PROPOSITIONAL LOGIC IN NON-CNF

VL Logik: WS 2019/20

(Version 2019.3)

Martina Seidl (martina.seidl@jku.at), Armin Biere (biere@jku.at) Institut für Formale Modelle und Verifikation

Example: Party Planning

We want to plan a party.

Unfortunately, the selection of the guests is not straight forward.

We have to consider the following rules.

- If two people are married, we have to invite them both or none of them. Alice is married to Bob and Cecile is married to David.
- 2. If we invite Alice then we also have to invite Cecile. Cecile does not care if we invite Alice but not her.
- 3. David and Eva can't stand each other, so it is not possible to invite both. One of them should be invited.
- 4. We want to invite Bob and Fred.

Question: Can we find a guest list? J⊻U

Party Planning with Propositional Logic

propositional variables:

inviteAlice, inviteBob, inviteCecile, inviteDavid, inviteEva, inviteFred

- constraints:
 - invite married: inviteAlice ↔ inviteBob, inviteCecile ↔ inviteDavid
 - 2. if Alice then Cecile: inviteAlice \rightarrow inviteCecile
 - 3. either David or Eva: ¬ (inviteEva ↔ inviteDavid)
 - 4. invite Bob and Fred: inviteBob ∧ inviteFred

encoding in propositional logic:

(inviteAlice \leftrightarrow inviteBob) \land (inviteCecile \leftrightarrow inviteDavid) \land (inviteAlice \rightarrow inviteCecile) $\land \neg$ (inviteEva \leftrightarrow inviteDavid) \land inviteBob \land inviteFred

Syntax of Propositional Logic

The set $\boldsymbol{\pounds}$ of well-formed propositional formulas is the smallest set such that

1. $\top, \bot \in \mathcal{L};$

- 2. $\mathcal{P} \subseteq \mathcal{L}$ where \mathcal{P} is the set of atomic propositions (atoms, variables);
- **3.** if $\phi \in \mathcal{L}$ then $(\neg \phi) \in \mathcal{L}$;
- 4. if $\phi, \psi \in \mathcal{L}$ then $(\phi \circ \psi) \in \mathcal{L}$ with $\circ \in \{\lor, \land, \leftrightarrow, \rightarrow\}$.

 $\mathcal L$ is the language of propositional logic. The elements of $\mathcal L$ are propositional formulas.

Rules of Precedence

To reduce the number of parenthesis, we use the following conventions (**in case of doubt, uses parenthesis!**):

- ¬ is stronger than \land
- \blacksquare \land is stronger than \lor
- \lor is stronger than \rightarrow
- \blacksquare \rightarrow is stronger than \leftrightarrow
- Binary operators of same strength are assumed to be left parenthesized (also called "left associative")

Example:

- $\ \, \neg a \wedge b \vee c \rightarrow d \leftrightarrow f \text{ is the same as } (((((\neg a) \wedge b) \vee c) \rightarrow d) \leftrightarrow f).$
- $a' \lor a'' \lor a'' \land b' \lor b''$ is the same as $(((a' \lor a'') \lor (a'' \land b')) \lor b'')$.
- $a' \wedge a'' \wedge a'' \vee b' \wedge b''$ is the same as $(((a' \wedge a'') \wedge a''') \vee (b' \wedge b''))$.

Excursus: Rooted Tree

A rooted tree is a special kind of graph of the following shape:

A single vertex v is a tree.
 The vertex v is the <u>root</u> of this tree.

• Let t_1, \ldots, t_n be *n* trees, such that

```
\Box t_1 has root v_1
```

□ ...

 \Box t_n has root v_n .

Further, let *v* be a vertex not occuring in t_1, \ldots, t_n . We obtain a tree with root *v* if we add edges from *v* to v_1, \ldots, v_n .

The vertices v_1, \ldots, v_n are called <u>children</u> of *v*.

Nothing else is a tree.

A node without children is called leaf.

