First Order Predicate Logic

Pragmatics

Wolfgang Schreiner and Wolfgang Windsteiger
Wolfgang.(Schreiner|Windsteiger)@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU), Linz, Austria
http://www.risc.jku.at
Pragmatics

We will now investigate the practical use of logic in two contexts.

▶ **Defining Models**
 ▶ Introducing new domains and operations.
 ▶ Unique characterizations of their meaning.

▶ **Specifying Problems**
 ▶ Describing expectations for computations.
 ▶ Assumptions on the inputs and guarantees for the outputs.

Highly relevant for computer science and mathematics.
The Standard Models \(\mathbb{N}, \mathbb{Z}, \mathbb{R} \)

Each model consists of a domain (a set of values) and constants, functions, predicates on that domain.

- **The Natural Numbers**
 - \(\mathbb{N} \): the set of all natural numbers 0,1,2,....
 - \(\mathbb{N}_n \): the first \(n \) natural numbers 0,1,...,\(n-1 \).
 - \(\mathbb{N}_{>0} \): the natural numbers 1,2,... without 0.

- **The Integer Numbers**
 - \(\mathbb{Z} \): the set of all integers ...,−2,−1,0,1,2,...

- **The Real Numbers**
 - \(\mathbb{R} \): the set of all real numbers.
 - \(\mathbb{R}_{\geq 0} \): the set of all non-negative real numbers.
 - \(\mathbb{R}_{>0} \): the set of all positive real numbers.

Example

- \(n \in \mathbb{N}_8 \): \(n \) is a natural number in the range 0,...,7.

We assume the usual arithmetic operations.
The Standard Model “Set”

- **Domain \(\mathcal{P}(T) \)**
 - The set of all sets whose elements are from set \(T \).
- **Membership predicate:** \(e \in S \)
 - Read: “element \(e \) is in set \(S \)”
- **Set builder quantifier:** \(\{ t \mid x \in S, \ldots \land F \} \)
 - Read: “the set of all values of term \(t \) where the variables \(x, \ldots \) run over all elements of sets \(S, \ldots \) that satisfy formula \(F \)”
 - Term \(t \), terms \(S, \ldots \) (denoting sets), formula \(F \).

Example

- \(S \in \mathcal{P}(\mathbb{N}_8) \): \(S \) is a set whose elements are natural numbers in \(0, \ldots, 7 \).
- \(S = \{2 \cdot x \mid x \in \mathbb{N} \land x > 0\} \): \(S \) is the set of all positive even numbers.

Sets model “unordered collections”.

Wolfgang Schreiner and Wolfgang Windsteiger

http://www.risc.jku.at
The Standard Model “Product”

- Domain $T_1 \times \ldots \times T_n$
 - The set of all tuples with n components that are from sets T_1, \ldots, T_n, respectively.
- Tuple constructor (c_1, \ldots, c_n)
 - Read: “the tuple with components c_1, \ldots, c_n”
- Tuple selector $t.i$
 - Read: “component i of tuple t”.
 - Tuple index $i = 1, \ldots, n$.

Example

- $t \in \mathbb{N}_2 \times \mathbb{Z}$: t is a tuple with two components; its first component $t.1$ is a bit (0 or 1) and its second component $t.2$ is an integer.

Tuples model “records” or “structures”.
The Standard Model “Sequence”

- **Sequence Domains**
 - \(T^* \): the set of all finite sequences of values from set \(T \).
 - \(T^\omega \): the set of all infinite sequences of values from set \(T \).

- **Sequence length \(\text{length}(s) \)**
 - Read: “the length of sequence \(s \)”.
 - Only if \(s \in T^* \), i.e., \(s \) is finite.

- **Sequence selector \(s(i) \)**
 - Read: “element \(i \) of sequence \(s \)”.
 - \(s \in T^* : i \in \mathbb{N}_{\text{length}(s)} \)
 - \(s \in T^\omega : i \in \mathbb{N} \)

Example

- \(s \in \mathbb{Z}^* : s \) is a finite sequence of integers; if \(\text{length}(s) = 4 \), it has elements \(s(0), s(1), s(2), s(3) \).

Finite sequences model “arrays”.

