PROPOSITIONAL LOGIC IN CNF

VL Logik: WS 2019/20

(Version 2019.2)

<u>Martina Seidl</u> (martina.seidl@jku.at), Armin Biere (biere@jku.at) Institut für Formale Modelle und Verifikation

Propositions

a proposition is a statement that is either true or false

atomic propositions: no further internal structure

example:

- Alice comes to the party.
- It rains.

composite propositions: bulid from other propositions with Boolean connectives

example:

- Alice comes to the party, Bob as well, but not Cecile.
- If it rains, the street is wet.

Propositional Logic

- two truth values (Boolean domain): true/false, verum/falsum, on/off, 1/0
- language elements
 - atomic propositions (atoms, variables)
 - no internal structure
 - either true or false

□ logic connectives: not (\neg) , and (\land) , or (\lor) , ...

- operators for construction of composite propositions
- concise meaning
- argument(s) and return value from Boolean domain

parenthesis

example: formula of propositional logic: $(\neg t \lor s) \land (t \lor s) \land (\neg t \lor \neg s)$

atoms: t, s, connectives: \neg , \lor , \land , parenthesis for structuring the expression

Background

- historical origins: ancient Greeks
- in philosophy, mathematics, and computer science
- two very basic principles:
 - □ Law of Excluded Middle:

a proposition is true or its negation is true

Law of Contradiction:

no expression is both true and false at the same time

- very <u>simple</u> language
 - □ no objects, no arguments to propositions
 - no functions, no quantifiers
- solving is <u>easy</u> (relative to other logics)
 - many applications in industry

J⊻U

Syntax: Structure of Propositional Formulas in Conjunctive Normal Form (CNF)

we build a propositional formula using the following components:

literals:

- \Box variables (atomic propositions, atoms): *x*, *y*, *z*, ...
- \square negated variables $\neg x, \neg y, \neg z, \ldots$
- \Box truth constants: \top (verum) and \perp (falsum)
- $\hfill\square$ negated truth constants: $\neg\top$ and $\neg\bot$
- <u>clauses</u>: disjunction (V) of literals
 - \Box x \lor y (binary clause)
 - \Box $x \lor y \lor \neg z$ (ternary clause)
 - □ *z* (unary clause)
 - □ ¬⊤ (unary clause)
 - \square for $(l_1 \lor \ldots \lor l_n)$ we also write $\bigvee_{i=1}^n l_i$.

J⊼∩

Syntax: Structure of Propositional Formulas in Conjunctive Normal Form (CNF)

A propositional formula is a <u>conjunction</u> (\land) <u>of clauses</u>.

examples of formulas:

Remark: For the moment, we consider formulas of a restricted structure called CNF, e.g., we do not consider formulas like $(x \land y) \lor (\neg x \land z)$. Any propositional formula can be translated into this structure. We will relax this restriction later.

J⊼∩

Conventions

we use the following conventions unless stated otherwise:

- a, b, c, x, y, z denote <u>variables</u> and l, k denote <u>literals</u>
- ϕ, ψ, γ denote <u>arbitrary formulas</u>
- C, D denote <u>clauses</u>
- <u>clauses</u> are also written as sets

 $\square (l_1 \vee \ldots \vee l_n) = \{l_1, \ldots l_n\}$

□ to add a literal *l* to clause *C*, we write $C \cup \{l\}$

□ to remove a literal *l* from clause *C*, we write $C \setminus \{l\}$

- formulas in CNF are also written as sets of sets
 - $\Box ((l_{11} \vee \ldots \vee l_{1m_1}) \wedge \ldots \wedge (l_{n1} \vee \ldots \vee l_{nm_n})) = \{\{l_{11}, \ldots, l_{1m_1}\}, \ldots, \{l_{n1}, \ldots, l_{nm_n}\}\}$
 - □ to add a clause *C* to CNF ϕ , we write $\phi \cup \{C\}$
 - □ to remove a clause *C* from CNF ϕ , we write $\phi \setminus \{C\}$

Negation Operator

- unary connective ¬ (operator with exactly one operand)
- alternative notation: $!x, \overline{x}, -x, NOTx$
- semantics: flipping the truth value of its operand

$$\frac{\text{truth table:}}{1} \qquad \frac{x \quad \neg x}{0} \quad 1$$

example:

- If the atom "It rains." is true then the negation "It does not rain." is false.
- If the propositional variable *a* is true then $\neg a$ is false.
- If the propositional variable *a* is false then $\neg a$ is true.

Binary Disjunction Operator

- binary operator ∨ (operator with exactly two operands)
- alternative notation for $l \lor k$: $l \parallel k, l + k, l OR k$
- semantics: true iff at least one operand is true

	l	k	$l \lor k$
	0	0	0
truth table:	0	1	1
	1	0	1
	1	1	1

example:

- $(a \lor \neg a)$ is always true.
- $(\top \lor a)$ is always true.
- $(\perp \lor a)$ is true if a is true.

