FIRST-ORDER PREDICATE LOGIC

Special Topics

Wolfgang Schreiner and Wolfgang Windsteiger Wolfgang.(Schreiner|Windsteiger)@risc.jku.at
Research Institute for Symbolic Computation (RISC) Johannes Kepler University (JKU), Linz, Austria http://www.risc.jku.at UNIVERSITY LINZ

Special Topics

We will conclude by discussing the following special topics:

- the method of induction for reasoning about natural numbers,
- the expressiveness and limits of first-order predicate logic.

Mathematical Induction

A method to prove statements over the natural numbers $\left(\mathbb{N}_{\geq m}=\{m, m+1, m+2, \ldots\}\right)$.
■ Goal: prove

$$
\forall n \in \mathbb{N}_{\geq m}: F
$$

- Rule:

$$
\frac{K \ldots \vdash F[m / n] \quad K \ldots, \bar{n} \in \mathbb{N}_{\geq m}, F[\bar{n} / n] \vdash F[(\bar{n}+1) / n]}{K \ldots \vdash \forall n \in \mathbb{N}_{\geq m}: F}
$$

$F[t / n]: F$ where every free occurrence of n is replaced by t.

- Proof Steps:
\square Induction base: prove that F holds for m.
\square Induction hypothesis: assume that F holds for new constant $\bar{n} \geq m$.
\square Induction step: prove that then F also holds for $\bar{n}+1$.
Every $n \geq m$ is reachable by a finite number of increments starting from m.

Example

We prove the "sum of squares" formula $\quad \forall n \in \mathbb{N}: \sum_{i=1}^{n} i^{2}=\frac{n \cdot(n+1) \cdot(2 n+1)}{6}$

- Induction Base: in this case $m=0$.

$$
\sum_{i=1}^{0} i^{2}=0=\frac{0 \cdot(0+1)(2 \cdot 0+1)}{6}
$$

- Induction Hypothesis: assume

$$
\begin{equation*}
\sum_{i=1}^{\bar{n}} i^{2}=\frac{\bar{n} \cdot(\bar{n}+1) \cdot(2 \bar{n}+1)}{6} \tag{*}
\end{equation*}
$$

- Induction Step: prove

$$
\begin{aligned}
\sum_{i=1}^{\bar{n}+1} i^{2} & =(\bar{n}+1)^{2}+\sum_{i=1}^{\bar{n}} i^{2} \stackrel{(*)}{=}(\bar{n}+1)^{2}+\frac{\bar{n} \cdot(\bar{n}+1) \cdot(2 \bar{n}+1)}{6}=\frac{(\bar{n}+1) \cdot(6 \cdot(\bar{n}+1)+\bar{n} \cdot(2 \bar{n}+1))}{6}= \\
& =\frac{(\bar{n}+1) \cdot\left(2 \bar{n}^{2}+7 \bar{n}+6\right)}{6}=\frac{(\bar{n}+1) \cdot(\bar{n}+2) \cdot(2 \bar{n}+3)}{6}=\frac{(\bar{n}+1) \cdot((\bar{n}+1)+1) \cdot(2(\bar{n}+1)+1)}{6}
\end{aligned}
$$

Example

We prove

$$
\forall n \in \mathbb{N}_{n \geq 4}: n^{2} \leq 2^{n}
$$

- Induction base: in this case $m=4$, i.e., we show

$$
4^{2}=16=2^{4} .
$$

- Induction hypothesis: we assume for $n \geq 4$

$$
\begin{equation*}
n^{2} \leq 2^{n} \tag{*}
\end{equation*}
$$

- Induction step: we show

$$
\begin{aligned}
(n+1)^{2} & =n^{2}+2 n+1 \stackrel{1 \leq n}{\leq} n^{2}+2 n+n=n^{2}+3 n \stackrel{0 \leq n}{\leq} n^{2}+4 n \\
& 4 \leq n \\
& \leq n^{2}+n \cdot n=n^{2}+n^{2}=2 n^{2} \stackrel{(*)}{\leq} 2 \cdot 2^{n}=2^{n+1} .
\end{aligned}
$$

Choice of Induction Variable

We define addition on \mathbb{N} by primitive recursion:

$$
\begin{align*}
x+0 & :=x \tag{1}\\
x+(y+1) & :=(x+y)+1 \tag{2}
\end{align*}
$$

Our goal is to prove the associativity law

$$
\forall x \in \mathbb{N}, y \in \mathbb{N}, z \in \mathbb{N}: x+(y+z)=(x+y)+z
$$

For this purpose, we fix arbitrary $x_{0}, y_{0} \in \mathbb{N}$ and then prove

$$
\forall z \in \mathbb{N}: x_{0}+\left(y_{0}+z\right)=\left(x_{0}+y_{0}\right)+z
$$

by induction on z.

Sometimes the appropriate choice of the induction variable is critical.

