First Order Predicate Logic
Pragmatics

Wolfgang Schreiner and Wolfgang Windsteiger
Wolfgang.(Schreiner|Windsteiger)@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU), Linz, Austria
http://www.risc.jku.at
We will now investigate the practical use of logic in two contexts.

- **Defining Models**
 - Introducing new domains and operations.
 - Unique characterizations of their meaning.

- **Specifying Problems**
 - Describing expectations for computations.
 - Assumptions on the inputs and guarantees for the outputs.

Highly relevant for computer science and mathematics.
The Standard Models \mathbb{N}, \mathbb{Z}, \mathbb{R}

Each model consists of a domain (a set of values) and constants, functions, predicates on that domain.

- **The Natural Numbers**
 - \mathbb{N}: the set of all natural numbers $0, 1, 2, \ldots$
 - \mathbb{N}_n: the first n natural numbers $0, 1, \ldots, n-1$.
 - $\mathbb{N}_{>0}$: the natural numbers $1, 2, \ldots$ without 0.

- **The Integer Numbers**
 - \mathbb{Z}: the set of all integers $\ldots, -2, -1, 0, 1, 2, \ldots$

- **The Real Numbers**
 - \mathbb{R}: the set of all real numbers.
 - $\mathbb{R}_{\geq 0}$: the set of all non-negative real numbers.
 - $\mathbb{R}_{>0}$: the set of all positive real numbers.

Example

- $n \in \mathbb{N}_8$: n is a natural number in the range $0, \ldots, 7$.

We assume the usual arithmetic operations.
The Standard Model “Set”

- **Domain \(\mathcal{P}(T) \)**
 - The set of all sets whose elements are from set \(T \).
- **Membership predicate:** \(e \in S \)
 - Read: “element \(e \) is in set \(S \)”
- **Set builder quantifier:** \(\{ t \mid x \in S \land \ldots \land F \} \)
 - Read: “the set of all values of term \(t \) where the variables \(x, \ldots \) run over all elements of sets \(S, \ldots \) that satisfy formula \(F \)”
 - Term \(t \), terms \(S, \ldots \) (denoting sets), formula \(F \).

Example

- \(S \in \mathcal{P}(\mathbb{N}_8) \): \(S \) is a set whose elements are natural numbers in 0, \ldots, 7.
- \(S = \{ 2 \cdot x \mid x \in \mathbb{N} \land x > 0 \} \): \(S \) is the set of all positive even numbers.

Sets model “unordered collections”.
The Standard Model “Product”

- Domain \(T_1 \times \ldots \times T_n \)
 - The set of all tuples with \(n \) components that are from sets \(T_1, \ldots, T_n \), respectively.
- Tuple constructor \((c_1, \ldots, c_n)\)
 - Read: “the tuple with components \(c_1, \ldots, c_n \)”
- Tuple selector \(t.i \)
 - Read: “component \(i \) of tuple \(t \)”.
 - Tuple index \(i = 1, \ldots, n \).

Example

- \(t \in N_2 \times Z \): \(t \) is a tuple with two components; its first component \(t.1 \) is a bit (0 or 1) and its second component \(t.2 \) is an integer.

Tuples model “records” or “structures”.

The Standard Model “Sequence”

- **Sequence Domains**
 - T^*: the set of all finite sequences of values from set T.
 - T^ω: the set of all infinite sequences of values from set T.

- **Sequence length $\text{length}(s)$**
 - Read: “the length of sequence s”.
 - Only if $s \in T^*$, i.e., s is finite.

- **Sequence selector $s(i)$**
 - Read: “element i of sequence s”.
 - $s \in T^*$: $i \in \mathbb{N}_{\text{length}(s)}$
 - $s \in T^\omega$: $i \in \mathbb{N}$

Example

- $s \in \mathbb{Z}^*$: s is a finite sequence of integers; if $\text{length}(s) = 4$, it has elements $s(0), s(1), s(2), s(3)$.

Finite sequences model “arrays.”
Domain Definitions

From the standard domains, we may build new domains.

- A domain definition

\[T := \ldots \]

defines a new domain \(T \) from previously introduced domains using domain constructors and/or set builders.

Example

\[\begin{align*}
Nat & := \mathbb{N}_{231} \\
Int & := \{ i \mid i \in \mathbb{Z} \land -2^{31} \leq i \land i < 2^{31} \} \\
IntArray & := Int^* \\
IntStream & := Int^\omega \\
Primes & := \{ x \mid x \in \mathbb{N} \land x \geq 2 \land (\forall y \in \mathbb{N} : 1 < y \land y < x \rightarrow \neg(y|x)) \}\end{align*} \]
Explicit Function Definitions

A new function may be introduced by describing its value.