J⊼N

Formula Tree

formulas have a tree structure

- □ <u>inner nodes</u>: connectives
- □ <u>leaves</u>: truth constants, variables
- <u>default</u>: inner nodes have <u>one</u> child node (negation) or <u>two</u> nodes as children (other connectives).
- tree structure reflects the use of parenthesis
- simplification:

disjunction and conjunction may be considered as *n*-ary operators,

i.e., if a node N and its child node C are of the same kind of connective (conjunction / disjunction), then the children of C can become direct children of N and the C is removed.

Formula Tree: Example (1/2)

The formula

$$(a \lor (b \lor \neg c)) \leftrightarrow (\top \land ((a \to \neg b) \lor (\bot \lor a \lor b)))$$

has the formula tree

Formula Tree: Example (2/2)

The formula

$$(a \lor (b \lor \neg c)) \leftrightarrow (\top \land ((a \to \neg b) \lor (\bot \lor a \lor b)))$$

has the simplified formula tree

Subformulas

An immediate subformula is defined as follows:

- truth constants and atoms have no immediate subformula.
- only immediate subformula of $\neg \phi$ is ϕ .
- formula $\phi \circ \psi$ ($\circ \in \{\land, \lor, \leftrightarrow, \rightarrow\}$) has immediate subformulas ϕ and ψ .

Informal: a subformula is a formula that is part of a formula

The set of subformulas of a formula ϕ is the smallest set S with

1. $\phi \in S$

2. if $\psi \in S$ then all immediate subformulas of ψ are in S

The subformulas of $(a \lor b) \to (c \land \neg \neg d)$ are

 $\{a,b,c,d,\neg d,\neg\neg d,a\vee b,c\wedge\neg\neg d,(a\vee b)\rightarrow (c\wedge\neg\neg d)\}$

Excursus: Backus-Naur Form (BNF)

notation technique for describing the syntax of a language

elements:

- non-terminal symbols (variables): enclosed in brackets ()
- ::= indicates the definition of a non-terminal symbol
- □ the symbol | means "or"
- all other symbols stand for themselves (sometimes they are quoted, e.g., "->")

example: definition of the language of decimal numbers in BNF:

 $\begin{array}{l} \langle number \rangle :::= \langle integer \rangle "." \langle integer \rangle \\ \langle integer \rangle :::= \langle digit \rangle | \langle digit \rangle \langle integer \rangle \\ \langle digit \rangle :::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 \end{array}$

some words: 0.0, 1.1, 123.546, 01.10000, ...

Limboole

SAT-solver

- available at http://fmv.jku.at/limboole/
- input format in BNF:

 $\langle expr \rangle ::= \langle iff \rangle \\ \langle iff \rangle ::= \langle implies \rangle | \langle implies \rangle "<->" \langle implies \rangle \\ \langle implies \rangle ::= \langle or \rangle | \langle or \rangle "->" \langle or \rangle | \langle or \rangle "<-" \langle or \rangle \\ \langle or \rangle ::= \langle and \rangle | \langle and \rangle "|" \langle and \rangle \\ \langle and \rangle ::= \langle not \rangle | \langle not \rangle "& \langle not \rangle \\ \langle not \rangle ::= \langle basic \rangle | "!" \langle not \rangle \\ \langle basic \rangle ::= \langle var \rangle | "(" \langle expr \rangle ")"$

where 'var' is a string over letters, digits, and - . [] \$ @

Negation

- unary connective ¬ (operator with exactly one argument)
- negating the truth value of its argument
- **alternative notation:** $!\phi, \overline{\phi}, -\phi, NOT\phi$

Example:

- If the atom "It rains." is true then the negation "It does not rain." is false.
- If atom *a* is true then $\neg a$ is false.
- If formula $((a \lor x) \land y)$ is true then formula $\neg((a \lor x) \land y)$ is false.
- If formula $((b \rightarrow y) \land z)$ is true then formula $\neg((b \rightarrow y) \land z)$ is false.

