
PROPOSITIONAL LOGIC IN CNF
VL Logik: WS 2019/20
(Version 2019.2)

Martina Seidl (martina.seidl@jku.at),
Armin Biere (biere@jku.at)
Institut für Formale Modelle und Verifikation

Propositions

a proposition is a statement that is either true or false

atomic propositions: no further internal structure

example:

� Alice comes to the party.

� It rains.

composite propositions: bulid from other propositions with Boolean
connectives

example:

� Alice comes to the party, Bob as well, but not Cecile.

� If it rains, the street is wet.

1/25

Propositional Logic

� two truth values (Boolean domain): true/false, verum/falsum,
on/off, 1/0

� language elements
� atomic propositions (atoms, variables)

• no internal structure
• either true or false

� logic connectives: not (¬), and (∧), or (∨), . . .
• operators for construction of composite propositions
• concise meaning
• argument(s) and return value from Boolean domain

� parenthesis

example: formula of propositional logic: (¬t ∨ s) ∧ (t ∨ s) ∧ (¬t ∨ ¬s)

atoms: t, s, connectives: ¬, ∨, ∧, parenthesis for structuring the expression

2/25

Background

� historical origins: ancient Greeks

� in philosophy, mathematics, and computer science

� two very basic principles:
� Law of Excluded Middle:

a proposition is true or its negation is true
� Law of Contradiction:

no expression is both true and false at the same time

� very simple language
� no objects, no arguments to propositions
� no functions, no quantifiers

� solving is easy (relative to other logics)

� many applications in industry

3/25

Syntax: Structure of Propositional Formulas in
Conjunctive Normal Form (CNF)

we build a propositional formula using the following components:

� literals:
� variables (atomic propositions, atoms): x, y, z, . . .
� negated variables ¬x,¬y,¬z, . . .
� truth constants: > (verum) and ⊥ (falsum)
� negated truth constants: ¬> and ¬⊥

� clauses: disjunction (∨) of literals
� x ∨ y (binary clause)
� x ∨ y ∨ ¬z (ternary clause)
� z (unary clause)
� ¬> (unary clause)
� for (l1 ∨ . . . ∨ ln) we also write

∨n
i=1 li.

4/25

Syntax: Structure of Propositional Formulas in
Conjunctive Normal Form (CNF)

A propositional formula is a conjunction (∧) of clauses.

examples of formulas:

� >

� ⊥

� x

� ¬y

� x ∧ y ∧ z

� (¬x ∨ y ∨ ¬z) ∧ z

� (x ∨ ¬y) ∧ (x ∨ ¬y ∨ z) ∧ (y ∨ ¬z)

� ((l11 ∨ . . . ∨ l1m1) ∧ . . . ∧ (ln1 ∨ . . . ∨ lnmn))

� for (C1 ∧ . . . ∧Cn) we also write
∧n

i=1 Ci.

Remark: For the moment, we consider formulas of a restricted structure called CNF, e.g., we do not consider formulas like
(x ∧ y) ∨ (¬x ∧ z). Any propositional formula can be translated into this structure. We will relax this restriction later.

5/25

Conventions

we use the following conventions unless stated otherwise:

� a, b, c, x, y, z denote variables and l, k denote literals

� φ, ψ, γ denote arbitrary formulas

� C,D denote clauses
� clauses are also written as sets

� (l1 ∨ . . . ∨ ln) = {l1, . . . ln}
� to add a literal l to clause C, we write C ∪ {l}
� to remove a literal l from clause C, we write C\{l}

� formulas in CNF are also written as sets of sets
� ((l11 ∨ . . . ∨ l1m1) ∧ . . . ∧ (ln1 ∨ . . . ∨ lnmn)) =
{{l11, . . . l1m1 }, . . . , {ln1, . . . lnmn }}

� to add a clause C to CNF φ, we write φ ∪ {C}
� to remove a clause C from CNF φ, we write φ\{C}

6/25

Negation Operator

� unary connective ¬ (operator with exactly one operand)

� alternative notation: !x, x,−x,NOT x

� semantics: flipping the truth value of its operand

truth table:
x ¬x
0 1
1 0

example:
� If the atom “It rains.” is true then the negation “It does not rain.” is false.