- An explicit function definition

$$f : T_1 \times \ldots \times T_n \to T$$
$$f(x_1, \ldots, x_n) := t$$

- The body of an explicit function definition may only refer to previously defined functions (no recursion).
Examples

- **Definition:** Let x and y be natural numbers. Then the *square sum* of x and y is the sum of the squares of x and y.

 \[
 \text{squaresum} : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \\
 \text{squaresum}(x, y) := x^2 + y^2
 \]

- **Definition:** Let x and y be natural numbers. Then the *squared sum* of x and y is the square of z where z is the sum of x and y.

 \[
 \text{sumsquared} : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \\
 \text{sumsquared}(x, y) := \text{let } z = x + y \text{ in } z^2
 \]

- **Definition:** Let n be a natural number. Then the *square sum set* of n is the set of the square sums of all numbers x and y from 1 to n.

 \[
 \text{squaresumset} : \mathbb{N} \rightarrow \mathcal{P}(\mathbb{N}) \\
 \text{squaresumset}(n) := \{\text{squaresum}(x, y) \mid x, y \in \mathbb{N} \land 1 \leq x \leq n \land 1 \leq y \leq n\}
 \]
Explicit Predicate Definitions

A new predicate may be introduced by describing its truth value.

- An explicit predicate definition

\[
p \subseteq T_1 \times \ldots \times T_n
\]

\[
p(x_1, \ldots, x_n) : \Leftrightarrow F
\]

consists of

- a new \(n \)-ary predicate constant \(p \),
- a type signature \(T_1 \times \ldots \times T_n \) with sets \(T_1, \ldots, T_n \)
- a list of variables \(x_1, \ldots, x_n \) (the parameters), and
- a formula \(F \) (the body) whose free variables occur in \(x_1, \ldots, x_n \).

- case \(n = 0 \): definition of a truth value constant \(p : \Leftrightarrow F \).

- We then know for the newly introduced predicate \(p \):

\[
\forall x_1 \in T_1, \ldots, x_n \in T_n : p(x_1, \ldots, x_n) \Leftrightarrow F
\]

The body of an explicit predicate definition may only refer to previously defined predicates (no recursion).
Examples

- **Definition:** Let x, y be natural numbers. Then x divides y (written as $x|y$) if $x \cdot z = y$ for some natural number z.

\[| \subseteq \mathbb{N} \times \mathbb{N} \]
\[x|y \iff \exists z \in \mathbb{N} : x \cdot z = y \]

- **Definition:** Let x be a natural number. Then x is prime if x is at least two and the only divisors of x are one and x itself.

\[\text{isprime} \subseteq \mathbb{N} \]
\[\text{isprime}(x) :\iff x \geq 2 \land \forall y \in \mathbb{N} : y|x \rightarrow y = 1 \lor y = x \]

- **Definition:** Let p, n be natural numbers. Then p is a prime factor of n, if p is prime and divides n.

\[\text{isprimefactor} \subseteq \mathbb{N} \times \mathbb{N} \]
\[\text{isprimefactor}(p, n) :\iff \text{isprime}(p) \land p|n \]
Implicit Function Definitions

A new function may be introduced by a condition for its value.

• An implicit function definition

\[f : T_1 \times \ldots \times T_n \rightarrow T \]
\[f(x_1, \ldots, x_n) := \textbf{such } y : F \text{ (or: the } y : F) \]

consists of

• a new \(n \)-ary function constant \(f \),
• a type signature \(T_1 \times \ldots \times T_n \rightarrow T \) with sets \(T_1, \ldots, T_n, T \),
• a list of variables \(x_1, \ldots, x_n \) (the parameters),
• a variable \(y \) (the result variable),
• a formula \(F \) (the result condition) whose free variables occur in \(x_1, \ldots, x_n, y \).

• We then know for the newly introduced function \(f \)

\[\forall x_1 \in T_1, \ldots, x_n \in T_n : \]
\[(\exists y \in T : F) \rightarrow (\exists y \in T : F \land y = f(x_1, \ldots, x_n)) \]

• If there is some value that satisfies the result condition, the function result is one such value (otherwise, it is undefined).
• With \textbf{the} we claim that the value of \(f \) always exists and is unique.