J⊼N

Properties of Disjunction

commutative:

 $k \vee l \Leftrightarrow l \vee k$

■ idempotent:

 $l \lor l \Leftrightarrow l$

associative:

 $l_1 \lor (l_2 \lor l_3) \Leftrightarrow (l_1 \lor l_2) \lor l_3$

Clause: Semantics

a clause is true iff at least one of the literals is true

□ the empty clause is always false

	l_1	 l_n	$l_1 \vee l_2 \vee \ldots \vee l_n$
	0	 0	0
truth table:	0	 1	1
			1
	1	 0	1
	1	 1	1

Binary Conjunction Operator

- binary operator ∧ (operator with exactly two operands)
- alternative notation for $C \land D$: C && D,

 $CD, C * D, C \cdot D, C AND D$

semantics: a conjunction is true iff both operands are true

	С	D	$C \wedge D$
	0	0	0
truth table:	0	1	0
	1	0	0
	1	1	1

example:

- $(a \land \neg a)$ is always false.
- $(\top \land a)$ is true if *a* is true. $(\bot \land \phi)$ is always false.
 - If $(a \lor b)$ is true and $(\neg c \lor d)$ is true then $(a \lor b) \land (\neg c \lor d)$ is true.

11/25

Properties of Conjunction

commutative:

 $C \wedge D \Leftrightarrow D \wedge C$

idempotent:

 $C \wedge C \Leftrightarrow C$

associative:

$$C_1 \land (C_2 \land C_3) \Leftrightarrow (C_1 \land C_2) \land C_3$$

CNF Formulas: Semantics

a formula in CNF is true iff all of its clauses are true
 the empty CNF formula is always true

1

	C_1	 C_n	$C_1 \wedge C_2 \wedge \ldots \wedge C_n$
	0	 0	0
truth table:	0	 1	0
			0
	1	 0	0
	1	 1	1

Rules of Precedence

■ ¬ binds stronger than \land

 \blacksquare \land binds stronger than \lor

example

$$\neg a \lor b \land \neg c \lor d$$

- □ is the same as $(\neg a) \lor (b \land (\neg c)) \lor d$,
- □ but not as $((\neg a) \lor b) \land ((\neg c) \lor d)$

 \Rightarrow put clauses into parentheses!

Assignment

- a variable can be assigned one of two values from the two-valued domain B, where B = {1,0}
- the mapping v : P → B is called <u>assignment</u>, where P is the set of variables of a formula
- we sometimes write an assignment v as set V with V ⊆ P ∪ {¬x|x ∈ P} such that
 x ∈ V iff v(x) = 1
 ¬x ∈ V iff v(x) = 0
- for *n* variables, there are 2^n assignments possible
- an assignment corresponds to one line in the truth table

J⊼∩

Assignment: Example

х	у	Z	$x \lor y$	$\neg z$	$(x \lor y) \land \neg z$
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	1	0	0

• one assignment: $v(x) = \mathbf{1}, v(y) = \mathbf{0}, v(z) = \mathbf{1}$

- alternative notation: $V = \{x, \neg y, z\}$
- <u>observation</u>: A variable assignment determines the truth value of the formulas containing these variables.

Semantics of Propositional Logic

Let \mathcal{P} be the set of atomic propositions (variables) and \mathcal{L} be the set of all propositional formulas over \mathcal{P} that are syntactically correct (i.e., all possible conjunctions of clauses over \mathcal{P}).

Given assignment $\nu : \mathcal{P} \to \mathbb{B}$, the interpretation $[.]_{\nu} : \mathcal{L} \to \mathbb{B}$ is defined by:

- $[\top]_{\nu} = \mathbf{1}, [\bot]_{\nu} = \mathbf{0}$
- if $x \in \mathcal{P}$ then $[x]_{\nu} = \nu(x)$
- **1** $[\neg x]_{\nu} = \mathbf{1}$ iff $[x]_{\nu} = \mathbf{0}$
- [C]_ν = 1 (where C is a clause) iff there is at least one literal l with l ∈ C and [l]_ν = 1
- [φ]_ν = 1 (where φ is in CNF) iff
 for all clauses C ∈ φ it holds that [C]_ν = 1

J⊼∩

Satisfying/Falsifying Assignments

an assignment v is called

□ <u>satisfying</u> a formula ϕ iff $[\phi]_{\nu} = \mathbf{1}$

 $\Box \quad \underline{\text{falsifying}} \text{ a formula } \phi \text{ iff } [\phi]_{\nu} = \mathbf{0}$

a satisfying assignment for ϕ is a <u>model</u> of ϕ

a falsifying assignment for ϕ is a <u>counter-model</u> of ϕ

example:

For formula $((x \lor y) \land \neg z)$,

- $\{x, y, z\}$ is a counter-model,
- $\{x, y, \neg z\}$ is a model.

SAT-Solver Limboole

available at http://fmv.jku.at/limboole

input:¹

 \square variables are strings over letters, digits and – _ . [] \$ @

□ negation symbol ¬ is !

