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Special Topics

We will conclude by discussing the following special topics:

B the method of induction for reasoning about natural numbers,

B the expressiveness and limits of first-order predicate logic.
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Mathematical Induction
A method to prove statements over the natural numbers (N>, = {m,m+1,m+2,...}).

B Goal: prove
VneNs,: F
B Rule:
K... b F[m/n] K....ne€Ns,, Fla/n] - F[(n+1)/n]
K...FVneNs,: F

F[t/n]: F where every free occurrence of n is replaced by .

B Proof Steps:
[0 Induction base: prove that F holds for m.
[ Induction hypothesis: assume that F holds for new constant 7 > m.
[0 Induction step: prove that then F also holds for n+ 1.

Every n > m is reachable by a finite number of increments starting from m. 2/11



Example

n
We prove the “sum of squares” formula Vn e N: Ziz =

n-(n+1)-(2n+1)

i=1 6
B Induction Base: in this case m = 0.
i 0-(0+1)(2-041)
= 6
B Induction Hypothesis: assume
flzz (A+1)-(2a+1)
i=1 6
B Induction Step: prove
Tt a-(@+1)-(2a+1)  @+1)-(6-G+1)+7-(2a+1))

Zl*n-l-l +Zz _|_ G _

6

(m+1)-2n2+7n+6)  (A+1)-(n+2)-(2a+3)  (a+1)-((A+1)+

D-QE+1D)+1)

6 - 6

6
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Example

We prove
Vn € Ny>q4: n* < 2"

B Induction base: in this case m =4, i.e., we show
4*=16=2"
B Induction hypothesis: we assume for n >4
n® <2,
B Induction step: we show

2_ 2 1= o 2 0=n o
(n+1)"=n"+2n+1 < n"+2n+n=n"+3n < n“+4n

4<n

(+)
< PHnn=nt+nt=2m><2.2" =21 ]
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Choice of Induction Variable

We define addition on N by primitive recursion:
x+0:=x (1)
x+(+1):=(x+y)+1 (2)
Our goal is to prove the associativity law
VxeN,yeN,zeN:x+(y+z)=(x+y)+z
For this purpose, we fix arbitrary xg,y9 € N and then prove
VzeN:xo+ (yo+2z) = (xo+y0) +2

by induction on z.

Sometimes the appropriate choice of the induction variable is critical.
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Choice of Induction Variable

We prove by induction on z: Vz e N: xo+ (yo+2) = (x0 +y0) + 2z

B Induction base: we prove
xw+@o+0)gxo+y0Q(Mrhm)+0
B Induction hypothesis: we assume for zp € N
X0+ (Yo +20) = (X0 +Y0) +20-
B Induction step: we have to show x0+(o+(z0+1))=(x0+y0)+ (z0+1).

20400+ (20+1) Zxot (Go+20) +1) 2 (vo+ (o +20)) + 1 =

—

*

2 .
:((x0+}’0)+20)+1(Z)(X0+yo)+(Zo+1). O

=
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Expressiveness of First-Order Logic (I)

B Variables denote elements of the domain, thus no quantification is possible over
functions and predicates of the domain.

This would require second-order predicate logic.
B Nevertheless we express in first-order logic statements such as

VA,B, f: isFun(f,A,B) Abijective(f) — 3g: isFun(g,B,A) AVx € B: f(g(x)) =x

where isFun(f,A,B) and isFun(g, B,A) express that
[l f and g are functions from A to B and from B to A, respectively.
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Expressiveness of First-Order Logic (l1)

B This is possible because formulas are usually interpreted over the domain of sets,
i.e., all variables denote sets, e.g., isFun(f,A,B) means f CA X B s.t.

VacA:3beB: (a,b) € f
Va,b,b': (a,b) € fA(a,b) € f—b=1
B Terms like f(g(x)) involve a hidden binary function “apply” (“function application”)
f(8(x)) ~ apply(f,apply(g,x))
with
apply(f,x) :=the y: (x,y) € f.
B Set theory pushes functions down to the level of objects.

B First-order predicate logic over the domain of sets is the “working horse” of
mathematics; virtually all of mathematics is formulated in this framework. g/11



Limitations of FO Logic: Soundness and Completeness

Completeness Theorem (Kurt Godel, 1929): First-order predicate logic has a proof
calculus for which the following holds:

B Soundness: if a conclusion F can be derived from a set of assumptions I" by the
rules of the calculus, then F is a logical consequence of T, i.e.,

if CHF thenT=F.

B Completeness: if F is a logical consequence of I', then F' can be derived from I" by
the rules of the calculus, i.e.,

if T = F then THF.

No logic that is stronger (more expressive) than first-order predicate logic has a proof
calculus that also enjoys both soundness and completeness.
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Undecidability of First-Order Logic

The existence of a complete proof calculus does not mean that the truth of every

formula is algorithmically decidable.

B Undecidability (Church/Turing, 1936/1937): there does not exist any algorithm
that for given formula set I" and formula F' always terminates and says whether

I' = F holds or not.
B Semidecidability: but there exists an algorithm, that for given I" and F, if [ = F,

detects this fact in a finite amount of time.
This algorithm searches for a proof of ' F in a complete proof calculus; if

such a proof exists, it will eventually detect it; however, if no such proof exists,

the search runs forever.

Automatic proof search is not able to detect that a formula is not true.
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Limits of First-Order Logic

Not every structure can be completely described by a finite set of formulas.

B Incompleteness Theorem (Kurt Godel, 1931): it is in no sound logic possible to
prove all true arithmetic statements (i.e., all statements about natural numbers
with addition and multiplication).

[0 To adequately characterize N, the (infinite) axiom scheme of mathematical induction
has to be added.

B Corollary: in every sound formal system that is sufficiently rich there are statements

that can neither be proved nor disproved.

In practice, complete reasoners for first-order logic are often supported by (complete or

incomplete) reasoners for special theories.
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