First Order Predicate Logic
Formal Reasoning in Special Domains

Wolfgang Schreiner and Wolfgang Windsteiger
Wolfgang.(Schreiner|Windsteiger)@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU), Linz, Austria
http://www.risc.jku.at
Formal Reasoning in Special Domains

We will consider methods for

- reasoning about natural numbers,
- reasoning about program loops,

both of which are based on the principle of induction.
Mathematical Induction

A method to prove statements over the natural numbers.

- **Goal:** prove
 \[\forall x \in \mathbb{N} : F \]
 i.e., formula \(F \) holds for all natural numbers.

- **Rule:**

 \[
 \frac{
 K \ldots \vdash F[0/x] \quad K \ldots \vdash (\forall y \in \mathbb{N} : F[y/x] \rightarrow F[y+1/x])
 }{K \ldots \vdash \forall x \in \mathbb{N} : F}
 \]

 \(F[t/x] \): \(F \) where every free occurrence of \(x \) is replaced by \(t \).

- **Proof Steps:**
 - **Induction base:** prove that \(F \) holds for 0.
 - **Induction hypothesis:** assume that \(F \) holds for new constant \(\overline{x} \).
 - **Induction step:** prove that then \(F \) also holds for \(\overline{x} + 1 \).

 Often the constant symbol \(x \) itself is chosen rather than \(\overline{x} \).

 Works because every natural number is reachable by a finite number of increments starting from 0.
Example

We prove Gauss’s sum formula

\[\forall n \in \mathbb{N} : \sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2} \]

by induction on \(n \):

- **Induction Base:**
 \[\sum_{i=1}^{0} i = 0 = \frac{0 \cdot (0+1)}{2} \]

- **Induction Hypothesis:**
 \[\sum_{i=1}^{\bar{n}} i = \frac{\bar{n} \cdot (\bar{n}+1)}{2} \] (\(\ast \))

- **Induction Step:**
 \[\sum_{i=1}^{\bar{n}+1} i = (\bar{n}+1) + \sum_{i=1}^{\bar{n}} i \overset{(*)}{=} (\bar{n}+1) + \frac{\bar{n} \cdot (\bar{n}+1)}{2} \]
 \[= \frac{2 \cdot (\bar{n}+1) + \bar{n} \cdot (\bar{n}+1)}{2} = \frac{(\bar{n}+2) \cdot (\bar{n}+1)}{2} \]
Choice of Induction Variable

We define addition on \mathbb{N} by primitive recursion:

\begin{align*}
x + 0 & := x \quad (1) \\
x + (y + 1) & := (x + y) + 1 \quad (2)
\end{align*}

Our goal is to prove the associativity law

$$\forall x \in \mathbb{N}, y \in \mathbb{N}, z \in \mathbb{N} : x + (y + z) = (x + y) + z$$

For this purpose, we prove

$$\forall z \in \mathbb{N} : \forall x \in \mathbb{N}, y \in \mathbb{N} : x + (y + z) = (x + y) + z$$

by induction on z.

Sometimes the appropriate choice of the induction variable is critical.
Choice of Induction Variable

We prove by induction on \(z \)

\[
\forall z \in \mathbb{N} : \forall x \in \mathbb{N}, y \in \mathbb{N} : x + (y + z) = (x + y) + z
\]

- **Induction base:** we prove

\[
\forall x \in \mathbb{N}, y \in \mathbb{N} : x + (y + 0) = (x + y) + 0
\]

We prove for arbitrary \(x_0, y_0 \in \mathbb{N} \)

\[
x_0 + (y_0 + 0) \overset{(1)}{=} x_0 + y_0 \overset{(1)}{=} (x_0 + y_0) + 0
\]

- **Induction hypothesis (**\(\star \)**): we assume

\[
\forall x \in \mathbb{N}, y \in \mathbb{N} : x + (y + z) = (x + y) + z
\]

- **Induction step:** we prove

\[
\forall x \in \mathbb{N}, y \in \mathbb{N} : x + (y + (z + 1)) = (x + y) + (z + 1)
\]

We prove for arbitrary \(x_0, y_0 \in \mathbb{N} \)

\[
x_0 + (y_0 + (z + 1)) \overset{(2)}{=} x_0 + ((y_0 + z) + 1) \overset{(2)}{=} (x_0 + (y_0 + z)) + 1
\]

\[
\overset{(*)}{=} ((x_0 + y_0) + z) + 1 \overset{(2)}{=} (x_0 + y_0) + (z + 1)
\]

\(\square \)
Goal: prove
\[\forall x \in \mathbb{N} : x \geq b \rightarrow F \]
i.e., formula \(F \) holds for all natural numbers greater than or equal to some natural number \(b \).

Rule:

\[
\frac{K \ldots \vdash F[b/x] \quad K \ldots \vdash (\forall y \in \mathbb{N} : y \geq b \land F[y/x] \rightarrow F[y + 1/x])}{K \ldots \vdash (\forall x \in \mathbb{N} : x \geq b \rightarrow F)}
\]

Proof Steps:

- Induction base: prove that \(F \) holds for \(b \).
- Induction hypothesis: assume that \(F \) holds for \(x \geq b \).
- Induction step: prove that then \(F \) also holds for \(x + 1 \).

