . . . ,F1↔ F2 ` G[F2/F1]
A-↔:

K . . . ,F1↔ F2 ` G

K . . . [F1/F2],F1↔ F2 ` G
A-↔:

K . . . ,F1↔ F2 ` G
K . . . ,F1↔ F2 ` G[F1/F2]

A-↔:
K . . . ,F1↔ F2 ` G

� Γ[F2/F1]: replace in some formula(s) in Γ some occurrence of F1 by F2.
We know F1↔ F2 and we know, e.g., ¬F2∧F3. Therefore we know ¬F1∧F3.

26/38

Equality Rules

� Prove an equality as a goal:
P-=:

K . . . ` t = t
We have to prove t = t and are therefore done.

� Use an equality as assumption (“substitution”):
K . . . [t2/t1], t1 = t2 ` G

A-=:
K . . . , t1 = t2 ` G

K . . . , t1 = t2 ` G[t2/t1]
A-=:

K . . . , t1 = t2 ` G

K . . . [t1/t2], t1 = t2 ` G
A-=:

K . . . , t1 = t2 ` G
K . . . , t1 = t2 ` G[t1/t2]

A-=:
K . . . , t1 = t2 ` G

� Γ[t2/t1]: replace in some formula(s) in Γ some occurrence of t1 by t2.
We know t1 = t2 and we know (for example) p(a, f (t1)). Therefore we know
p(a, f (t2)).

27/38

Example

. . . ,even(m),n = m2 ` even(m2)
A-=:

. . . ,even(m),n = m2 ` even(n)

We have to prove that n is even. Since we know n = m2, it suffices to prove
that m2 is even.

28/38

Quantifier Rules: Universal Quantifier

� Prove universally quantified formula as a goal (“skolemization”).
K . . . ` F [x/x]

P-∀: where x does not occur in K . . . ,F
K . . . ` (∀x : F)

We prove (∀x : p(x, f (x))). We take arbitrary but fixed x and prove p(x, f (x)).

� “fixed”: “Skolem constant” x in contrast to variable x.
� “arbitrary”: x is a new constant about which nothing is known (it does not appear

anywhere else in the proof situation).

29/38

Quantifier Rules: Universal Quantifier

� Use universally quantified formula as an assumption (“instantiation”):
K . . . ,(∀x : F),F [t/x] ` G

A-∀:
where t is some term made up of
symbols occuring in K . . . ,FK . . . ,(∀x : F) ` G

We know (∀x : p(x, f (x))). Thus we know (for x := a) p(a, f (a)) and (for
x := g(a)) p(g(a), f (g(a)).

� (∀x : F) stays in the assumptions and can be instantiated again.
� A “knowlege generating engine” that can be applied arbitrarily often.
� The problem is to find suitable t that lets the proof make progress.
� If an unsuitable t is chosen, the additional knowledge does not help.

30/38

Quantifier Rules: Existential Quantifier

� Prove an existentially quantified formula as a goal (“instantiation”):
K . . . ` F [t/x]

P-∃:
where t is some term made up of
symbols occuring in K . . . ,FK . . . ` (∃x : F)

We have to prove (∃x : p(x, f (x))). We prove (for x := g(a)) p(g(a), f (g(a))).

� The problem is to find a “witness term” t that lets the proof succeed.
� If an unsuitable t is chosen, the proof fails.

31/38

Quantifier Rules: Existential Quantifier

� Use existentially quantified formula as an assumption (“skolemization”):
K . . . ,F [x/x] ` G

A-∃: where x does not occur in K . . . ,F,G
K . . . ,(∃x : F) ` G

We know ∃x : p(x, f (x)). Thus we know p(x, f (x)) for some x.

� x is an “arbitrary but fixed” Skolem constant.
� (∃x : F) disappears from assumptions and cannot be skolemized again.
� A “knowlege generating engine” that can be applied only once.

32/38

Example: A Quantifier Proof

` (∃x : ∀y : p(x,y))→ (∀y : ∃x : p(x,y))
P-→: ↓

∃x : ∀y : p(x,y) ` ∀y : ∃x : p(x,y)
P-∀:

∃x : ∀y : p(x,y) ` ∃x : p(x,y)
A-∃:

∀y : p(x,y) ` ∃x : p(x,y)
A-∀:

∀y : p(x,y), p(x,y) ` ∃x : p(x,y)
P-∃:

∀y : p(x,y), p(x,y) ` p(x,y)
GoalAssum:

We prove

∃x : ∀y : p(x,y))→ (∀y : ∃x : p(x,y)) (a)

We assume

∃x : ∀y : p(x,y) (1)

and prove

∀y : ∃x : p(x,y) (b)

We take arbitrary but fixed y and prove

∃x : p(x,y) (c)

From (1), we know ∀y : p(x,y) for some x, and from
that, we know (for y := y) (3) p(x,y). In order to
prove (c), let x := x and prove p(x,y). QED (3).