Conjunction

- a conjunction is true iff both arguments are true
- **alternative notation for** $\phi \land \psi$: $\phi \& \psi, \phi \psi, \phi * \psi, \phi \cdot \psi, \phi AND\psi$
- For $(\phi_1 \wedge \ldots \wedge \phi_n)$ we also write $\bigwedge_{i=1}^n \phi_i$.

- $(a \land \neg a)$ is always false.
- $(\top \land a)$ is true if *a* is true. $(\bot \land \phi)$ is always false.
- If $(a \lor b)$ is true and $(\neg c \lor d)$ is true then $(a \lor b) \land (\neg c \lor d)$ is true.

Disjunction

- a disjunction is true iff at least one of the arguments is true
- alternative notation for $\phi \lor \psi$: $\phi | \psi, \phi + \psi, \phi OR \psi$
- For $(\phi_1 \lor \ldots \lor \phi_n)$ we also write $\bigvee_{i=1}^n \phi_i$.

- $(a \lor \neg a)$ is always true.
- $(\top \lor a)$ is always true. $(\bot \lor a)$ is true if *a* is true.
- If $(a \rightarrow b)$ is true and $(\neg c \rightarrow d)$ then $(a \rightarrow b) \lor (\neg c \rightarrow d)$ is true.

Implication

 an implication is true iff the first argument is false or both arguments are true (Ex falsum quodlibet.)

■ alternative notation: $\phi \supset \psi, \phi$ IMPL ψ

- If atom "It rains." is true and atom "The street is wet." is true then the statement "If it rains, the street is wet." is true.
- $(\bot \rightarrow a)$ and $(a \rightarrow a)$ are always true. $\top \rightarrow \phi$ is true if ϕ is true.

Equivalence

true iff both subformulas have the same value

alternative notation: $\phi = \psi, \phi \equiv \psi, \phi \sim \psi$

Example:

- The formula $a \leftrightarrow a$ is always true.
- The formula $a \leftrightarrow b$ is true iff a is true and b is true or a is false and b is false.
- $\blacksquare \ \top \leftrightarrow \bot \text{ is never true.}$

The Logic Connectives at a Glance

ϕ	ψ	Т	\perp	$\neg \phi$	$\phi \wedge \psi$	$\phi \lor \psi$	$\phi \to \psi$	$\phi \leftrightarrow \psi$	$\phi \oplus \psi$	$\phi \uparrow \psi$	$\phi\downarrow\psi$	
0	0	1	0	1	0	0	1	1	0	1	1	
0	1	1	0	1	0	1	1	0	1	1	0	
1	0	1	0	0	0	1	0	0	1	1	0	
1	1	1	0	0	1	1	1	1	0	0	0	
	Example:											
	ϕ	ψ		$(\neg \phi)$	$\wedge \neg \psi$)	$\neg \phi \lor$	'Ψ (¢	$\rightarrow \psi$)	$\wedge (\psi - \psi)$	$\rightarrow \phi)$		
	0	0		0		1		1				
	Δ	4		1		-	•					
	U			I				U				
	1	0		1		0	0 0		0			
	1	1	1		1		1					

Observation: connectives can be expressed by other connectives.

Other Connectives

- there are 16 different functions for binary connectives
- so far, we had $\land, \lor, \leftrightarrow, \rightarrow$
- further connectives:
 - $\Box \phi \leftrightarrow \psi$ (also \oplus , <u>xor</u>, antivalence)
 - $\Box \phi \uparrow \psi$ (nand, Sheffer Stroke Function)
 - $\Box \phi \downarrow \psi$ (nor, Pierce Function)

ϕ	ψ	$\phi \nleftrightarrow \psi$	$\phi \uparrow \psi$	$\phi\downarrow\psi$
0	0	0	1	1
0	1	1	1	0
1	0	1	1	0
1	1	0	0	0

- nor and nand can express every other boolean function (i.e., they are functional complete)
- often used for building digital circuits (like processors)

Propositional Formulas and Digital Circuits

Example of a Digital Circuit: Half Adder

and

 $s \Leftrightarrow x \oplus y$.