Wolfgang Schreiner and Wolfgang Windsteiger
Domain Definitions

From the standard domains, we may build new domains.

- A domain definition

\[T := \ldots \]

defines a new domain \(T \) from previously introduced domains using domain constructors and/or set builders.

Example

\[
Nat := \mathbb{N}_{2^{31}}
\]

\[
Int := \{ i \mid i \in \mathbb{Z} \land -2^{31} \leq i \land i < 2^{31} \}
\]

\[
IntArray := Int^*
\]

\[
IntStream := Int^\omega
\]

\[
Primes := \{ x \mid x \in \mathbb{N} \land x \geq 2 \land (\forall y \in \mathbb{N} : 1 < y \land y < x \rightarrow \neg (y \mid x)) \}
\]
Explicit Function Definitions

A new function may be introduced by describing its value.

- An explicit function definition

\[f : T_1 \times \ldots \times T_n \rightarrow T \]

\[f(x_1, \ldots, x_n) := t \]

consists of

- a new \(n \)-ary function constant \(f \),
- a type signature \(T_1 \times \ldots \times T_n \rightarrow T \) with sets \(T_1, \ldots, T_n, T \),
- a list of variables \(x_1, \ldots, x_n \) (the parameters), and
- a term \(t \) (the body) whose free variables occur in \(x_1, \ldots, x_n \);
- case \(n = 0 \): the definition of a value constant \(f : T, f := t \).

We have to show for the newly introduced function \(f \)

\[\forall x_1 \in T_1, \ldots, x_n \in T_n : t \in T \]

and then know

\[\forall x_1 \in T_1, \ldots, x_n \in T_n : f(x_1, \ldots, x_n) = t \]

The body of an explicit function definition may only refer to previously defined functions (no recursion).
Examples

- **Definition:** Let x and y be natural numbers. Then the *square sum* of x and y is the sum of the squares of x and y.

 $\text{squaresum} : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$

 $\text{squaresum}(x, y) := x^2 + y^2$

- **Definition:** Let x and y be natural numbers. Then the *squared sum* of x and y is the square of z where z is the sum of x and y.

 $\text{sumsquared} : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$

 $\text{sumsquared}(x, y) := \text{let } z = x + y \text{ in } z^2$

- **Definition:** Let n be a natural number. Then the *square sum set* of n is the set of the square sums of all numbers x and y from 1 to n.

 $\text{squaresumset} : \mathbb{N} \rightarrow \mathcal{P}(\mathbb{N})$

 $\text{squaresumset}(n) := \{\text{squaresum}(x, y) \mid x, y \in \mathbb{N} \land 1 \leq x \leq n \land 1 \leq y \leq n\}$
Explicit Predicate Definitions

A new predicate may be introduced by describing its truth value.

- An explicit predicate definition

\[p \subseteq T_1 \times \ldots \times T_n \]
\[p(x_1, \ldots, x_n) \iff F \]

consists of

- a new \(n \)-ary predicate constant \(p \),
- a type signature \(T_1 \times \ldots \times T_n \) with sets \(T_1, \ldots, T_n \)
- a list of variables \(x_1, \ldots, x_n \) (the parameters), and
- a formula \(F \) (the body) whose free variables occur in \(x_1, \ldots, x_n \).
- case \(n = 0 \): definition of a truth value constant \(p : \iff F \).

- We then know for the newly introduced predicate \(p \):

\[\forall x_1 \in T_1, \ldots, x_n \in T_n : p(x_1, \ldots, x_n) \iff F \]

The body of an explicit predicate definition may only refer to previously defined predicates (no recursion).
Examples

- **Definition:** Let \(x, y \) be natural numbers. Then \(x \) divides \(y \) (written as \(x \mid y \)) if \(x \cdot z = y \) for some natural number \(z \).

\[
| \subseteq \mathbb{N} \times \mathbb{N} \\
x \mid y :\Leftrightarrow \exists z \in \mathbb{N} : x \cdot z = y
\]

- **Definition:** Let \(x \) be a natural number. Then \(x \) is prime if \(x \) is at least two and the only divisors of \(x \) are one and \(x \) itself.

\[
isprime \subseteq \mathbb{N} \\
isprime(x) :\Leftrightarrow x \geq 2 \land \forall y \in \mathbb{N} : y \mid x \Rightarrow y = 1 \lor y = x
\]

- **Definition:** Let \(p, n \) be a natural numbers. Then \(p \) is a prime factor of \(n \), if \(p \) is prime and divides \(n \).

\[
isprimefactor \subseteq \mathbb{N} \times \mathbb{N} \\
isprimefactor(p, n) :\Leftrightarrow isprime(p) \land p \mid n
\]
Implicit Function Definitions

A new function may be introduced by a condition for its value.