33/38

Example: Another Quantifier Proof
` ((∃x : p(x))∧ (∀x : p(x)→∃y : q(x,y)))→∃x,y : q(x,y)

P-→: ↓
(∃x : p(x))∧ (∀x : p(x)→∃y : q(x,y)) ` ∃x,y : q(x,y)

A-∧:
∃x : p(x),∀x : p(x)→∃y : q(x,y) ` ∃x,y : q(x,y)

A-∃:
p(x),∀x : p(x)→∃y : q(x,y) ` ∃x,y : q(x,y)

A-∀, Drop:
p(x), p(x)→∃y : q(x,y) ` ∃x,y : q(x,y)

MP,Drop:
∃y : q(x,y) ` ∃x,y : q(x,y)

A-∃:
q(x,y) ` ∃x,y : q(x,y)

P-∃:
q(x,y) ` q(x,y)

GoalAssum:

In order to prove the goal we assume

(∃x : p(x))∧ (∀x : p(x)→∃y : q(x,y)) (1)

and show

∃x,y : q(x,y) (b)

From (1), we know (2) (∃x : p(x)) and
(3) (∀x : p(x)→∃y : q(x,y)). From (2), we know
(4) p(x) for some x. From (3) we know (for x := x)
(p(x)→ ∃y : q(x,y)) and together with (4), this
gives ∃y : q(x,y). From this, we know (7) q(x,y)
for some y. In order to prove (b), let x := x and
y := y and prove q(x,y). QED (7).

34/38

Example: A Quantifier Proof with Branches
`
(
(p(a)∨q(b))∧ (∀x : p(x)→ r(x))∧ (∀x : q(x)→ r(f (x)))

)
→∃x : r(x)

P-→: ↓
(p(a)∨q(b))∧ (∀x : p(x)→ r(x))∧ (∀x : q(x)→ r(f (x))) ` ∃x : r(x)

A-∧:
p(a)∨q(b),(∀x : p(x)→ r(x)) ,(∀x : q(x)→ r(f (x))) ` ∃x : r(x)

A-∨, Drop:
p(a),(∀x : p(x)→ r(x)) ` ∃x : r(x)

A-∀, Drop:
p(a), p(a)→ r(a) ` ∃x : r(x)

MP:
p(a),r(a) ` ∃x : r(x)

P-∃:
p(a),r(a) ` r(a)

GoalAssum:

q(b),(∀x : q(x)→ r(f (x))) ` ∃x : r(x)
A-∀, Drop:

q(b),q(b)→ r(f (b)) ` ∃x : r(x)
MP:

q(b),r(f (b)) ` ∃x : r(x)
P-∃:

q(b),r(f (b)) ` r(f (b))
GoalAssum:

In order to prove the goal we assume

p(a)∨q(b) (1)
(∀x : p(x)→ r(x)) (2)

(∀x : q(x)→ r(f (x))) (3)

and prove

∃x : r(x) (b)

From (1), we have two cases:
1. Assume p(a): From (2), we know p(a)→ r(a)
(for x := a), and together with the case assumption,
this gives r(a) and therefore (b) for x := a.
2. Assume q(b): From (3), we know q(b)→ r(f (b))
(for x := b), and together with the case assumption,
this gives r(f (b)) and therefore (b) for x := f (b).

35/38

Proving Strategies
� Proving: partially “art” but mostly “craft”.

� Most of a proof is guided by the structure of proof situations.
� Only in a few places really “creativity” or “ingenuity” is required.

� First: apply only the “goal-oriented” rules.
� Decompose the complex goal into one or more simpler goals.
� Stop when goals become atomic or existentially quantified.

� Then: apply the “assumption-oriented” rules.
� Decompose complex assumptions into simpler ones.
� Skolemize existentially quantified assumptions.
� Instantiate universally quantified assumptions.

� Ultimately: “close the gap” between assumptions and goal.
� Derive atomic goal as an assumption.
� Instantiate existentially quantified goal s.t. body of the formula is an assumption.

By considering proving as a “syntactic” process, already a major part of a proof can be
elaborated (possibly even completed). 36/38

Mathematical Proofs

Mathematical proofs are typically written in a much more informal style.

� Do not mention all steps.
� Combine several steps into one.
� Reuse name of variable for name of Skolem constant.
� Use hidden assumptions. . . .

A mathematical proof is an easily readable “sketch” that just gives the essential
information to reconstruct a corresponding formal proof.

37/38

Mathematical Proofs: An Example

Theorem: Suppose a divides b if and only if, for some t ∈ N, b = t ·a. Then, if a divides
b it also divides every multiple of b.

Proof: Assume a,b,s ∈ N arbitrary but fixed such that a divides b. We show that a
divides s ·b, i.e. ∃t ∈ N : s ·b = t ·a. Since a divides b, we know b = t ·a for some t ∈ N,
thus, we have to find t ∈ N with s · t ·a = t ·a. Let now t := s · t ∈ N, we have to show
s · t ·a = s · t ·a. QED.

Every sentence in the proof is justified by one or more proof rules. Trivial steps (e.g.
split conjunction in assumptions) are not mentioned explicitly.

38/38