Different Notations

operator	logic	circuits	Java	Python	Limboole
1	Т	1	true	true	-
0	1	0	false	false	-
negation	$\neg \phi$	$!\phi$ – q	ϕ ! ϕ	not ϕ	$!\phi$
conjunction	$\phi \wedge \psi$	$\phi\psi$ $\phi\cdot$	ψφ&&ψ	ϕ and ψ	$\phi \& \psi$
disjunction	$\phi \lor \psi$	$\phi + \psi$	$\phi \parallel \psi$	$\phi \ or \ \psi$	$\phi \mid \psi$
exclusive or	$\phi \not\leftrightarrow \psi$	$\phi\oplus\psi$	$\phi \mathrel{!=} \psi$	$\phi !=\psi$	-
implication	$\phi \rightarrow \psi$	$\phi \supset \psi$	-	-	$\phi \rightarrow \psi$
equivalence	$\phi \leftrightarrow \psi$	$\phi = \psi$	ϕ == ψ	ϕ == ψ	$\phi == \psi$

Example: $(a \lor (b \lor \neg c)) \leftrightarrow (\top \land ((a \to \neg b) \lor (c \lor a \lor b)))$

■
$$(a + (b + \bar{c})) = c ((a \supset -b) + (0 + a + b))$$

$$(a || (b || !c)) == (c \&\& ((! a || ! b) || (false || a || b)))$$

All 16 Binary Functions

φ	ψ	constant 0	nor					xor	nand	and	equivalence		implication			or	constant 1
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Assignment

- a variable can be assigned one of two values from the two-valued domain B, where B = {1,0}
- the mapping v : P → B is called <u>assignment</u>, where P is the set of atomic propositions
- we sometimes write an assignment *v* as set *V* with *V* ⊆ *P* ∪ {¬*x*|*x* ∈ *P*} such that *x* ∈ *V* iff *v*(*x*) = 1
 ¬*x* ∈ *V* iff *v*(*x*) = 0
- for *n* variables, there are 2^n assignments possible
- an assignment corresponds to one line in the truth table

Semantics of Propositional Logic

Given assignment $\nu : \mathcal{P} \to \mathbb{B}$, the interpretation $[.]_{\nu} : \mathcal{L} \to \mathbb{B}$ is defined by:

 $\blacksquare \ [\top]_{\nu} = \mathbf{1}, \ [\bot]_{\nu} = \mathbf{0}$

if
$$x \in \mathcal{P}$$
 then $[x]_{v} = v(x)$

1
$$[\neg \phi]_{\nu} = \mathbf{1}$$
 iff $[\phi]_{\nu} = \mathbf{0}$

•
$$[\phi \lor \psi]_{\nu} = \mathbf{1}$$
 iff $[\phi]_{\nu} = \mathbf{1}$ or $[\psi]_{\nu} = \mathbf{1}$

What about the other connectives?

Simple Algorithm for Satisfiability Checking

1 Algorithm: evaluate

Data: formula ϕ **Result: 1** iff ϕ is satisfiable

2 if ϕ contains a variable x then

Satisfying/Falsifying Assigments

An assignment is called

- □ <u>satisfying</u> a formula ϕ iff $[\phi]_{\nu} = \mathbf{1}$.
- $\Box \quad \underline{\text{falsifying}} \text{ a formula } \phi \text{ iff } [\phi]_{\nu} = \mathbf{0}.$
- A satisfying assignment for ϕ is a <u>model</u> of ϕ .
- A falsifying assignment for ϕ is a <u>counter-model</u> of ϕ .

Example:

For formula $((x \land y) \lor \neg z)$,

- $\{\neg x, y, z\}$ is a counter-model,
- $\{x, y, z\}$ is a model.
- $\{x, y, \neg z\}$ is another model.

