
LOGIC
PROPOSITIONAL REASONING
WS 2018/2019 (342.208)

Armin Biere biere@jku.at
Martina Seidl martina.seidl@jku.at

Institute for Formal Models and Verification
Johannes Kepler Universität Linz

Version 2019.1

Satisfiability Checking

Definition (Satisfiability Problem of Propositional Logic (SAT))

Given a formula φ, is there an assignment ν such that [φ]ν = 1?

� oldest NP-complete problem

� checking a solution (assignment satisfies formula) is easy (polynomial effort)
� finding a solution is difficult (probably exponential in the worst case)

� many practical applications (used in industry)

� efficient SAT solvers (solving tools) are available

� other problems can be translated to SAT:

problem formulation in propositional logic
φ is valid ¬φ is unsatisfiable
φ is refutable to ¬φ is satisfiable
φ⇔ ψ to ¬(φ↔ ψ) is unsatisfiable
φ1, . . . , φn |= ψ φ1 ∧ . . . ∧ φn ∧ ¬ψ is unsatisfiable

1/20

Reasoning with (Propositional) Calculi

� goal: automatically reason about (propositional) formulas
i.e., mechanically show validity / unsatisfiability

� basic idea: use syntactical manipulations to prove/refute a formula

� elements of a calculus:

� axioms: trivial truths/trivial contradictions
� rules: inference of new formulas

� approach: construct a proof/refutation

� apply the rules of the calculus until only axioms are inferred
� if this is not possible, then the formula is not valid/unsatisfiable

� examples of calculi:

� sequence calculus: shows validity (actually entailment)
� resolution calculus: shows unsatisfiability

2/20

Logic Entailment

Let φ1, . . . φn, ψ be propositional formulas.
Then φ1, . . . φn entail ψ (written as φ1, . . . , φn |= ψ) iff
[φ1]ν = 1, . . . [φn]ν = 1 implies that [ψ]ν = 1.

Informal meaning: True premises derive a true conclusion.

� |= is a meta-symbol (it is not part of the language)

� φ1, . . . φn |= ψ iff (φ1 ∧ . . . ∧ φn)→ ψ is valid,
i.e., we can express semantics by means of syntactics.

� If φ1, . . . φn do not entail ψ, we write φ1, . . . φn 6|= ψ.

Example:

� a |= a ∨ b

� a, b |= a ∧ b

� |= a ∨ ¬a

� 6|= a ∧ ¬a

� a, a→ b |= b

� ⊥ |= a ∧ ¬a

3/20

Formula Strength

� formula φ is stronger than formula ψ iff φ |= ψ

� formula ψ is weaker than formula φ iff φ |= ψ

� formulas φ and ψ are equally strong iff φ |= ψ and ψ |= φ

Examples

� a⊕ b is stronger than a ∨ b

� a ∧ b is stronger than a ∨ b

� ⊥ is the strongest formula

� > is the weakest formula

4/20

Sequents

Definition
A sequent is an expression of the form

φ1, . . . , φn ` ψ

where φ1, . . . , φn, ψ are propositional formulas.
The formulas φ1, . . . , φn are called assumptions, ψ is called goal.

remarks:

� intuitively φ1, . . . , φn ` ψ means goal ψ follows from {φ1, . . . , φn}

� special case n = 0:

� written as ` ψ
� meaning: we have to prove that ψ is valid

� notation: for sequent φ1, . . . , φn ` ψ, we write K . . . φi ` ψ if we are only
interested in assumption φi

� the assumptions are orderless not ordered

5/20

Axiom and Structural Rules

� axiom "goal in assumption":
If the goal is among the assumptions, the goal can be proved.

GoalAssum
K . . . , ψ ` ψ

� axiom "contradiction in assumptions":
If the assumptions are contradicting, anything can be proved.

ContrAssum
K . . . , φ,¬φ ` ψ

� rule "add valid assumption":

K . . . , φ ` ψ
ValidAssum if φ is valid

K . . . ` ψ

6/20

Negation Rules

� rules "contradiction":

K . . . ,¬ψ ` φ
A-¬

K . . . ,¬φ ` ψ

K . . . , φ ` ⊥
P-¬

K . . . ` ¬φ

A-¬: We know ¬φ and have to prove ψ. Thus we may assume ¬ψ and prove φ.

P-¬: We have to prove ¬φ. Thus we may assume φ and derive a contradition.