� If the propositional variable a is true then ¬a is false.

� If the propositional variable a is false then ¬a is true.

7/25

Binary Disjunction Operator

� binary operator ∨ (operator with exactly two operands)
� alternative notation for l ∨ k: l || k, l + k, l OR k
� semantics: true iff at least one operand is true

truth table:

l k l ∨ k
0 0 0
0 1 1
1 0 1
1 1 1

example:
� (a ∨ ¬a) is always true.

� (> ∨ a) is always true.

� (⊥ ∨ a) is true if a is true.

8/25

Properties of Disjunction

� commutative:

k ∨ l⇔ l ∨ k

� idempotent:
l ∨ l⇔ l

� associative:

l1 ∨ (l2 ∨ l3)⇔ (l1 ∨ l2) ∨ l3

9/25

Clause: Semantics

� a clause is true iff at least one of the literals is true
� the empty clause is always false

truth table:

l1 . . . ln l1 ∨ l2 ∨ . . . ∨ ln
0 . . . 0 0
0 . . . 1 1

. . . 1
1 . . . 0 1
1 . . . 1 1

10/25

Binary Conjunction Operator

� binary operator ∧ (operator with exactly two operands)
� alternative notation for C ∧ D: C && D,

CD,C ∗ D,C · D,C AND D
� semantics: a conjunction is true iff both operands are true

truth table:

C D C ∧ D
0 0 0
0 1 0
1 0 0
1 1 1

example:
� (a ∧ ¬a) is always false.

� (> ∧ a) is true if a is true. (⊥ ∧ φ) is always false.

� If (a ∨ b) is true and (¬c ∨ d) is true then (a ∨ b) ∧ (¬c ∨ d) is true.
11/25

Properties of Conjunction

� commutative:

C ∧ D⇔ D ∧C

� idempotent:
C ∧C ⇔ C

� associative:

C1 ∧ (C2 ∧C3)⇔ (C1 ∧C2) ∧C3

12/25

CNF Formulas: Semantics

� a formula in CNF is true iff all of its clauses are true
� the empty CNF formula is always true

truth table:

C1 . . . Cn C1 ∧C2 ∧ . . . ∧Cn

0 . . . 0 0
0 . . . 1 0

. . . 0
1 . . . 0 0
1 . . . 1 1

13/25

Rules of Precedence

� ¬ binds stronger than ∧

� ∧ binds stronger than ∨

example

� ¬a ∨ b ∧ ¬c ∨ d
� is the same as (¬a) ∨ (b ∧ (¬c)) ∨ d,
� but not as ((¬a) ∨ b) ∧ ((¬c) ∨ d)

⇒ put clauses into parentheses!

14/25

Assignment

� a variable can be assigned one of two values from the
two-valued domain B, where B = {1, 0}

� the mapping ν : P → B is called assignment, where P is the
set of variables of a formula

� we sometimes write an assignment ν as set V with
V ⊆ P ∪ {¬x|x ∈ P} such that
� x ∈ V iff ν(x) = 1
� ¬x ∈ V iff ν(x) = 0

� for n variables, there are 2n assignments possible

� an assignment corresponds to one line in the truth table

15/25

Assignment: Example

x y z x ∨ y ¬z (x ∨ y) ∧ ¬z
0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 1 1 1
0 1 1 1 0 0
1 0 0 1 1 1
1 0 1 1 0 0
1 1 0 1 1 1
1 1 1 1 0 0

� one assignment: ν(x) = 1, ν(y) = 0, ν(z) = 1
� alternative notation: V = {x,¬y, z}
� observation: A variable assignment determines the truth value

of the formulas containing these variables.
16/25

Semantics of Propositional Logic

Let P be the set of atomic propositions (variables) and L be the set
of all propositional formulas over P that are syntactically correct
(i.e., all possible conjunctions of clauses over P).