Properties of Propositional Formulas (1/3)

formula φ is satisfiable iff
 there exists interpretation [.]_ν with [φ]_ν = 1
 check with limboole -s

formula φ is <u>valid</u> iff
 for all interpretations [.]_ν it holds that [φ]_ν = 1
 check with limboole

formula φ is <u>refutable</u> iff
 exists interpretation [.]_ν with [φ]_ν = 0
 check with limboole

formula φ is <u>unsatisfiable</u> iff
 [φ]_ν = 0 for all interpretations [.]_ν
 check with limboole -s

Properties of Propositional Formulas (2/3)

- a valid formula is called <u>tautology</u>
- an unsatisfiable formula is called <u>contradiction</u>

Properties of Propositional Formulas (3/3)

- A satisfiable formula is
 - possibly valid
 - possibly refutable
 - not unsatisfiable.
- A valid formula is
 - satisfiable
 - not refutable
 - not unsatisfiable.

- A refutable formula is
 - possibly satisfiable
 - possibly unsatisfiable
 - not valid.
- An unsatisfiable formula is
 - refutable
 - not valid
 - not satisfiable.

- **s**atisfiable, but not valid: $a \leftrightarrow b$
- satisfiable and refutable: $(a \lor b) \land (\neg a \lor c)$
- valid, not refutable $\top \lor (a \land \neg a)$; not valid, refutable $(\bot \lor b)$

Further Connections between Formulas

- A formula ϕ is valid iff $\neg \phi$ is unsatisfiable.
- A formula ϕ is satisfiable iff $\neg \phi$ is not valid.
- The formulas ϕ and ψ are equivalent iff $\phi \leftrightarrow \psi$ is valid.
- The formulas ϕ and ψ are equivalent iff $\neg(\phi \leftrightarrow \psi)$ is unsatisfiable.
- A formula ϕ is satisfiable iff $\phi \leftrightarrow \bot$.

Semantic Equivalence

Two formula ϕ and ψ are <u>semanticly equivalent</u> (written as $\phi \Leftrightarrow \psi$) iff forall interpretations $[.]_{\nu}$ it holds that $[\phi]_{\nu} = [\psi]_{\nu}$.

- \Rightarrow is a <u>meta-symbol</u>, i.e., it is not part of the language.
- natural language: if and only if (iff)
- If ϕ and ψ are not equivalent, we write $\phi \Leftrightarrow \psi$.

Example:
$$a \lor \neg a \Leftrightarrow b \to \neg b$$
 $a \lor b) \land \neg (a \lor b) \Leftrightarrow \bot$ $a \lor \neg a \Leftrightarrow b \lor \neg b$ $a \leftrightarrow (b \leftrightarrow c)) \Leftrightarrow ((a \leftrightarrow b) \leftrightarrow c)$

J⊼N

Examples of Semantic Equivalences (1/2)

$\phi \wedge \psi \Leftrightarrow \psi \wedge \phi$	$\phi \lor \psi \Leftrightarrow \psi \lor \phi$	commutativity
$\phi \land (\psi \land \gamma) \Leftrightarrow (\phi \land \psi) \land \gamma$	$\phi \lor (\psi \lor \gamma) \Leftrightarrow (\phi \lor \psi) \lor \gamma$	associativity
$\phi \land (\phi \lor \psi) \Leftrightarrow \phi$	$\phi \lor (\phi \land \psi) \Leftrightarrow \phi$	absorption
$\phi \land (\psi \lor \gamma) \Leftrightarrow (\phi \land \psi) \lor (\phi \land \gamma)$	$\phi \lor (\psi \land \gamma) \Leftrightarrow (\phi \lor \psi) \land (\phi \lor \gamma)$	distributivity
$\neg(\phi \land \psi) \Leftrightarrow \neg\phi \lor \neg\psi$	$\neg(\phi \lor \psi) \Leftrightarrow \neg\phi \land \neg\psi$	laws of De Morgan
$\phi \leftrightarrow \psi \Leftrightarrow (\phi \to \psi) \land (\psi \to \phi)$	$\phi \leftrightarrow \psi \Leftrightarrow (\phi \land \psi) \lor (\neg \phi \land \neg \psi)$	synt. equivalence

