FIRST-ORDER PREDICATE LOGIC

Special Topics

Wolfgang Schreiner and Wolfgang Windsteiger
Wolfgang.(Schreiner|Windsteiger}@risc.jku.at
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU), Linz, Austria
http://www.risc.jku.at

JHU
Johannes Kepler
University Linz
Special Topics

We will conclude by discussing the following special topics:

- the method of **induction** for reasoning about natural numbers,
- the expressiveness and limits of first-order predicate logic.
Mathematical Induction

A method to prove statements over the natural numbers ($\mathbb{N}_{\geq m} = \{ m, m+1, m+2, \ldots \}$).

- **Goal:** prove
 \[
 \forall n \in \mathbb{N}_{\geq m} : F
 \]

- **Rule:**
 \[
 \begin{align*}
 K \ldots \vdash F[m/n] & \quad & K \ldots, \bar{n} \in \mathbb{N}_{\geq m}, F[\bar{n}/n] \vdash F[(\bar{n} + 1)/n] \\
 \hline
 K \ldots \vdash \forall n \in \mathbb{N}_{\geq m} : F
 \end{align*}
 \]

 $F[t/n]$: F where every free occurrence of n is replaced by t.

- **Proof Steps:**
 - **Induction base:** prove that F holds for m.
 - **Induction hypothesis:** assume that F holds for new constant $\bar{n} \geq m$.
 - **Induction step:** prove that then F also holds for $\bar{n} + 1$.

Every $n \geq m$ is reachable by a finite number of increments starting from m. 2/11
Example

We prove the “sum of squares” formula \(\forall n \in \mathbb{N}: \sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6} \)

- **Induction Base:** in this case \(m = 0 \).
 \[
 \sum_{i=1}^{0} i^2 = 0 = \frac{0 \cdot (0+1)(2 \cdot 0 + 1)}{6}
 \]

- **Induction Hypothesis:** assume
 \[
 \sum_{i=1}^{\bar{n}} i^2 = \frac{\bar{n} \cdot (\bar{n} + 1) \cdot (2\bar{n} + 1)}{6} \tag{*}
 \]

- **Induction Step:** prove
 \[
 \sum_{i=1}^{\bar{n}+1} i^2 = (\bar{n} + 1)^2 + \sum_{i=1}^{\bar{n}} i^2 \tag{*} = (\bar{n} + 1)^2 + \frac{\bar{n} \cdot (\bar{n} + 1) \cdot (2\bar{n} + 1)}{6} = \frac{\bar{n} + 1 \cdot (6 \cdot (\bar{n} + 1) + \bar{n} \cdot (2\bar{n} + 1))}{6} = \frac{(\bar{n} + 1) \cdot (2\bar{n}^2 + 7\bar{n} + 6)}{6} = \frac{(\bar{n} + 1) \cdot (\bar{n} + 2) \cdot (2\bar{n} + 3)}{6} = \frac{(\bar{n} + 1) \cdot ((\bar{n} + 1) + 1) \cdot (2(\bar{n} + 1) + 1)}{6}
 \]
Example

We prove

$$\forall n \in \mathbb{N}_{n \geq 4}: n^2 \leq 2^n$$

- **Induction base:** in this case $m = 4$, i.e., we show
 $$4^2 = 16 = 2^4.$$

- **Induction hypothesis:** we assume for $n \geq 4$
 $$n^2 \leq 2^n. \quad (\ast)$$

- **Induction step:** we show
 $$(n + 1)^2 = n^2 + 2n + 1 \overset{1 \leq n}{\leq} n^2 + 2n + n = n^2 + 3n \overset{0 \leq n}{\leq} n^2 + 4n \overset{4 \leq n}{\leq} n^2 + n \cdot n = n^2 + n^2 = 2n^2 \overset{\ast}{\leq} 2 \cdot 2^n = 2^{n+1}. \quad \square$$
Choice of Induction Variable

We define addition on \mathbb{N} by primitive recursion:

\[
\begin{align*}
x + 0 & := x \\
x + (y + 1) & := (x + y) + 1
\end{align*}
\]

Our goal is to prove the associativity law

\[
\forall x \in \mathbb{N}, y \in \mathbb{N}, z \in \mathbb{N}: x + (y + z) = (x + y) + z
\]

For this purpose, we fix arbitrary $x_0, y_0 \in \mathbb{N}$ and then prove

\[
\forall z \in \mathbb{N}: x_0 + (y_0 + z) = (x_0 + y_0) + z
\]

by induction on z.