Given assignment ν : P → B, the interpretation [.]ν : L → B is
defined by:

� [>]ν = 1, [⊥]ν = 0

� if x ∈ P then [x]ν = ν(x)

� [¬x]ν = 1 iff [x]ν = 0

� [C]ν = 1 (where C is a clause) iff
there is at least one literal l with l ∈ C and [l]ν = 1

� [φ]ν = 1 (where φ is in CNF) iff
for all clauses C ∈ φ it holds that [C]ν = 1

17/25

Satisfying/Falsifying Assignments

� an assignment ν is called
� satisfying a formula φ iff [φ]ν = 1
� falsifying a formula φ iff [φ]ν = 0

� a satisfying assignment for φ is a model of φ

� a falsifying assignment for φ is a counter-model of φ

example:

For formula ((x ∨ y) ∧ ¬z),

� {x, y, z} is a counter-model,

� {x, y,¬z} is a model.

18/25

SAT-Solver Limboole

� available at http://fmv.jku.at/limboole

� input:1

� variables are strings over letters, digits and – _ . [] $ @
� negation symbol ¬ is !
� disjunction symbol ∨ is |
� conjunction symbol ∧ is &

example

(a ∨ b ∨ ¬c) ∧ (¬a ∨ b) ∧ c is represented as
(a | b | !c) & (!a | b) & c

1For now, we will only use subset of the language supported by Limboole.

19/25

http://fmv.jku.at/limboole

Properties of Propositional Formulas (1/2)

� formula φ is satisfiable iff
there exists an assignment ν with [φ]ν = 1

check with limboole -s

� formula φ is valid iff
for all assignments ν it holds that [φ]ν = 1

check with limboole

� formula φ is refutable iff
there exists an assignment ν with [φ]ν = 0

check with limboole

� formula φ is unsatisfiable iff
for all assignments ν it holds that [φ]ν = 0

check with limboole -s

20/25

Properties of Propositional Formulas (2/2)

� a valid formula is called tautology

� an unsatisfiable formula is called contradiction

example:

� > is valid.

� a ∨ ¬a is a tautology.

� (a ∨ ¬b) ∧ (¬a ∨ b) is
refutable.

� ⊥ is unsatisfiable.

� a ∧ ¬a is a contradiction.

� (a ∨ ¬b) ∧ (¬a ∨ b) is
satisfiable.

21/25

SAT: The Boolean Satisfiability Problem

Given a propositional formula φ.
Is there an assignment that satisfies φ?

different formulation: can we find an assignment such that each
clause contains at least one true literal?

22/25

Application: Graph Coloring

A graph is something like a network consisting of

� vertices (nodes)

� edges (connections between nodes)

Example:

� set of vertices V = {a, b, c}

� set of edges (pairs of vertices from V) E = {(a, b), (b, c)}

a b c

23/25

Application: Graph Coloring

A graph is something like a network consisting of

� vertices (nodes)

� edges (connections between nodes)

Example:

� set of vertices V = {a, b, c}

� set of edges (pairs of vertices from V) E = {(a, b), (b, c)}

a b c

Graph Coloring: Assign colors to vertices such that connected
vertices have different colors.

23/25

Encoding the k-Coloring Problem

Given graph (V, E) with vertices V and edges E. Color each node with one of k
colors, such that there is no edge (v,w) ∈ E, with vertices v and w colored in the
same color.

encoding:

1. propositional variables: v j ... node v ∈ V has color j (1 ≤ j ≤ k)

2. each node has a color: ∧
v∈V

(
∨

1≤ j≤k

v j)

3. each node has just one color: (¬vi ∨ ¬v j) with v ∈ V, 1 ≤ i < j ≤ k

4. neighbors have different colors: (¬vi ∨ ¬wi) with (v,w) ∈ E, 1 ≤ i ≤ k

24/25

Encoding the k-Coloring Problem: Example

task: find 2-coloring of graph ({a, b, c}, {(a, b), (b, c)}) with SAT
possible solution:

a b c

encoding in SAT:

� variables: a1, a2, b1, b2, c1, c2

� clauses:
1. each node has a color: (a1 ∨ a2), (b1 ∨ b2), (c1 ∨ c2)
2. no node has two colors: (¬a1 ∨ ¬a2), (¬b1 ∨ ¬b2), (¬c1 ∨ ¬c2)
3. connected nodes have a different color:

(¬a1 ∨ ¬b1), (¬a2 ∨ ¬b2), (¬b1 ∨ ¬c1), (¬b2 ∨ ¬c2)
� full formula:

(a1 ∨ a2) ∧ (b1 ∨ b2) ∧ (c1 ∨ c2) ∧ (¬a1 ∨ ¬a2) ∧ (¬b1 ∨ ¬b2) ∧ (¬c1 ∨ ¬c2) ∧
(¬a1 ∨ ¬b1) ∧ (¬a2 ∨ ¬b2) ∧ (¬b1 ∨ ¬c1) ∧ (¬b2 ∨ ¬c2)

25/25

Encoding the k-Coloring Problem: Example

task: find 2-coloring of graph ({a, b, c}, {(a, b), (b, c)}) with SAT
possible solution:

a b c

encoding in SAT:

� variables: a1, a2, b1, b2, c1, c2

� clauses:
1. each node has a color: (a1 ∨ a2), (b1 ∨ b2), (c1 ∨ c2)
2. no node has two colors: (¬a1 ∨ ¬a2), (¬b1 ∨ ¬b2), (¬c1 ∨ ¬c2)
3. connected nodes have a different color:

(¬a1 ∨ ¬b1), (¬a2 ∨ ¬b2), (¬b1 ∨ ¬c1), (¬b2 ∨ ¬c2)
� full formula:

(a1 ∨ a2) ∧ (b1 ∨ b2) ∧ (c1 ∨ c2) ∧ (¬a1 ∨ ¬a2) ∧ (¬b1 ∨ ¬b2) ∧ (¬c1 ∨ ¬c2) ∧
(¬a1 ∨ ¬b1) ∧ (¬a2 ∨ ¬b2) ∧ (¬b1 ∨ ¬c1) ∧ (¬b2 ∨ ¬c2)

25/25

Encoding the k-Coloring Problem: Example

task: find 2-coloring of graph ({a, b, c}, {(a, b), (b, c)}) with SAT
possible solution:

a b c

encoding in SAT:

� variables: a1, a2, b1, b2, c1, c2

� clauses:
1. each node has a color: (a1 ∨ a2), (b1 ∨ b2), (c1 ∨ c2)
2. no node has two colors: (¬a1 ∨ ¬a2), (¬b1 ∨ ¬b2), (¬c1 ∨ ¬c2)
3. connected nodes have a different color:

(¬a1 ∨ ¬b1), (¬a2 ∨ ¬b2), (¬b1 ∨ ¬c1), (¬b2 ∨ ¬c2)

� full formula:
(a1 ∨ a2) ∧ (b1 ∨ b2) ∧ (c1 ∨ c2) ∧ (¬a1 ∨ ¬a2) ∧ (¬b1 ∨ ¬b2) ∧ (¬c1 ∨ ¬c2) ∧
(¬a1 ∨ ¬b1) ∧ (¬a2 ∨ ¬b2) ∧ (¬b1 ∨ ¬c1) ∧ (¬b2 ∨ ¬c2)

25/25

Encoding the k-Coloring Problem: Example

task: find 2-coloring of graph ({a, b, c}, {(a, b), (b, c)}) with SAT
possible solution:

a b c

encoding in SAT:

� variables: a1, a2, b1, b2, c1, c2

� clauses:
1. each node has a color: (a1 ∨ a2), (b1 ∨ b2), (c1 ∨ c2)
2. no node has two colors: (¬a1 ∨ ¬a2), (¬b1 ∨ ¬b2), (¬c1 ∨ ¬c2)
3. connected nodes have a different color:

(¬a1 ∨ ¬b1), (¬a2 ∨ ¬b2), (¬b1 ∨ ¬c1), (¬b2 ∨ ¬c2)
� full formula:

(a1 ∨ a2) ∧ (b1 ∨ b2) ∧ (c1 ∨ c2) ∧ (¬a1 ∨ ¬a2) ∧ (¬b1 ∨ ¬b2) ∧ (¬c1 ∨ ¬c2) ∧
(¬a1 ∨ ¬b1) ∧ (¬a2 ∨ ¬b2) ∧ (¬b1 ∨ ¬c1) ∧ (¬b2 ∨ ¬c2)

25/25