Examples of Semantic Equivalences (2/2)

$\phi \lor \psi \Leftrightarrow \neg \phi \to \psi$	$\phi \to \psi \Leftrightarrow \neg \psi \to \neg \phi$	implications
$\phi \wedge \neg \phi \Leftrightarrow \bot$	$\phi \vee \neg \phi \Leftrightarrow \top$	complement
$\neg \neg \phi \Leftrightarrow \phi$		double negation
$\phi \land \top \Leftrightarrow \phi$	$\phi \lor \bot \Leftrightarrow \phi$	neutrality
$\phi \lor \top \Leftrightarrow \top$	$\phi \wedge \bot \Leftrightarrow \bot$	
$\neg \top \Leftrightarrow \bot$	$\neg\bot \Leftrightarrow \top$	

Negation Normal Form (1/2)

Negation Normal Form (NNF) is defined as follows:

- Literals and truth constants are in NNF;
- $\phi \circ \psi$ ($\circ \in \{\lor, \land\}$) is in NNF iff ϕ and ψ are in NNF;

no other formulas are in NNF.

In other words: A formula in NNF contains only conjunctions, disjunctions, and negations and negations only occur in front of variables and constants.

Negation Normal Form (2/2)

If a formula is in negation normal form then

- in the formula tree, nodes with negation symbols only occur directly before leaves.
- there are no subformulas of the form $\neg \phi$ where ϕ is something else than a variable or a constant.
- it does not contain NAND, NOR, XOR, equivalence, and implication connectives.

Example: The formula $((x \lor \neg x_1) \land (x \lor (\neg z \lor \neg x_1)))$ is in NNF but

 \neg (($x \lor \neg x_1$) \land ($x \lor (\neg z \lor \neg x_1$))) is not in NNF.

Conjunctive Normal Form (CNF)

A propositional formula is in <u>conjunctive normal form</u> (CNF) iff it is a conjunction of clauses.

A formula in conjunctive normal form is

- in negation normal form
 - \top if it contains no clauses
- easy to check whether it can be refuted

remark: CNF is the input of most SAT-solvers (DIMACS format)

Disjunctive Normal Form (DNF)

A propositional formula is in <u>disjunctive normal form (DNF)</u> if it is a disjunction of cubes.

A formula in disjunctive normal form is

- in negation normal form
- \perp if it contains no cubes
- easy to check whether it can be satisfied

Examples for CNF and DNF

Examples CNF

Examples DNF

T	•	$l_1 \wedge l_2 \wedge l_3$
■⊥		$l_1 \vee l_2 \vee l_3$
■ a		$(a_1 \wedge \neg a_2) \lor (a_1 \wedge b_2 \wedge a_2) \lor a_2$
■ ¬a		$((l_{11} \wedge \ldots \wedge l_{1m_1}) \vee \ldots \vee (l_{n1} \wedge \ldots \wedge l_{nm_n}))$

Representing Functions as CNFs

• <u>Problem</u>: Given the truth table of a Boolean function ϕ . How is the function represented in propositional logic?

Solution (in CNF):

- 1. Represent each assignment ν where ϕ has value **0** as clause:
 - □ If variable *x* is **1** in ν , add $\neg x$ to clause.
 - □ If variable *x* is **0** in *v*, add *x* to clause.
- 2. Connect all clauses by conjunction.

а	b	С	ϕ	clauses				
0	0	0	0	$a \lor b \lor c$				
0	0	1	1					
0	1	0	1					
0	1	1	0	$a \lor \neg b \lor \neg c$				
1	0	0	1					
1	0	1	0	$\neg a \lor b \lor \neg c$				
1	1	0	0	$\neg a \lor \neg b \lor c$				
1	1	1	1					
$\phi =$								
$(a \lor b \lor c) \land (a \lor \neg b \lor \neg c) \land$								
$(\neg a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor c)$								

Representing Functions as DNFs

Problem: Given the truth table of a Boolean function φ. How is the function represented in propositional logic?