Sometimes the appropriate choice of the induction variable is critical.
Choice of Induction Variable

We prove by induction on z: \[\forall z \in \mathbb{N}: x_0 + (y_0 + z) = (x_0 + y_0) + z. \]

- **Induction base:** we prove
 \[x_0 + (y_0 + 0) \stackrel{(1)}{=} x_0 + y_0 \stackrel{(1)}{=} (x_0 + y_0) + 0. \]

- **Induction hypothesis:** we assume for $z_0 \in \mathbb{N}$
 \[x_0 + (y_0 + z_0) = (x_0 + y_0) + z_0. \] \((*)\)

- **Induction step:** we have to show
 \[x_0 + (y_0 + (z_0 + 1)) = (x_0 + y_0) + (z_0 + 1). \]
 \[x_0 + (y_0 + (z_0 + 1)) \stackrel{(2)}{=} x_0 + ((y_0 + z_0) + 1) \stackrel{(2)}{=} (x_0 + (y_0 + z_0)) + 1 = \]
 \[\stackrel{(*)}{=} ((x_0 + y_0) + z_0) + 1 \stackrel{(2)}{=} (x_0 + y_0) + (z_0 + 1). \] \(\Box\)
Expressiveness of First-Order Logic (I)

- Variables denote elements of the domain, thus no quantification is possible over functions and predicates of the domain.
 This would require second-order predicate logic.

- Nevertheless we express in first-order logic statements such as

\[
\forall A, B, f : \text{isFun}(f, A, B) \land \text{bijective}(f) \rightarrow \exists g : \text{isFun}(g, B, A) \land \forall x \in B : f(g(x)) = x
\]

where \text{isFun}(f, A, B) and \text{isFun}(g, B, A) express that

- \(f \) and \(g \) are functions from \(A \) to \(B \) and from \(B \) to \(A \), respectively.
Expressiveness of First-Order Logic (II)

This is possible because formulas are usually interpreted over the domain of sets, i.e., all variables denote sets, e.g., $\text{isFun}(f,A,B)$ means $f \subseteq A \times B$ s.t.

$$\forall a \in A : \exists b \in B : (a,b) \in f$$

$$\forall a,b,b' : (a,b) \in f \land (a,b') \in f \rightarrow b = b'.$$

Terms like $f(g(x))$ involve a hidden binary function “apply” (“function application”)

$$f(g(x)) \sim \text{apply}(f,\text{apply}(g,x))$$

with

$$\text{apply}(f,x) := \textbf{the } y : (x,y) \in f.$$

Set theory pushes functions down to the level of objects.

First-order predicate logic over the domain of sets is the “working horse” of mathematics; virtually all of mathematics is formulated in this framework.
Limitations of FO Logic: Soundness and Completeness

Completeness Theorem (Kurt Gödel, 1929): First-order predicate logic has a proof calculus for which the following holds:

- **Soundness**: if a conclusion F can be derived from a set of assumptions Γ by the rules of the calculus, then F is a logical consequence of Γ, i.e.,
 \[\text{if } \Gamma \vdash F \text{ then } \Gamma \models F. \]

- **Completeness**: if F is a logical consequence of Γ, then F can be derived from Γ by the rules of the calculus, i.e.,
 \[\text{if } \Gamma \models F \text{ then } \Gamma \vdash F. \]

No logic that is stronger (more expressive) than first-order predicate logic has a proof calculus that also enjoys both soundness and completeness.
Undecidability of First-Order Logic

The existence of a complete proof calculus does not mean that the truth of every formula is algorithmically decidable.

- **Undecidability (Church/Turing, 1936/1937):** there does not exist any algorithm that for given formula set Γ and formula F always terminates and says whether $\Gamma \models F$ holds or not.

- **Semidecidability:** but there exists an algorithm, that for given Γ and F, if $\Gamma \models F$, detects this fact in a finite amount of time. This algorithm searches for a proof of $\Gamma \vdash F$ in a complete proof calculus; if such a proof exists, it will eventually detect it; however, if no such proof exists, the search runs forever.

Automatic proof search is not able to detect that a formula is not true.
Limits of First-Order Logic

Not every structure can be completely described by a finite set of formulas.

- **Incompleteness Theorem (Kurt Gödel, 1931):** it is in no sound logic possible to prove all true arithmetic statements (i.e., all statements about natural numbers with addition and multiplication).
 - To adequately characterize \mathbb{N}, the (infinite) axiom scheme of mathematical induction has to be added.

- **Corollary:** in every sound formal system that is sufficiently rich there are statements that can neither be proved nor disproved.

In practice, complete reasoners for first-order logic are often supported by (complete or incomplete) reasoners for special theories.