- An implicit function definition

\[f : T_1 \times \ldots \times T_n \rightarrow T \]

\[f(x_1, \ldots, x_n) := \text{such } y : F \text{ (or: the } y : F) \]

consists of

- a new \(n \)-ary function constant \(f \),
- a type signature \(T_1 \times \ldots \times T_n \rightarrow T \) with sets \(T_1, \ldots, T_n, T \),
- a list of variables \(x_1, \ldots, x_n \) (the parameters),
- a variable \(y \) (the result variable),
- a formula \(F \) (the result condition) whose free variables occur in \(x_1, \ldots, x_n, y \).

- We then know for the newly introduced function \(f \)

\[\forall x_1 \in T_1, \ldots, x_n \in T_n : \]
\[(\exists y \in T : F) \rightarrow (\exists y \in T : F \land y = f(x_1, \ldots, x_n)) \]

- If there is some value that satisfies the result condition, the function result is one such value (otherwise, it is undefined).
- With \textbf{the} we claim that the value of \(f \) always exists and is unique.

The definition of a function by a formula (rather than a term).

Wolfgang Schreiner and Wolfgang Windsteiger
http://www.risc.jku.at
Examples

- **Definition:** Let x be a real number. A *root* of x is a real number y such that the square of y is x (if such a y exists).

 $a\text{Root} : \mathbb{R} \rightarrow \mathbb{R}
 a\text{Root}(x) := \text{such } y : y^2 = x$

- **Definition:** Let x be a non-negative real number. *The root* of x is that real number y such that the square of y is x and $y \geq 0$.

 $\text{theRoot} : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}
 \text{theRoot}(x) := \text{the } y : y^2 = x \land y \geq 0$

- **Definition:** Let $m, n \in \mathbb{N}$ with n positive. Then the (truncated) quotient $q \in \mathbb{N}$ of m and n is such that $m = n \cdot q + r$ for some $r \in \mathbb{N}$ with $r < n$.

 $\text{quotient} : \mathbb{N} \times \mathbb{N}_{>0} \rightarrow \mathbb{N}
 \text{quotient}(m, n) := \text{the } q : \exists r \in \mathbb{N} : m = n \cdot q + r \land r < n$

- **Definition:** Let x, y be positive natural numbers. Then $gcd(x, y)$ denotes the greatest such number that divides both x and y.

 $gcd : \mathbb{N}_{>0} \times \mathbb{N}_{>0} \rightarrow \mathbb{N}_{>0}
 gcd(x, y) := \text{the } z : z|x \land z|y \land \forall z' \in \mathbb{N}_{>0} : z'|x \land z'|y \rightarrow z' \leq z$

 The result of an implicitly specified function is not necessarily uniquely defined (and may be also completely undefined).
Predicates versus Functions

A predicate gives rise to functions in two ways.

▶ A predicate:

\[\text{isprimefactor} \subseteq \mathbb{N} \times \mathbb{N} \]

\[\text{isprimefactor}(p, n) :\Leftrightarrow \text{isprime}(p) \land p \mid n \]

▶ An implicitly defined function:

\[\text{someprimefactor} : \mathbb{N} \to \mathbb{N} \]

\[\text{someprimefactor}(n) := \text{such } p : \text{isprime}(p) \land p \mid n \]

▶ An explicitly defined function whose result is a set:

\[\text{allprimefactors} : \mathbb{N} \to \mathcal{P}(\mathbb{N}) \]

\[\text{allprimefactors}(n) := \{ p \in \mathbb{N} \mid \text{isprime}(p) \land p \mid n \} \]

The preferred style of definition is a matter of taste and purpose.
An important role of logic in computer science is to specify problems.