The definition of a function by a formula (rather than a term).
Examples

- **Definition:** Let x be a real number. A *root* of x is a real number y such that the square of y is x (if such a y exists).

 \[
 a\text{Root} : \mathbb{R} \to \mathbb{R} \\
 a\text{Root}(x) := \text{such } y : y^2 = x
 \]

- **Definition:** Let x be a non-negative real number. The *root* of x is that real number y such that the square of y is x and $y \geq 0$.

 \[
 \text{theRoot} : \mathbb{R}_{\geq 0} \to \mathbb{R} \\
 \text{theRoot}(x) := \text{the } y : y^2 = x \land y \geq 0
 \]

- **Definition:** Let $m, n \in \mathbb{N}$ with n positive. Then the (truncated) quotient $q \in \mathbb{N}$ of m and n is such that $m = n \cdot q + r$ for some $r \in \mathbb{N}$ with $r < n$.

 \[
 \text{quotient} : \mathbb{N} \times \mathbb{N}_{>0} \to \mathbb{N} \\
 \text{quotient}(m, n) := \text{the } q : \exists r \in \mathbb{N} : m = n \cdot q + r \land r < n
 \]

- **Definition:** Let x, y be positive natural numbers. Then $\text{gcd}(x, y)$ denotes the greatest such number that divides both x and y.

 \[
 \text{gcd} : \mathbb{N}_{>0} \times \mathbb{N}_{>0} \to \mathbb{N}_{>0} \\
 \text{gcd}(x, y) := \text{the } z : z \mid x \land z \mid y \land \forall z' \in \mathbb{N}_{>0} : z' \mid x \land z' \mid y \to z' \leq z
 \]

The result of an implicitly specified function is not necessarily uniquely defined (and may be also completely undefined).
Predicates versus Functions

A predicate gives rise to functions in two ways.

▶ A predicate:

\[
isprimefactor \subseteq \mathbb{N} \times \mathbb{N}
\]
\[
isprimefactor(p, n) :\Leftrightarrow \text{isprime}(p) \land p \mid n
\]

▶ An implicitly defined function:

\[
someprimefactor : \mathbb{N} \rightarrow \mathbb{N}
\]
\[
someprimefactor(n) := \text{such } p : \text{isprime}(p) \land p \mid n
\]

▶ An explicitly defined function whose result is a set:

\[
allprimefactors : \mathbb{N} \rightarrow \mathcal{P}(\mathbb{N})
\]
\[
allprimefactors(n) := \{ p \in \mathbb{N} \mid \text{isprime}(p) \land p \mid n \}
\]

The preferred style of definition is a matter of taste and purpose.
Specifying Problems

An important role of logic in computer science is to specify problems.

- The specification of a (computational) problem

 \[
 \text{Input: } x_1 \in T_1, \ldots, x_n \in T_n \text{ where } I
 \]
 \[
 \text{Output: } y_1 \in U_1, \ldots, y_m \in U_m \text{ where } O
 \]

 consists of

 - a list of input variables x_1, \ldots, x_n with types T_1, \ldots, T_n,
 - a formula I (the input condition or precondition) whose free variables occur in x_1, \ldots, x_n,
 - a list of output variables y_1, \ldots, y_m with types U_1, \ldots, U_m, and
 - a formula O (the output condition or postcondition) whose free variables occur in $x_1, \ldots, x_n, y_1, \ldots, y_m$.

 The specification is expressed with the help of functions and predicates that have been previously defined to describe the problem domain.
Example

Extract from a finite sequence s of natural numbers a subsequence of length n starting at position p.

Input: $s \in \mathbb{N}^*$, $n \in \mathbb{N}$, $p \in \mathbb{N}$ where $n + p \leq \text{length}(s)$

Output: $t \in \mathbb{N}^*$ where

$\text{length}(t) = n \land \forall i \in \mathbb{N}_n : t(i) = s(i + p)$

The resulting sequence must have appropriate length and content.
The Adequacy of Specifications

Given a specification

\[\text{Input: } x \text{ where } P(x) \text{ Output: } y \text{ where } Q(x, y) \]

we may ask the following questions:

▶ Is precondition satisfiable? \((\exists x : P(x))\)

Otherwise no input is allowed.

▶ Is precondition not trivial? \((\exists x : \neg P(x))\)

Otherwise every input is allowed, why then the precondition?

▶ Is postcondition always satisfiable? \((\forall x : P(x) \rightarrow \exists y : Q(x, y))\)

Otherwise no implementation is legal.

▶ Is postcondition not always trivial? \((\exists x, y : P(x) \land \neg Q(x, y))\)

Otherwise every implementation is legal.

▶ Is result unique? \((\forall x, y_1, y_2 : P(x) \land Q(x, y_1) \land Q(x, y_2) \rightarrow y_1 = y_2)\)

Whether this is required, depends on our expectations.
Example: The Problem of Integer Division

Input: \(m \in \mathbb{N}, n \in \mathbb{N} \)

Output: \(q \in \mathbb{N}, r \in \mathbb{N} \) where \(m = n \cdot q + r \)

- The postcondition is always satisfiable but not trivial.
 - For \(m = 13, n = 5 \), e.g. \(q = 2, r = 3 \) is legal but \(q = 2, r = 4 \) is not.
- But the result is not unique.
 - For \(m = 13, n = 5 \), both \(q = 2, r = 3 \) and \(q = 1, r = 8 \) are legal.

