FIRST-ORDER LOGIC

Pragmatics

Wolfgang Schreiner and Wolfgang Windsteiger
Wolfgang.(Schreiner|Windsteiger)@risc.jku.at
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU), Linz, Austria
http://www.risc.jku.at
Pragmatics

We will now investigate the pragmatics (practical use) of first-order logic in two contexts.

- **Defining Models**
 - Introducing new domains and operations.
 - Unique characterizations of their meaning.

- **Specifying Problems**
 - Describing expectations for computations.
 - Assumptions on the inputs and guarantees for the outputs.

Highly relevant for computer science and mathematics.
Standard Models

We assume the following “standard models” as given.

Natural Numbers \(\mathbb{N} = \{0, 1, 2, \ldots\} \), \(\mathbb{N}_n = \{0, \ldots, n - 1\} \), \(\mathbb{N}_{>0} = \{1, 2, \ldots\} \), etc.

Integer Numbers \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \).

Real Numbers \(\mathbb{R}, \mathbb{R}_{\geq 0}, \mathbb{R}_{>0} \).

- Usual arithmetic operations for all number domains.

Sets \(\mathcal{P}(T) \): all sets with elements of set \(T \).

- Element predicate \(e \in S \), set builder term \(\{t \mid x \in S \land \ldots \land F\} \).

Products \(T_1 \times \ldots \times T_n \): all tuples \((c_1, \ldots, c_n)\) with components from \(T_1, \ldots, T_n \).

- For \(t = (c_1, \ldots, c_n) \) we have \(t.1 = c_1, \ldots, t.n = c_n \).

Sequences \(T^* \): all finite sequences with values from \(T \); \(T^\omega \) all infinite sequences.

- \(s \in T^* : s = [s(0), s(1), s(2), \ldots, s(n - 1)] \), \(\text{length}(s) = n \).

The “builtin data types” of our models.
Domain Definitions

From the standard domains, we may build new domains.

- **A domain definition**

\[T := t \]

defines a new domain \(T \) from a term \(t \) that denotes a set (constructed from previous sets by the application of set builders and/or domain constructors).

\[
\begin{align*}
\text{Nat} &:= \mathbb{N}_{2^{32}} \\
\text{Int} &:= \{ i \mid i \in \mathbb{Z} \land -2^{31} \leq i \land i < 2^{31} \} \\
\text{IntArray} &:= \text{Int}^* \\
\text{IntStream} &:= \text{Int}^\omega \\
\text{Primes} &:= \{ x \mid x \in \mathbb{N} \land x \geq 2 \land (\forall y \in \mathbb{N} : 1 < y \land y < x \rightarrow \neg (y \mid x)) \}
\end{align*}
\]
Explicit Function Definitions

A new function may be introduced by describing its value.

- An explicit function definition

 \[f : T_1 \times \ldots \times T_n \to T \]
 \[f(x_1, \ldots, x_n) := t_x \]

 - introduces a new \(n \)-ary function symbol \(f \) with
 - a type signature \(T_1 \times \ldots \times T_n \to T \) with sets \(T_1, \ldots, T_n, T \),
 - a list of variables \(x_1, \ldots, x_n \) (the parameters), and
 - a term \(t_x \) (the body) whose free variables occur in \(x_1, \ldots, x_n \;
 - case \(n = 0 \): the definition of a constant \(f : T, f := t \).

- We have to show \((\forall x_1 \in T_1, \ldots, x_n \in T_n : t_x \in T) \) and then know

 \[\forall x_1 \in T_1, \ldots, x_n \in T_n : f(x_1, \ldots, x_n) = t_x \]

The body \(t_x \) may only refer to previously defined functions (no recursion).
Examples

Definition: Let x and y be natural numbers. Then the *square sum* of x and y is the sum of the squares of x and y.

\[
\text{squaresum} : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \\
\text{squaresum}(x, y) := x^2 + y^2
\]

Definition: Let x and y be natural numbers. Then the *squared sum* of x and y is the square of z where z is the sum of x and y.

\[
\text{sumsquared} : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \\
\text{sumsquared}(x, y) := \text{let } z = x + y \text{ in } z^2
\]

Definition: Let n be a natural number. Then the *square sum set* of n is the set of the square sums of all numbers x and y from 1 to n.

\[
\text{squaresumset} : \mathbb{N} \to \mathcal{P}({\mathbb{N}}) \\
\text{squaresumset}(n) := \{\text{squaresum}(x, y) \mid x, y \in \mathbb{N} \land 1 \leq x \leq n \land 1 \leq y \leq n\}
\]
Predicate Definitions

A new predicate may be introduced by describing its truth value.

