LOGIC | SATISFIABILITY MODULO THEORIES

SMT BASICS

WS 2017/2018 (342.208)

Armin Biere  biere@jku.at
Martina Seidl  martina.seidl@jku.at

Institute for Formal Models and Verification
Johannes Kepler Universität Linz

Version 2017.1
Satisfiability Modulo Theories (SMT)

**Example**

\[ f(x) \neq f(y) \land x + u = 3 \land v + y = 3 \land u = a[z] \land v = a[w] \land z = w \]

- formulas in first-order logic
  - usually without quantifiers, variables implicitly existentially quantified with sorted / typed symbols
  - including functions / constants / predicates are interpreted
  - SMT quantifier reasoning weaker than in first-order theorem proving (FO)
  - much richer language compared to propositional logic (SAT)
- no need to axiomatize “theories” using axioms with quantifiers
  - important theories are “built-in”: **uninterpreted functions, equality, arithmetic, arrays, bit-vectors** …
  - focus is on decidable theories, thus fully automatic procedures
- state-of-the-art SMT solvers essentially rely on SAT solvers
  - SAT solver enumerates solutions to a propositional skeleton
  - propositional and theory conflicts recorded as propositional clauses
  - DPLL(T), CDCL (T), read DPLL modulo theory T or CDCL modulo T
- SMT sweet spot between SAT and FO: many (industrial) applications
  - standardized language SMTLIB used in applications and competitions
Buggy Program

```c
int middle (int x, int y, int z) {
    int m = z;
    if (y < z) {
        if (x < y)
            m = y;
        else if (x < z)
            m = y;
    } else {
        if (x > y)
            m = y;
        else if (x > z)
            m = x;
    }
    return m;
}
```

this program is supposed to return the middle (median) of three numbers
Test Suite for Buggy Program

middle (1, 2, 3) = 2
middle (1, 3, 2) = 2
middle (2, 1, 3) = 1
middle (2, 3, 1) = 2
middle (3, 1, 2) = 2
middle (3, 2, 1) = 2

middle (1, 1, 1) = 1
middle (1, 1, 2) = 1
middle (1, 2, 1) = 1
middle (2, 1, 1) = 1

middle (1, 2, 2) = 2
middle (2, 1, 2) = 2
middle (2, 2, 1) = 2

- This black box test suite has to be generated manually.
- How to ensure that it covers all cases?
  - Need to check outcome of each run individually and determine correct result.
- Difficult for large programs.
- Better use specification and check it.
Specification for Middle

let $a$ be an array of size 3 indexed from 0 to 2

$$a[i] = x \land a[j] = y \land a[k] = z$$
$$\land$$
$$a[0] \leq a[1] \land a[1] \leq a[2]$$
$$\land$$
$$i \neq j \land i \neq k \land j \neq k$$
$$\rightarrow$$
$$m = a[1]$$

median obtained by sorting and taking middle element in the order coming up with this specification is a manual process
Encoding of Middle Program in Logic

```java
int m = z;
if (y < z) {
    if (x < y)
        m = y;
    else if (x < z)
        m = y;
} else {
    if (x > y)
        m = y;
    else if (x > z)
        m = x;
}
return m;
```

\[
(y < z \land x < y \rightarrow m = y) \land
(y < z \land x \geq y \land x < z \rightarrow m = y) \land
(y < z \land x \geq y \land x \geq z \rightarrow m = z) \land
(y \geq z \land x > y \rightarrow m = y) \land
(y \geq z \land x \leq y \land x > z \rightarrow m = x) \land
(y \geq z \land x \leq y \land x \leq z \rightarrow m = z)
\]

this formula can be generated automatically by a compiler
Translating Checking of Specification as SMT Problem

let $P$ be the encoding of the program, and $S$ of the specification

program is correct if \( P \rightarrow S \) is valid

program has a bug if \( P \rightarrow S \) is invalid

program has a bug if negation of \( P \rightarrow S \) is satisfiable (has a model)

program has a bug if \( P \land \neg S \) is satisfiable (has a model)
Checking Specification as SMT Problem Example

\[(y < z \land x < y \rightarrow m = y) \land (y < z \land x \geq y \land x < z \rightarrow m = y) \land (y < z \land x \geq y \land x \geq z \rightarrow m = z) \land (y \geq z \land x > y \rightarrow m = y) \land (y \geq z \land x \leq y \land x > z \rightarrow m = x) \land (y \geq z \land x \leq y \land x \leq z \rightarrow m = z) \land a[i] = x \land a[j] = y \land a[k] = z \land a[0] \leq a[1] \land a[1] \leq a[2] \land i \neq j \land i \neq k \land j \neq k \land m \neq a[1] \]
Encoding with Linear Integer Arithmetic in SMTLIB2