� rules "elimination of double negation":

K . . . ` ψ
P-¬d

K . . . ` ¬¬ψ
K . . . , φ ` ψ

A-¬d
K . . . ,¬¬φ ` ψ

7/20

Binary Connective Rules

� rules "conjunction":

K . . . , φ1, φ2 ` ψ
A-∧

K . . . , φ1 ∧ φ2 ` ψ

K . . . ` ψ1 K . . . ` ψ2
P-∧

K . . . ` ψ1 ∧ ψ2

� rules "disjunction":

K . . . ,¬ψ1 ` ψ2
P-∨

K . . . ` ψ1 ∨ ψ2

K . . . ,¬ψ2 ` ψ1
P-∨

K . . . ` ψ1 ∨ ψ2

K . . . , φ1 ` ψ K . . . , φ2 ` ψ
A-∨

K . . . , φ1 ∨ φ2 ` ψ

P-∨: indeterministic!!!

Rules for other connectives like implication “→” and equivalence “↔”
are constructed accordingly.

8/20

Some Remarks on Sequent Calculus

� premises of a rule: sequent(s) above the line

� conclusion of a rule: sequent below the line

� axiom: rule without premises

� non-deterministic rule: P-∨

� further non-determinism: decision which rule to apply next

� rules with case split: P-∧, A-∨

� proof of formula ψ

1. start with ` ψ
2. apply rules from bottom to top as long as possible, i.e., for given conclusion, find

suitable premise(s)
3. if finally all sequents are axioms then ψ is valid

� note: there are many variants of the sequent calculus

9/20

Computing with Sequent Calculus

1 Algorithm: entails

Data: set of assumptions A, formula ψ
Result: 1 iff A entails ψ, i.e., A |= ψ

2 if ψ = ¬¬ψ′ then return entails (A, ψ′);
3 if ¬¬φ ∈ A then return entails (A\{¬¬φ} ∪ {φ},ψ);
4 if φ1 ∧ φ2 ∈ A then return entails (A\{φ1 ∧ φ2} ∪ {φ1, φ2},ψ);
5 if (ψ ∈ A) or (φ,¬φ ∈ A) then return 1;
6 if A ∪ {ψ} contains only literals then return 0;
7 switch ψ do
8 case ⊥ do
9 if ¬φ ∈ A then return entails (A\{¬φ},φ);

10 if φ1 ∨ φ2 ∈ A then
11 if ! entails (A\{¬φ1 ∨ φ2} ∪ {φ1},⊥) then return 0;
12 else return entails (A\{¬φ1 ∨ φ2} ∪ {φ2},⊥) ;

13 case x where x is a variable do return entails (A ∪ {¬x},⊥) ;
14 case ¬ψ′ do return entails (A ∪ {ψ′},⊥);
15 case ψ1 ∨ ψ2 do return entails (A ∪ {¬ψ1},ψ2);
16 case ψ1 ∧ ψ2 do return entails (A, ψ1) && entails (A, ψ2) ;

10/20

Proving XOR stronger than OR

6

proof direction

GoalAssum
b, (¬a ∨ ¬b),¬a ` b

ContrAssum
a, (¬a ∨ ¬b),¬a ` b

A-∨
(a ∨ b), (¬a ∨ ¬b),¬a ` b

P-∨
(a ∨ b), (¬a ∨ ¬b) ` a ∨ b

A-∧
(a ∨ b) ∧ (¬a ∨ ¬b) ` a ∨ b

A-¬d
¬¬((a ∨ b) ∧ (¬a ∨ ¬b)) ` a ∨ b

P-∨
` ¬((a ∨ b) ∧ (¬a ∨ ¬b)) ∨ (a ∨ b)

11/20

Refuting XOR stronger than AND

GAss
a, (¬a ∨ ¬b) ` a

CAss
b,¬b ` a b,¬a ` a

A-∨
b, (¬a ∨ ¬b) ` a

A-∨
(a ∨ b), (¬a ∨ ¬b) ` a

...
...

A-∨
(a ∨ b), (¬a ∨ ¬b) ` b

P-∧
(a ∨ b), (¬a ∨ ¬b) ` a ∧ b

A-∧
(a ∨ b) ∧ (¬a ∨ ¬b) ` a ∧ b

A-¬d
¬¬((a ∨ b) ∧ (¬a ∨ ¬b)) ` a ∧ b

P-∨
` ¬((a ∨ b) ∧ (¬a ∨ ¬b)) ∨ (a ∧ b)

counter example to validity: a = ⊥, b = >

12/20

Soundness and Completeness

For any calculus important properties are,
soundness, i.e. the question “Can only valid formulas be shown as valid?” and
completeness, i.e. the question ”Is there a proof for every valid formula?”.

Soundness

If a formula is shown to be valid in the Gentzen Calculus, then it is valid.

Proof sketch:
Consider each rule individually and show that from valid premises only valid
conclusions can be drawn.

Completeness

Every valid formula can be proven to be valid in the Gentzen Calculus.

Proof sketch:
Show algorithm terminates and that there is at least one case where it returns false if
the formula is not valid.