- **An explicit predicate definition**

 \[p \subseteq T_1 \times \ldots \times T_n \]

 \[p(x_1, \ldots, x_n) :\iff F_x \]

 - introduces a new \(n \)-ary predicate symbol \(p \) with
 - a type signature \(T_1 \times \ldots \times T_n \) with sets \(T_1, \ldots, T_n \),
 - a list of variables \(x_1, \ldots, x_n \) (the parameters), and
 - a formula \(F \) (the body) whose free variables occur in \(x_1, \ldots, x_n \);
 - case \(n = 0 \): the definition of a truth value constant \(p :\iff F_x \).

- We then know

 \[\forall x_1 \in T_1, \ldots, x_n \in T_n : p(x_1, \ldots, x_n) \iff F_x \]

The body \(F_x \) may only refer to previously defined predicates (no recursion).
Examples

Definition: Let x, y be natural numbers. Then x divides y (written as $x|y$) if $x \cdot z = y$ for some natural number z.

$\mid \subseteq \mathbb{N} \times \mathbb{N}$

$x|y :\iff \exists z \in \mathbb{N}: x \cdot z = y$

Definition: Let x be a natural number. Then x is prime if x is at least two and the only divisors of x are one and x itself.

isprime $\subseteq \mathbb{N}$

isprime$(x) :\iff x \geq 2 \land \forall y \in \mathbb{N}: y|x \rightarrow y = 1 \lor y = x$

Definition: Let p, n be a natural numbers. Then p is a prime factor of n, if p is prime and divides n.

isprimefactor $\subseteq \mathbb{N} \times \mathbb{N}$

isprimefactor$(p, n) :\iff \text{isprime}(p) \land p|n$
Implicit Function Definitions

A new function may be introduced by a condition on its result value.

■ An implicit function definition

$$f : T_1 \times \ldots \times T_n \rightarrow T$$

$$f(x_1, \ldots, x_n) := \textbf{such} \ y : F_{x,y} \ (\text{or: } \textbf{the} \ y : F_{x,y})$$

□ introduces a new \(n\)-ary function constant \(f\) with
□ a type signature \(T_1 \times \ldots \times T_n \rightarrow T\) with sets \(T_1, \ldots, T_n, T\),
□ a list of variables \(x_1, \ldots, x_n\) (the parameters),
□ a variable \(y\) (the result variable),
□ a formula \(F_{x,y}\) (the result condition) whose free variables occur in \(x_1, \ldots, x_n, y\).

■ We then know

$$\forall x_1 \in T_1, \ldots, x_n \in T_n : (\exists y \in T : F_{x,y}) \rightarrow (\exists y \in T : F_{x,y} \land y = f(x_1, \ldots, x_n))$$

□ If some value satisfies the condition, the function result is such a value.
□ With \textbf{the} we claim that the value of \(f\) always exists and is unique.

The definition of a function by a formula (rather than a term).
Examples

Definition: A root of real number \(x \) is a real number \(y \) such that the square of \(y \) is \(x \).

\[
a\text{Root}: \mathbb{R} \to \mathbb{R} \\
a\text{Root}(x) := \text{such } y: y^2 = x
\]

Definition: The root of non-negative real \(x \) is that real \(y \) such that the square of \(y \) and \(y \geq 0 \).

\[
\text{theRoot}: \mathbb{R}_{\geq 0} \to \mathbb{R} \\
\text{theRoot}(x) := \text{the } y: y^2 = x \land y \geq 0
\]

Definition: Let \(m, n \in \mathbb{N} \) with \(n \) positive. Then the (truncated) quotient \(q \in \mathbb{N} \) of \(m \) and \(n \) is such that \(m = n \cdot q + r \) for some \(r \in \mathbb{N} \) with \(r < n \).

\[
\text{quotient}: \mathbb{N} \times \mathbb{N}_{>0} \to \mathbb{N} \\
\text{quotient}(m,n) := \text{the } q: \exists r \in \mathbb{N}: m = n \cdot q + r \land r < n
\]

Definition: Let \(x, y \) be positive natural numbers. The greatest common divisor of \(x \) and \(y \) is the greatest such number that divides both \(x \) and \(y \).

\[
gcd: \mathbb{N}_{>0} \times \mathbb{N}_{>0} \to \mathbb{N}_{>0} \\
gcd(x,y) := \text{the } z: z|x \land z|y \land \forall z': z'|x \land z'|y \rightarrow z' \leq z
\]
Predicates versus Functions

A predicate can give rise to functions in two ways.