Solution (in DNF):

- Represent each assignment ν where φ has value 1 as cube:
 - □ If variable x is **1** in v, add x to cube.
 - □ If variable *x* is **0** in *v*, add $\neg x$ to cube.
- 2. Connect all cubes by disjunction.

~	h			aubaa			
	D	С	φ	cubes			
0	0	0	0				
0	0	1	1	$\neg a \land \neg b \land c$			
0	1	0	1	$\neg a \land b \land \neg c$			
0	1	1	0				
1	0	0	1	$a \wedge \neg b \wedge \neg c$			
1	0	1	0				
1	1	0	0				
1	1	1	1	$a \wedge b \wedge c$			
$\phi = (\neg a \land \neg b \land c) \lor (\neg a \land b \land \neg c) \lor (a \land \neg b \land \neg c) \lor (a \land b \land c)$							

40/45

Functional Completeness

- In propositional logic there are
 - □ 2 functions of arity 0 (\top, \bot)
 - □ 4 functions of arity 1 (e.g., not)
 - □ 16 functions of arity 2 (e.g., and, or, ...)
 - \square 2^{2^{*n*}} functions of arity *n*.
- A function of arity n has 2ⁿ different combinations of arguments (lines in the truth table).
- A functions maps its arguments either to **1** or **0**.

A set of functions is called <u>functional complete</u> for propositional logic iff it is possible to express all other functions of propositional logic with functions from this set.

 $\{\neg, \land\}, \{\neg, \lor\}, \{nand\}$ are functional complete.

Logic Entailment

Let $\phi_1, \ldots \phi_n, \psi$ be propositional formulas. Then $\phi_1, \ldots \phi_n$ <u>entail</u> ψ (written as $\phi_1, \ldots, \phi_n \models \psi$) iff $[\phi_1]_{\nu} = \mathbf{1}, \ldots [\phi_n]_{\nu} = \mathbf{1}$ implies that $[\psi]_{\nu} = \mathbf{1}$.

Informal meaning: True premises derive a true conclusion.

- \blacksquare |= is a meta-symbol, i.e., it is not part of the language.
- $\phi_1, \ldots \phi_n \models \psi$ iff $(\phi_1 \land \ldots \land \phi_n) \rightarrow \psi$ is valid, i.e., we can express semantics by means of syntactics.
- If ϕ_1, \ldots, ϕ_n do not entail ψ , we write $\phi_1, \ldots, \phi_n \not\models \psi$.

Formula Strength

• formulas ϕ and ψ are equally strong iff $\phi \models \psi$ and $\psi \models \phi$

formula ϕ is stronger than formula ψ iff $\phi \models \psi$

formula ψ is weaker than formula ϕ iff $\phi \models \psi$

Examples

- $a \oplus b$ is stronger than $a \lor b$
- $a \wedge b$ is stronger than $a \vee b$
- \blacksquare \perp is the strongest formula
- \blacksquare \top is the weakest formula

Satisfiability Equivalence

Two formulas ϕ and ψ are <u>satisfiability-equivalent</u> (written as $\phi \Leftrightarrow_{SAT} \psi$) iff both formulas are satisfiable or both are contradictory.

- Satisfiability-equivalent formulas are not necessarily satisfied by the same assignments.
- Satisfiability equivalence is a weaker property than semantic equivalence.
- Often sufficient for simplification rules: If the complicated formula is satisfiable then also the simplified formula is satisfiable.

Example: Satisfiability Equivalence

positive pure literal elimination rule:

If a variable *x* occurs in a formula but $\neg x$ does not occur in the formula, then *x* can be substituted by \top . The resulting formula is satisfiability-equivalent.