(set-logic QF_AUFLIA)
(declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int) (declare-fun m () Int)
(assert (=> (and (< y z) (< x y) ) (= m y)))
(assert (=> (and (< y z) (>= x y) (< x z)) (= m y))) ; fix by replacing last 'y' by 'x'
(assert (=> (and (< y z) (>= x y) (>= x z)) (= m z)))
(assert (=> (and (>= y z) (> x y) ) (= m y)))
(assert (=> (and (>= y z) (<= x y) (> x z) ) (= m x)))
(assert (=> (and (>= y z) (<= x y) (<= x z)) (= m z)))
(declare-fun i () Int) (declare-fun j () Int) (declare-fun k () Int)
(declare-fun a () (Array Int Int))
(assert (and (<= 0 i) (<= i 2) (<= 0 j) (<= j 2) (<= 0 k) (<= k 2)))
(assert (and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(assert (<= (select a 0) (select a 1) (select a 2)))
(assert (distinct i j k))
(assert (distinct m (select a 1)))
(check-sat) (get-model) (exit)
Checking Middle Example with Z3

$ z3 middle-buggy.smt2
sat
(model
  (define-fun i () Int 1)
  (define-fun a () (Array Int Int) (_ as-array k!0))
  (define-fun j () Int 0)
  (define-fun k () Int 2)
  (define-fun m () Int 2281)
  (define-fun z () Int 2283)
  (define-fun y () Int 2281)
  (define-fun x () Int 2282)
  (define-fun k!0 ((x!1 Int)) Int
    (ite (= x!1 2) 2283
      (ite (= x!1 1) 2282
        (ite (= x!1 0) 2281 2283))))
)

$ z3 middle-fixed.smt2
unsat

see also http://rise4fun.com
Encoding with Bit-Vector Logic in SMTLIB2

(set-logic QF_AUFBV)
(declare-fun x () (_ BitVec 32)) (declare-fun y () (_ BitVec 32))
(declare-fun z () (_ BitVec 32)) (declare-fun m () (_ BitVec 32))
(assert (=> (and (bvult y z) (bvult x y) ) (= m y)))
(assert (=> (and (bvult y z) (bvuge x y) (bvult x z)) (= m y))) ; fix last 'y'->'x'
(assert (=> (and (bvult y z) (bvuge x y) (bvuge x z)) (= m z)))
(assert (=> (and (bvuge y z) (bvugt x y) ) (= m y)))
(assert (=> (and (bvuge y z) (bvule x y) (bvugt x z)) (= m x)))
(assert (=> (and (bvuge y z) (bvule x y) (bvule x z)) (= m z)))
(declare-fun i ()(_ BitVec 2)) (declare-fun j ()(_ BitVec 2)) (declare-fun k ()(_ BitVec 2))
(declare-fun a ()(Array (_ BitVec 2) (_ BitVec 32)))
(assert (and (bvule #b00 i) (bvule i #b10) (bvule #b00 j) (bvule j #b10)))
(assert (and (bvule #b00 k) (bvule k #b10)))
(assert (and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(assert (bvule (select a #b00) (select a #b01)))
(assert (bvule (select a #b01) (select a #b10)))
(assert (distinct i j k)) (assert (distinct m (select a #b01)))
(check-sat) (get-model) (exit)
Checking Middle Example with Boolector

$ boolector -m middle32-buggy.smt2
sat
...
2 1100110110001111010110111001001 x
3 01101101100011110101101111000001 y
4 11101011000011110101100111010001 z
5 01101101100011110101101110000001 m
28 01 i
29 00 j
30 10 k
31[00] 01101101100011110101101110000001 a
31[01] 1100110110001111010110111001001 a
31[10] 11101011000011110101100111010001 a

$ boolector middle32-fixed.smt2
unsat

see also  http://fmv.jku.at/boolector
Theory of Linear Real Arithmetic (LRA)

- constants: integers, rationals, etc.
- predicates: equality $=$, disequality $\neq$, inequality $\leq$ (strict $<$) etc.
- functions: addition $+$, subtraction $-$, multiplication $\cdot$ by constant only