- A predicate:
 \[
 \text{isprimefactor} \subseteq \mathbb{N} \times \mathbb{N}
 \]
 \[
 \text{isprimefactor}(p, n) \iff \text{isprime}(p) \land p | n
 \]

- An implicitly defined function:
 \[
 \text{someprimefactor} : \mathbb{N} \to \mathbb{N}
 \]
 \[
 \text{someprimefactor}(n) := \text{such } p: \text{isprime}(p) \land p | n
 \]

- An explicitly defined function whose result is a set:
 \[
 \text{allprimefactors} : \mathbb{N} \to P(\mathbb{N})
 \]
 \[
 \text{allprimefactors}(n) := \{ p \in \mathbb{N} \mid \text{isprime}(p) \land p | n \}
 \]

The preferred style of definition is a matter of taste and purpose.
Specifying Problems

An important role of logic in computer science is to specify problems.

The specification of a (computational) problem

- **Input:** \(x_1 \in T_1, \ldots, x_n \in T_n \) where \(I_x \)
- **Output:** \(y_1 \in U_1, \ldots, y_m \in U_m \) where \(O_{x,y} \)

- a list of input variables \(x_1, \ldots, x_n \) with types \(T_1, \ldots, T_n \),
- a formula \(I_x \) (the input condition or precondition) whose free variables occur in
 \(x_1, \ldots, x_n \)
- a list of output variables \(y_1, \ldots, y_m \) with types \(U_1, \ldots, U_m \), and
- a formula \(O_{x,y} \) (the output condition or postcondition) whose free variables occur in
 \(x_1, \ldots, x_n, y_1, \ldots, y_m \)

The specification is expressed with the help of auxiliary functions and predicates.
Example

Problem: extract from a finite sequence s of natural numbers a subsequence t of length n starting at position p.

Example: $s = [2, 3, 5, 7, 5, 11], p = 2, n = 3 \leadsto t = [5, 7, 5]$

Input: $s \in \mathbb{N}^*, n \in \mathbb{N}, p \in \mathbb{N}$ where

$n + p \leq \text{length}(s)$ \hspace{1cm} (subsequence is in range of array)

Output: $t \in \mathbb{N}^*$ where

$\text{length}(t) = n$ \hspace{1cm} (length of result sequence)

$\forall i \in \mathbb{N}_n : t(i) = s(i + p)$ \hspace{1cm} (content of result sequence)
The Adequacy of Specifications

Input: x where I_x
Output: y where $O_{x,y}$

- Is precondition satisfiable? $(\exists x: I_x)$
 Otherwise no input is allowed.

- Is precondition not trivial? $(\exists x: \neg I_x)$
 Otherwise every input is allowed, why then the precondition?

- Is postcondition always satisfiable? $(\forall x: I_x \rightarrow \exists y: O_{x,y})$
 Otherwise no implementation is legal.

- Is postcondition not always trivial? $(\exists x, y: I_x \land \neg O_{x,y})$
 Otherwise every implementation is legal.

- Is result unique? $(\forall x, y_1, y_2: (I_x \land O_{x,y[y_1/y]} \land O_{x,y[y_2/y]} \rightarrow y_1 = y_2))$
 Whether this is required, depends on our expectations.

Ask these questions to ensure that specification expresses your intentions.
Example: The Problem of Integer Division

Input: \(m \in \mathbb{N}, n \in \mathbb{N}\) \hspace{1em} **Output:** \(q \in \mathbb{N}, r \in \mathbb{N}\) where \(m = n \cdot q + r\)

- The postcondition is always satisfiable but not trivial.
 - For \(m = 13, n = 5\), e.g. \(q = 2, r = 3\) is legal but \(q = 2, r = 4\) is not.
- But the result is not unique.
 - For \(m = 13, n = 5\), both \(q = 2, r = 3\) and \(q = 1, r = 8\) are legal.

Input: \(m \in \mathbb{N}, n \in \mathbb{N}\) \hspace{1em} **Output:** \(q \in \mathbb{N}, r \in \mathbb{N}\) where \(m = n \cdot q + r \land r < n\)

- Now the postcondition is not always satisfiable.
 - For \(m = 13, n = 0\), no output is legal.