Choice of Induction Variable

We prove by induction on $z: \quad \forall z \in \mathbb{N}: x_{0}+\left(y_{0}+z\right)=\left(x_{0}+y_{0}\right)+z$.

- Induction base: we prove

$$
x_{0}+\left(y_{0}+0\right) \stackrel{(1)}{=} x_{0}+y_{0} \stackrel{(1)}{=}\left(x_{0}+y_{0}\right)+0
$$

- Induction hypothesis: we assume for $z_{0} \in \mathbb{N}$

$$
\begin{equation*}
x_{0}+\left(y_{0}+z_{0}\right)=\left(x_{0}+y_{0}\right)+z_{0} \tag{*}
\end{equation*}
$$

\square Induction step: we have to show $\quad x_{0}+\left(y_{0}+\left(z_{0}+1\right)\right)=\left(x_{0}+y_{0}\right)+\left(z_{0}+1\right)$.

$$
\begin{aligned}
x_{0}+\left(y_{0}+\left(z_{0}+1\right)\right) & \stackrel{(2)}{=} x_{0}+\left(\left(y_{0}+z_{0}\right)+1\right) \stackrel{(2)}{=}\left(x_{0}+\left(y_{0}+z_{0}\right)\right)+1= \\
& \stackrel{(*)}{=}\left(\left(x_{0}+y_{0}\right)+z_{0}\right)+1 \stackrel{(2)}{=}\left(x_{0}+y_{0}\right)+\left(z_{0}+1\right)
\end{aligned}
$$

Expressiveness of First-Order Logic (I)

- Variables denote elements of the domain, thus no quantification is possible over functions and predicates of the domain.
This would require second-order predicate logic.
- Nevertheless we express in first-order logic statements such as

$$
\forall A, B, f: \operatorname{isFun}(f, A, B) \wedge \operatorname{bijective}(f) \rightarrow \exists g: \text { isFun }(g, B, A) \wedge \forall x \in B: f(g(x))=x
$$

where isFun (f, A, B) and isFun (g, B, A) express that
$\square f$ and g are functions from A to B and from B to A, respectively.

Expressiveness of First-Order Logic (II)

- This is possible because formulas are usually interpreted over the domain of sets, i.e., all variables denote sets, e.g., isFun (f, A, B) means $f \subseteq A \times B$ s.t.

$$
\begin{gathered}
\forall a \in A: \exists b \in B:(a, b) \in f \\
\forall a, b, b^{\prime}:(a, b) \in f \wedge\left(a, b^{\prime}\right) \in f \rightarrow b=b^{\prime} .
\end{gathered}
$$

- Terms like $f(g(x))$ involve a hidden binary function "apply" ("function application")

$$
f(g(x)) \sim \operatorname{apply}(f, \operatorname{apply}(g, x))
$$

with

$$
\operatorname{apply}(f, x):=\text { the } y:(x, y) \in f
$$

- Set theory pushes functions down to the level of objects.
- First-order predicate logic over the domain of sets is the "working horse" of mathematics; virtually all of mathematics is formulated in this framework.

Limitations of FO Logic: Soundness and Completeness

Completeness Theorem (Kurt Gödel, 1929): First-order predicate logic has a proof calculus for which the following holds:

- Soundness: if a conclusion F can be derived from a set of assumptions Γ by the rules of the calculus, then F is a logical consequence of Γ, i.e.,

$$
\text { if } \Gamma \vdash F \text { then } \Gamma \models F \text {. }
$$

- Completeness: if F is a logical consequence of Γ, then F can be derived from Γ by the rules of the calculus, i.e.,

$$
\text { if } \Gamma \not F F \text { then } \Gamma \vdash F \text {. }
$$

No logic that is stronger (more expressive) than first-order predicate logic has a proof calculus that also enjoys both soundness and completeness.

Undecidability of First-Order Logic

The existence of a complete proof calculus does not mean that the truth of every formula is algorithmically decidable.

■ Undecidability (Church/Turing, 1936/1937): there does not exist any algorithm that for given formula set Γ and formula F always terminates and says whether $\Gamma \models F$ holds or not.

- Semidecidability: but there exists an algorithm, that for given Γ and F, if $\Gamma \models F$, detects this fact in a finite amount of time. This algorithm searches for a proof of $\Gamma \vdash F$ in a complete proof calculus; if such a proof exists, it will eventually detect it; however, if no such proof exists, the search runs forever.

Automatic proof search is not able to detect that a formula is not true.

Limits of First-Order Logic

Not every structure can be completely described by a finite set of formulas.

- Incompleteness Theorem (Kurt Gödel, 1931): it is in no sound logic possible to prove all true arithmetic statements (i.e., all statements about natural numbers with addition and multiplication).
\square To adequately characterize \mathbb{N}, the (infinite) axiom scheme of mathematical induction has to be added.
- Corollary: in every sound formal system that is sufficiently rich there are statements that can neither be proved nor disproved.

In practice, complete reasoners for first-order logic are often supported by (complete or incomplete) reasoners for special theories.