13/20

Proving Formulas in Normal Form

� In practice, formulas of arbitrary structure are quite challenging to handle

� tree structure
� simplifications affect only subtrees

� We have seen that CNF and DNF are able to represent every formula

� so why not use them as input for SAT?

� Conjunctive Normal Form

� refutability is easy to show
� CNF can be efficiently calculated (polynomial)

� Disjunctive Normal Form

� satisfiability is easy to show
� complexity is in getting the DNF

� CNF and DNF can be obtained from the truth tables

� exponential many assignments have to be considered

� alternative approach

� structural rewritings are (satisfiability) equivalence preserving

14/20

Resolution
� the resolution calculus consists of the single resolution rule

x ∨ C ¬x ∨D
C ∨D

� C and D are (possibly empty) clauses
� the clause C ∨D is called resolvent
� variable x is called pivot
� usually antecedent clauses x∨C and ¬x∨D

are assumed not to be tautological, i.e., x 6∈ C

and x 6∈ D.

� in other words:
(¬x→ C), (x→ D) |= C ∨D

� resolution is sound and complete.

Example

one application of resolution

x ∨ y ∨ ¬z ¬x ∨ y′ ∨ ¬z
y ∨ ¬z ∨ y′

derivation of empty clause:
y ¬y

⊥

derivation of tautology:
x ∨ a ¬x ∨ ¬a

a ∨ ¬a

� the resolution calculus works only on formulas in CNF

� if the empty clause can be derived then the formula is unsatisfiable

� if no new clause can be generated by application of the resolution rule
then the formula is satisfiable

15/20

Resolution Example

We prove unsatisfiability of

{(¬x1∨¬x5), (x4∨x5), (x2∨¬x4), (x3∨¬x4), (¬x2∨¬x3), (x1∨x4∨¬x6), (x6)}

as follows:

x1 ∨ x4 ∨ ¬x6¬x2 ∨ ¬x3 x6

x1

¬x2 ∨ ¬x4

x3 ∨ ¬x4

¬x4

x2 ∨ ¬x4

x5

x4 ∨ x5

¬x1

¬x1 ∨ ¬x5

∅

¬x4

x2 ∨ ¬x4

x5

x4 ∨ x5

¬x1

¬x1 ∨ ¬x5

x1 ∨ ¬x6

∅

16/20

DPLL Overview

The DPLL algorithm is ...

� old (invented 1962)

� easy (basic pseudo-code is less than 10 lines)

� popular (well investigated; also theoretical properties)

� usually realized for formulas in CNF

� using binary constraint propagation (BCP)

� in its modern form as conflict drive clause learning (CDCL)
basis for state-of-the-art SAT solvers

17/20

Binary Constraint Propagation

Definition (Binary Constraint Propagation (BCP))

Let φ be a formula in CNF containing a unit clause C, i.e., φ has a clause C = (l)

which consists only of literal l. Then BCP (φ, l) is obtained from φ by

� removing all clauses with l

� removing all occurrences of l̄

� BCP on variable x can
trigger application of BCP on
variable y

� if BCP produces the empty
clause, then the formula is
unsatisfiable

� if BCP produces the empty
CNF, then the formula is
satisfiable

Example
φ = {(¬a∨ b∨¬c), (a∨ b), (¬a∨¬b), (a)}

1. φ′ = BCP (φ, a) = {(b ∨ ¬c), (¬b)}

2. φ′′ = BCP (φ′,¬b) = {(¬c)}

3. φ′′ = BCP (φ′, c) = {} = >

18/20

DPLL Algorithm

1 Algorithm: evaluate

Data: formula φ in CNF
Result: 1 iff φ satisfiable

2 while 1 do
3 φ = BCP(φ)
4 if φ== > then return 1 ;
5 if φ == ⊥ then
6 if stack.isEmpty() then return 0 ;
7 (l, φ) = stack.pop ()
8 φ = φ ∧ l
9 else

10 select literal l occurring in φ
11 stack.push(l̄, φ)
12 φ = φ ∧ l

19/20

Some Remarks on DPLL

� DPLL is the basis for most state-of-the-art SAT solvers

� Lingeling http://fmv.jku.at/lingeling

� CaDiCaL http://fmv.jku.at/cadical

� some more established solvers: MiniSAT, PicoSAT, Glucose, . . .

� DPLL alone is not enough - powerful optimizations required for efficiency:

� learning and non-chronological back-tracking (CDCL)
� reset strategies and phase-saving
� compact lazy data-structures
� variable selection heuristics
� usually combined with preprocessing before and inprocessing during search

� variants of DPLL are also used for other logics:

� quantified propositional logic (QBF)
� satisfiability modulo theories (SMT)

� challenge to parallelize

� some successful attempts: ManySAT, Plingeling, Penelope, Treengeling, . . .

20/20

http://fmv.jku.at/lingeling
http://fmv.jku.at/cadical