□ disjunction symbol ∨ is |

 \Box conjunction symbol \land is &

example

 $(a \lor b \lor \neg c) \land (\neg a \lor b) \land c$ is represented as (a | b | !c) & (!a | b) & c

¹For now, we will only use subset of the language supported by Limboole.

Properties of Propositional Formulas (1/2)

formula φ is satisfiable iff
 there exists an assignment ν with [φ]_ν = 1
 check with limboole -s

formula φ is <u>valid</u> iff
 for all assignments ν it holds that [φ]_ν = 1
 check with limboole

formula φ is <u>refutable</u> iff
 there exists an assignment ν with [φ]_ν = 0
 check with limboole

formula φ is <u>unsatisfiable</u> iff
 for all assignments ν it holds that [φ]_ν = 0
 check with limboole -s

Properties of Propositional Formulas (2/2)

- a valid formula is called <u>tautology</u>
- an unsatisfiable formula is called <u>contradiction</u>

SAT: The Boolean Satisfiability Problem

Given a propositional formula ϕ . Is there an assignment that satisfies ϕ ?

different formulation: can we find an assignment such that each clause contains at least one true literal?

Application: Graph Coloring

A graph is something like a network consisting of

- vertices (nodes)
- edges (connections between nodes)

Example:

- set of vertices $V = \{a, b, c\}$
- set of edges (pairs of vertices from V) $E = \{(a, b), (b, c)\}$

J⊻U

Application: Graph Coloring

A graph is something like a network consisting of

- vertices (nodes)
- edges (connections between nodes)

Example:

- set of vertices $V = \{a, b, c\}$
- set of edges (pairs of vertices from V) $E = \{(a, b), (b, c)\}$

Graph Coloring: Assign colors to vertices such that connected vertices have different colors.

J⊼N

Encoding the k-Coloring Problem

Given graph (V, E) with vertices V and edges E. Color each node with one of k colors, such that there is no edge $(v, w) \in E$, with vertices v and w colored in the same color.

encoding:

- 1. <u>propositional variables</u>: v_j ... node $v \in V$ has color $j (1 \le j \le k)$
- 2. each node has a color:

$$\bigwedge_{v \in V} (\bigvee_{1 \le j \le k} v_j)$$

- 3. each node has just one color: $(\neg v_i \lor \neg v_j)$ with $v \in V, 1 \le i < j \le k$
- 4. neighbors have different colors: $(\neg v_i \lor \neg w_i)$ with $(v, w) \in E, 1 \le i \le k$

J⊼∩

<u>task</u>: find 2-coloring of graph ($\{a, b, c\}, \{(a, b), (b, c)\}$) with SAT possible solution:

encoding in SAT:

<u>task</u>: find 2-coloring of graph $(\{a, b, c\}, \{(a, b), (b, c)\})$ with SAT possible solution:

encoding in SAT:

■ variables: *a*₁, *a*₂, *b*₁, *b*₂, *c*₁, *c*₂

<u>task</u>: find 2-coloring of graph $(\{a, b, c\}, \{(a, b), (b, c)\})$ with SAT possible solution:

encoding in SAT:

■ variables: *a*₁, *a*₂, *b*₁, *b*₂, *c*₁, *c*₂

clauses:

- 1. each node has a color: $(a_1 \lor a_2), (b_1 \lor b_2), (c_1 \lor c_2)$
- 2. no node has two colors: $(\neg a_1 \lor \neg a_2), (\neg b_1 \lor \neg b_2), (\neg c_1 \lor \neg c_2)$
- 3. connected nodes have a different color:

 $(\neg a_1 \lor \neg b_1), (\neg a_2 \lor \neg b_2), (\neg b_1 \lor \neg c_1), (\neg b_2 \lor \neg c_2)$

<u>task</u>: find 2-coloring of graph $(\{a, b, c\}, \{(a, b), (b, c)\})$ with SAT possible solution:

encoding in SAT:

■ variables: *a*₁, *a*₂, *b*₁, *b*₂, *c*₁, *c*₂

clauses:

- **1**. each node has a color: $(a_1 \lor a_2), (b_1 \lor b_2), (c_1 \lor c_2)$
- 2. no node has two colors: $(\neg a_1 \lor \neg a_2), (\neg b_1 \lor \neg b_2), (\neg c_1 \lor \neg c_2)$
- 3. connected nodes have a different color:

 $(\neg a_1 \lor \neg b_1), (\neg a_2 \lor \neg b_2), (\neg b_1 \lor \neg c_1), (\neg b_2 \lor \neg c_2)$

full formula:

 $\begin{array}{l} (a_1 \lor a_2) \land (b_1 \lor b_2) \land (c_1 \lor c_2) \land (\neg a_1 \lor \neg a_2) \land (\neg b_1 \lor \neg b_2) \land (\neg c_1 \lor \neg c_2) \land \\ (\neg a_1 \lor \neg b_1) \land (\neg a_2 \lor \neg b_2) \land (\neg b_1 \lor \neg c_1) \land (\neg b_2 \lor \neg c_2) \end{array}$