Input: \(m \in \mathbb{N}, n \in \mathbb{N}\) where \(n \neq 0\) \hspace{1em} **Output:** \(q \in \mathbb{N}, r \in \mathbb{N}\) where \(m = n \cdot q + r \land r < n\)

- The precondition is not trivial but satisfiable.
 - \(m = 13, n = 0\) is not legal but \(m = 13, n = 5\) is.
- The postcondition is always satisfiable and result is unique.
 - For \(m = 13, n = 5\), only \(q = 2, r = 3\) is legal.
Example: The Problem of Linear Search

Problem: given a finite integer sequence a and an integer x, determine the smallest position p at which x occurs in a ($p = -1$, if x does not occur in a).

Example: $a = [2, 3, 5, 7, 5, 11], x = 5 \leadsto p = 2$

Input: $a \in \mathbb{Z}^*, x \in \mathbb{Z}$

Output: $p \in \mathbb{N} \cup \{-1\}$ where

$$\begin{align*}
\text{let } n &= \text{length}(a) \text{ in} \\
\text{if } &\exists p \in \mathbb{N}_n : a(p) = x \\
\text{then } &p \in \mathbb{N}_n \land a(p) = x \land \\
&\quad (\forall q \in \mathbb{N}_n : a(q) = x \rightarrow p \leq q) \\
\text{else } &p = -1
\end{align*}$$

(x occurs in a) \hspace{1cm} (p is the index of some occurrence of x) \hspace{1cm} (p is the smallest such index)

All inputs are legal; the result always exists and is uniquely determined.
Example: The Problem of Binary Search

Problem: given a finite integer sequence a that is sorted in ascending order and an integer x, determine some position p at which x occurs in a ($p = -1$, if x does not occur in a).

Example: $a = [2, 3, 5, 5, 7, 11], x = 5 \leadsto p \in \{2, 3, 4\}$

Input: $a \in \mathbb{Z}^*, x \in \mathbb{Z}$ where

let $n = \text{length}(a)$ in

$\forall k \in \mathbb{N}_{n-1}: a(k) \leq a(k+1)$ \hspace{1cm} (a is sorted)

Output: $p \in \mathbb{N} \cup \{-1\}$ where

let $n = \text{length}(a)$ in

if $\exists p \in \mathbb{N}_n: a(p) = x$ \hspace{1cm} (x occurs in a)

then $p \in \mathbb{N}_n \land a(p) = x$ \hspace{1cm} (p is the index of some occurrence of x)

else $p = -1$

Not all inputs are legal; for every legal input, the result exists but is not unique.
Example: The Problem of Sorting

Problem: given a finite integer sequence a, determine that permutation b of a that is sorted in ascending order.

Example: $a = [5, 3, 7, 2, 3] \sim b = [2, 3, 3, 5, 7]$

Input: $a \in \mathbb{Z}^*$

Output: $b \in \mathbb{N}^*$ where

\[
\text{let } n = \text{length}(a) \text{ in} \\
\text{length}(b) = n \land \\
(\forall k \in \mathbb{N}_{n-1}: b(k) \leq b(k+1)) \land \\
\exists p \in \mathbb{N}_n^*: \\
(\forall k_1, k_2 \in \mathbb{N}_n: k_1 \neq k_2 \rightarrow p(k_1) \neq p(k_2)) \land \\
(\forall k \in \mathbb{N}_n: a(k) = b(p(k)))
\]

(b is sorted)

(b is a permutation of a)

All inputs are legal; the result always exists and is uniquely determined.
Implementing Problem Specifications

\textbf{Input:} $x_1 \in T_1, \ldots, x_n \in T_n$ where I_x

\textbf{Output:} $y_1 \in U_1, \ldots, y_m \in U_m$ where $O_{x,y}$

- Specification demands definition of function $f : T_1 \times \ldots \times T_n \rightarrow U_1 \times \ldots \times U_m$ with property

$$\forall x_1 \in T_1, \ldots, x_n \in T_n : I_x \rightarrow \text{let } (y_1, \ldots, y_m) = f(x_1, \ldots, x_n) \text{ in } O_{x,y}$$

- For all arguments x_1, \ldots, x_n that satisfy the input condition,
- the result (y_1, \ldots, y_m) of f satisfies the output condition.

- The specification itself already implicitly defines such a function:

$$f(x_1, \ldots, x_n) := \text{such } y_1, \ldots, y_m : I_x \rightarrow O_{x,y}$$

- However, actually we want an explicitly defined function (computer program):

$$f(x_1, \ldots, x_n) := t_x$$

A core goal of computer science is to specify problems, to implement the specifications, and to verify the correctness of the implementation (e.g., by formal methods).