- The specification of a (computational) problem

 Input: \(x_1 \in T_1, \ldots, x_n \in T_n \) where \(I \)

 Output: \(y_1 \in U_1, \ldots, y_m \in U_m \) where \(O \)

consists of

- a list of input variables \(x_1, \ldots, x_n \) with types \(T_1, \ldots, T_n \),
- a formula \(I \) (the input condition or precondition) whose free variables occur in \(x_1, \ldots, x_n \),
- a list of output variables \(y_1, \ldots, y_m \) with types \(U_1, \ldots, U_m \), and
- a formula \(O \) (the output condition or postcondition) whose free variables occur in \(x_1, \ldots, x_n, y_1, \ldots, y_m \).

The specification is expressed with the help of functions and predicates that have been previously defined to describe the problem domain.
Example

Extract from a finite sequence s of natural numbers a subsequence of length n starting at position p.

\[
\begin{array}{cccccc}
\text{s} & \text{t} \\
\end{array}
\]

\[p \quad n\]

Input: $s \in \mathbb{N}^*$, $n \in \mathbb{N}$, $p \in \mathbb{N}$ where

\[n + p \leq \text{length}(s)\]

Output: $t \in \mathbb{N}^*$ where

\[
\text{length}(t) = n \land \\
\forall i \in \mathbb{N} \land t(i) = s(i + p)
\]

The resulting sequence must have appropriate length and content.
The Adequacy of Specifications

Given a specification

\[
\text{Input: } x \text{ where } P(x) \quad \text{Output: } y \text{ where } Q(x,y)
\]

we may ask the following questions:

- Is precondition satisfiable? \((\exists x : P(x))\)

 Otherwise no input is allowed.

- Is precondition not trivial? \((\exists x : \neg P(x))\)

 Otherwise every input is allowed, why then the precondition?

- Is postcondition always satisfiable? \((\forall x : P(x) \rightarrow \exists y : Q(x,y))\)

 Otherwise no implementation is legal.

- Is postcondition not always trivial? \((\exists x, y : P(x) \land \neg Q(x,y))\)

 Otherwise every implementation is legal.

- Is result unique? \((\forall x, y_1, y_2 : P(x) \land Q(x,y_1) \land Q(x,y_2) \rightarrow y_1 = y_2)\)

 Whether this is required, depends on our expectations.
Example: The Problem of Integer Division

Input: \(m \in \mathbb{N}, n \in \mathbb{N} \)

Output: \(q \in \mathbb{N}, r \in \mathbb{N} \) where \(m = n \cdot q + r \)

- The postcondition is always satisfiable but not trivial.
 - For \(m = 13, n = 5 \), e.g. \(q = 2, r = 3 \) is legal but \(q = 2, r = 4 \) is not.
 - But the result is not unique.
 - For \(m = 13, n = 5 \), both \(q = 2, r = 3 \) and \(q = 1, r = 8 \) are legal.

Input: \(m \in \mathbb{N}, n \in \mathbb{N} \)

Output: \(q \in \mathbb{N}, r \in \mathbb{N} \) where \(m = n \cdot q + r \land r < n \)

- Now the postcondition is not always satisfiable.
 - For \(m = 13, n = 0 \), no output is legal.

Input: \(m \in \mathbb{N}, n \in \mathbb{N} \) where \(n \neq 0 \)

Output: \(q \in \mathbb{N}, r \in \mathbb{N} \) where \(m = n \cdot q + r \land r < n \)

- The precondition is not trivial but satisfiable.
 - \(m = 13, n = 0 \) is not legal but \(m = 13, n = 5 \) is.

- The postcondition is always satisfiable and result is unique.
 - For \(m = 13, n = 5 \), only \(q = 2, r = 3 \) is legal.
Example: The Problem of Linear Search

Given a finite integer sequence \(a \) and an integer \(x \), determine the smallest position \(p \) at which \(x \) occurs in \(a \) \((p = -1, \text{ if } x \text{ does not occur in } a)\).