Example

$$z \leq x - y \land x + 2 \cdot y \leq 5 \land 4 \cdot z - 2 \cdot x \geq y$$

- we focus on conjunction of inequalities as in the example first
- equalities “$=$” can be replaced by two inequalities “$\leq$”
  - disequalities replaced by disjunction of strict inequalities
- combination with SAT allows arbitrary formulas (not just conjunctions)
- related to optimization problems solved in operation research (OR)
  - OR algorithms are usually variants of the classic SIMPLEX algorithm
Fourier-Motzkin Elimination Procedure by Example

\[ z \leq x - y \quad \land \quad x + 2 \cdot y \leq 5 \quad \land \quad 4 \cdot z - 2 \cdot x \geq y \]

pick \textit{pivot} variable, e.g. \( x \), and \textit{isolate} it on one side with coefficient 1

\[ z + y \leq x \quad \land \quad x \leq 5 - 2 \cdot y \quad \land \quad 4 \cdot z - y \geq 2 \cdot x \]
\[ z + y \leq x \quad \land \quad x \leq 5 - 2 \cdot y \quad \land \quad 2 \cdot z - 0.5 \cdot y \geq x \]
\[ z + y \leq x \quad \land \quad x \leq 5 - 2 \cdot y \quad \land \quad x \leq 2 \cdot z - 0.5 \cdot y \] (1)

eliminate \( x \) by adding \( A \leq B \) for all inequalities \( A \leq x \) and \( x \leq B \)

\[ z + y \leq 5 - 2 \cdot y \quad \land \quad z + y \leq 2 \cdot z - 0.5 \cdot y \]
\[ z \leq 5 - 3 \cdot y \quad \land \quad 1.5 \cdot y \leq z \] (2)

and same procedure with new pivot variable, e.g. \( z \), and eliminate \( z \)

\[ 1.5 \cdot y \quad \leq \quad 5 - 3 \cdot y \]
\[ y \quad \leq \quad 10/9 \] (3)

(3) has (as one) solution \( y = 0 \in (-\infty, 10/9] \) \quad or \quad \( y = 1 \in (-\infty, 10/9] \)

(2) then allows \( z = 0 \in [0, 5] \quad \text{or} \quad z = 2 \in [1.5, 2] \)

(1) then forces \( x = 0 \quad \text{forces} \quad x = 3 \quad \text{thus satisfiable} \)
Theory of Uninterpreted Functions and Equality

- functions as in first-order (FO): sorted / typed without interpretation
- equality as single interpreted predicate
  - congruence axiom $\forall x, y : x = y \rightarrow f(x) = f(y)$
  - similar variants for functions with multiple arguments
  - always assumed in FO if equality is handled explicitly (interpreted)
- uninterpreted functions allow to abstract from concrete implementations
  - in hardware (HW) verification abstract complex circuits (e.g. multiplier)
  - in software (SW) verification abstract sub routine computation
- congruence closure algorithms using fast union-find data structures
  - start with all terms (and sub-terms) in different equivalence classes
  - if $t_1 = t_2$ is an asserted literal merge equivalence classes of $t_1$ and $t_2$
  - for all elements of an equivalence class check congruence axiom
    - let $t_1$ and $t_2$ be two terms in the same equivalence class
      - if there are terms $f(t_1)$ and $f(t_2)$ merge their equivalence classes
  - continue until the partition of terms in equivalence classes stabilizes
  - if asserted disequality $t_1 \neq t_2$ exists with $t_1, t_2$ in the same equivalence class
    then unsatisfiable otherwise satisfiable
assumed flattened structure where all sub-terms are identified by variables

\[
[x \mid y \mid t \mid u \mid v]
\]

\[
x = y \wedge x = g(y) \wedge t = g(x) \wedge u = f(x, t) \wedge v = f(y, x) \wedge u \neq v
\]

asserted literal \(x = y\) puts \(x\) and \(y\) in the same equivalence class

\[
[x \mid y \mid t \mid u \mid v]
\]

\[
x = y \wedge x = g(y) \wedge t = g(x) \wedge u = f(x, t) \wedge v = f(y, x) \wedge u \neq v
\]

apply congruence axiom since \(x\) and \(y\) in same equivalence class
Congruence Closure By Example

\[ [x \ y \ t \ | \ u \ | \ v] \]

\[
\begin{align*}
&x = y \land x = g(y) \land t = g(x) \land (u = f(x, t) \land v = f(y, x) \land u \neq v) \\
&\text{apply congruence axiom since } y, x \text{ and } t \text{ are all in same equivalence class}
\end{align*}
\]

\[ [x \ y \ t \ | \ u \ v] \]

\[
\begin{align*}
&x = y \land x = g(y) \land t = g(x) \land u = f(x, t) \land v = f(y, x) \land u \neq v
\end{align*}
\]

\textit{u} and \textit{v} in the same equivalence class but \textit{u} \neq \textit{v} asserted

\textbf{thus} \textit{unsatisfiable}