Input: \(m \in \mathbb{N}, n \in \mathbb{N} \)

Output: \(q \in \mathbb{N}, r \in \mathbb{N} \) where \(m = n \cdot q + r \land r < n \)

- Now the postcondition is not always satisfiable.
 - For \(m = 13, n = 0 \), no output is legal.

Input: \(m \in \mathbb{N}, n \in \mathbb{N} \) where \(n \neq 0 \)

Output: \(q \in \mathbb{N}, r \in \mathbb{N} \) where \(m = n \cdot q + r \land r < n \)

- The precondition is not trivial but satisfiable.
 - \(m = 13, n = 0 \) is not legal but \(m = 13, n = 5 \) is.
- The postcondition is always satisfiable and result is unique.
 - For \(m = 13, n = 5 \), only \(q = 2, r = 3 \) is legal.
Example: The Problem of Linear Search

Given a finite integer sequence a and an integer x, determine the smallest position p at which x occurs in a ($p = -1$, if x does not occur in a).

Example: $a = [2, 3, 5, 7, 5, 11], x = 5 \leadsto p = 2$

Input: $a \in \mathbb{Z}^*, x \in \mathbb{Z}$

Output: $p \in \mathbb{N} \cup \{-1\}$ where

let $n = length(a)$ in

if $\exists p \in \mathbb{N}_n : a(p) = x$

then $p \in \mathbb{N}_n \land a(p) = x \land (\forall q \in \mathbb{N}_n : a(q) = x \rightarrow p \leq q)$

else $p = -1$

All inputs are legal; the result always exists and is uniquely determined.
Example: The Problem of Binary Search

Given a finite integer sequence \(a \) that is sorted in ascending order and an integer \(x \), determine some position \(p \) at which \(x \) occurs in \(a \) (\(p = -1 \), if \(x \) does not occur in \(a \)).

Example: \(a = [2, 3, 5, 5, 5, 7, 11], x = 5 \rightleftharpoons p \in \{2, 3, 4\} \)

Input: \(a \in \mathbb{Z}^*, x \in \mathbb{Z} \) where

\[
\text{let } n = \text{length}(a) \text{ in } \\
\forall k \in \mathbb{N}_{n-1} : a(k) \leq a(k + 1) \quad // \quad a \text{ is sorted}
\]

Output: \(p \in \mathbb{N} \cup \{-1\} \) where

\[
\text{let } n = \text{length}(a) \text{ in } \\
\text{if } \exists p \in \mathbb{N}_n : a(p) = x \\
\text{then } p \in \mathbb{N}_n \land a(p) = x \\
\text{else } p = -1
\]

Not all inputs are legal; for every legal input, the result exists but is not uniquely determined.
Example: The Problem of Sorting

Given a finite integer sequence a, determine that permutation b of a that is sorted in ascending order.

Example: $a = [5, 3, 7, 2, 3] \leadsto b = [2, 3, 3, 5, 7]$

Input: $a \in \mathbb{Z}^*$

Output: $b \in \mathbb{N}^*$ where

\[
\text{let } n = \text{length}(a) \text{ in }
\]

\[
\begin{aligned}
\text{length}(b) &= n \land \\
(\forall k \in \mathbb{N}_{n-1} : b(k) \leq b(k+1)) &\land \quad // \ b \text{ is sorted} \\
\exists p \in \mathbb{N}_n^* : \quad // \ b \text{ is a permutation of } a \\
(\forall k1 \in \mathbb{N}_n, k2 \in \mathbb{N}_n : k1 \neq k2 \rightarrow p(k1) \neq p(k2)) \land \\
(\forall k \in \mathbb{N}_n : a(k) = b(p(k)))
\end{aligned}
\]

All inputs are legal; the result always exists and is uniquely determined.
Implementing Problem Specifications

The ultimate goal of computer science is to implement specifications.

- The specifications demands the definition of a function \(f : T_1 \times \ldots \times T_n \rightarrow U_1 \times \ldots \times U_m \) such that

 \[
 \forall x_1 \in T_1, \ldots, x_n \in T_n : I \rightarrow \\
 \text{let } (y_1, \ldots, y_m) = f(x_1, \ldots, x_n) \text{ in } O
 \]

- For all arguments \(x_1, \ldots, x_n \) that satisfy the input condition,
- the result \((y_1, \ldots, y_m) \) of \(f \) satisfies the output condition.

- The specification itself already implicitly defines such a function:

 \[
 f(x_1, \ldots, x_n) := \text{such } y_1, \ldots, y_m : I \rightarrow O
 \]

- However, the specification is actually implemented only by an explicitly defined function (computer program).

 The correctness of the implementation with respect to the specification has to be verified (e.g. by a formal proof).

A core goal of CS is to adequately specify problems, to implement the specifications, and to verify the correctness of the implementations.