Example: \(a = [2, 3, 5, 7, 5, 11], x = 5 \leadsto p = 2 \)

Input: \(a \in \mathbb{Z}^*, x \in \mathbb{Z} \)

Output: \(p \in \mathbb{N}^* \cup \{-1\} \) where

\[
\text{let } n = \text{length}(a) \text{ in } \\
\text{if } \exists p \in \mathbb{N}_n : a(p) = x \\
\quad \text{then } p \in \mathbb{N}_n \land a(p) = x \land (\forall q \in \mathbb{N}_n : a(q) = x \rightarrow p \leq q) \\
\quad \text{else } p = -1
\]

All inputs are legal; the result always exists and is uniquely determined.

Wolfgang Schreiner and Wolfgang Windsteiger
http://www.risc.jku.at
Example: The Problem of Binary Search

Given a finite integer sequence \(a \) that is sorted in ascending order and an integer \(x \), determine some position \(p \) at which \(x \) occurs in \(a \) (\(p = -1 \), if \(x \) does not occur in \(a \)).

Example: \(a = [2, 3, 5, 5, 5, 7, 11] \), \(x = 5 \) \(\mapsto \) \(p \in \{2, 3, 4\} \)

Input: \(a \in \mathbb{Z}^* \), \(x \in \mathbb{Z} \) where

\[
\text{let } n = \text{length}(a) \text{ in } \\
\forall k \in \mathbb{N}_{n-1} : a(k) \leq a(k + 1) \quad // \quad a \text{ is sorted}
\]

Output: \(p \in \mathbb{N}^* \cup \{-1\} \) where

\[
\text{let } n = \text{length}(a) \text{ in } \\
\text{if } \exists p \in \mathbb{N}_n : a(p) = x \\
\quad \text{then } p \in \mathbb{N}_n \land a(p) = x \\
\text{else } p = -1
\]

Not all inputs are legal; for every legal input, the result exists but is not uniquely determined.
Example: The Problem of Sorting

Given a finite integer sequence \(a\), determine that permutation \(b\) of \(a\) that is sorted in ascending order.

Example: \(a = [5, 3, 7, 2, 3] \leadsto b = [2, 3, 3, 5, 7]\)

Input: \(a \in \mathbb{Z}^*\)

Output: \(b \in \mathbb{N}^*\) where

\[
\text{let } n = \text{length}(a) \text{ in } \\
\text{length}(b) = n \land \\
(\forall k \in \mathbb{N}_{n-1} : b(k) \leq b(k + 1)) \land \quad // \ b \text{ is sorted} \\
\exists p \in \mathbb{N}^*_n : \quad // \ b \text{ is a permutation of } a \\
(\forall k1 \in \mathbb{N}_n, k2 \in \mathbb{N}_n : k1 \neq k2 \rightarrow p(k1) \neq p(k2)) \land \\
(\forall k \in \mathbb{N}_n : a(k) = b(p(k)))
\]

All inputs are legal; the result always exists and is uniquely determined.
Implementing Problem Specifications

The ultimate goal of computer science is to implement specifications.

- The specifications demands the definition of a function
 \(f : T_1 \times \cdots \times T_n \to U_1 \times \cdots \times U_m \) such that

 \[
 \forall x_1 \in T_1, \ldots, x_n \in T_n : I \to
 \begin{aligned}
 &\text{let } (y_1, \ldots, y_m) = f(x_1, \ldots, x_n) \text{ in } O \\
 &\text{For all arguments } x_1, \ldots, x_n \text{ that satisfy the input condition,}
 \\
 &\text{the result } (y_1, \ldots, y_m) \text{ of } f \text{ satisfies the output condition.}
 \\
 &\text{The specification itself already implicitly defines such a function:}
 \\
 &f(x_1, \ldots, x_n) := \text{such } y_1, \ldots, y_m : I \to O
 \\
 &\text{However, the specification is actually implemented only by an}
 \\
 &\text{explicitly defined function (computer program).}
 \\
 \end{aligned}
\]

 \textit{The correctness of the implementation with respect to the}
 \textit{specification has to be verified (e.g. by a formal proof).}

A core goal of CS is to adequately specify problems, to implement the
specifications, and to verify the correctness of the implementations.