Induction works with arbitrary starting values.
Example

We prove

$$\forall n \in \mathbb{N} : n \geq 4 \rightarrow n^2 \leq 2^n$$

- **Induction base:** we show
 $$4^2 = 16 = 2^4$$

- **Induction hypothesis:** we assume for $$n \geq 4$$
 $$n^2 \leq 2^n \quad (\ast)$$

- **Induction step:** we show
 $$\begin{align*}
 (n+1)^2 &= n^2 + 2n + 1 \\
 &\leq n^2 + 2n + n = n^2 + 3n \\
 &\leq n^2 + 4n \\
 &\leq n^2 + n \cdot n = n^2 + n^2 = 2n^2 \quad (\ast) \\
 &\leq 2 \cdot 2^n = 2^{n+1} \quad \square
 \end{align*}$$
Complete Induction

A generalized form of the induction method.

▶ Rule:

$$\begin{align*}
\therefore (\forall x \in \mathbb{N} : (\forall y \in \mathbb{N} : y < x \rightarrow F[y/x]) \rightarrow F) \\
\therefore \forall x \in \mathbb{N} : F
\end{align*}$$

▶ Proof steps:

▶ *Induction hypothesis*: assume that F holds for all y less than \overline{x}.

▶ *Induction step*: prove that F then also holds for \overline{x}.

The induction assumption is applied not only to the direct predecessor.
Example

We take function $T : \mathbb{N} \rightarrow \mathbb{N}$ where

$$
T(n) = \begin{cases}
0 & \text{if } n = 0 \\
2 \cdot T(n/2) & \text{if } n > 0 \land 2 \mid n \\
1 + 2 \cdot T((n - 1)/2) & \text{else}
\end{cases}
$$

and prove by complete induction on n

$$
\forall n \in \mathbb{N} : T(n) = n
$$

- **Induction hypothesis:**
 $$
 \forall m \in \mathbb{N} : m < n \rightarrow T(m) = m
 \tag{*}
 $$

- **Induction step:**
 - Case $n = 0$: we know $T(n) = T(0) = 0 = n$
 - Case $n > 0 \land 2 \mid n$: we know
 $$
 T(n) = 2 \cdot T(n/2) \tag{*} = 2 \cdot (n/2) = n
 $$
 - Case $n > 0 \land \neg (2 \mid n)$: we know
 $$
 T(n) = 1 + 2 \cdot T((n - 1)/2) \tag{*} = 1 + 2 \cdot ((n - 1)/2) = 1 + (n - 1) = n
 $$
Also the correctness of loop-based programs can be proved by induction.

- We consider loops of form

 \[
 \text{for}(i=0; i<n; i++) \ x = t(x,i);
 \]

- We want to prove that

 - if a \textit{precondition} \(P(x) \) holds before the execution of the loop,
 - then a \textit{postcondition} \(Q(x) \) holds afterwards.

- First we prove by induction that, for all \(i \leq n \), some suitable \textit{loop invariant} \(I(x, i) \) holds after \(i \) iterations of the loop:

 - \(I \) holds initially, i.e., after 0 iterations:

 \[
 P(x) \rightarrow I(x,0)
 \]

 - If \(I \) holds after \(i < n \) iterations, then it also holds after \(i+1 \) iterations:

 \[
 I(x, i) \land i < n \rightarrow I(t(x, i), i+1)
 \]

- It then suffices to prove that at the termination of the loop \((i = n) \) the invariant implies the postcondition:

 \[
 I(x, n) \rightarrow Q(x)
 \]
Example

- **Program**

 \[
 \text{for}(i=0; \ i<n; \ i++) \ x = x+2\cdot i+1;
 \]

- **Precondition** \(P(x) \) : \(\iff \ x = 0 \)

 \[
 \begin{array}{c|cccc}
 x & 0 & 1 & 4 & 9 & 16 \\
 i & 0 & 1 & 2 & 3 & 4=n
 \end{array}
 \]

- **Postcondition** \(Q(x) \) : \(\iff \ x = n^2 \)

- **Loop invariant** \(I(x, i) \) : \(\iff \ x = i^2 \)

 - \(P(x) \to I(x, 0) \)
 \[
 x = 0 \to x = 0^2
 \]
 - \(I(x, i) \land i < n \to I(x + 2 \cdot i + 1, i + 1) \)
 \[
 x = i^2 \land i < n \to x + 2 \cdot i + 1 = (i + 1)^2
 \]
 - \(I(x, n) \to Q(x) \)
 \[
 x = n^2 \to x = n^2
 \]

The computation of a square as a sum of odd numbers.
Example

- **Program**

  ```
  for(i=0; i<n; i++) x = x + \frac{1}{2^i};
  ```

- **Precondition** $P(x) : \iff x = 0$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>$\frac{3}{2}$</th>
<th>$\frac{7}{4}$</th>
<th>$\frac{15}{8}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

- **Postcondition** $Q(x) : \iff x + \frac{1}{2^{n-1}} = 2$

- **Loop invariant** $I(x, i) : \iff x + \frac{1}{2^i} = 2$

 - $P(x) \rightarrow I(x, 0)$

 $x = 0 \rightarrow x + \frac{1}{2^{0-1}} = 2$

 - $I(x, i) \land i < n \rightarrow I(x + \frac{1}{2^i}, i + 1)$

 $x + \frac{1}{2^{i-1}} = 2 \land i < n \rightarrow x + \frac{1}{2^i} + \frac{1}{2^i} = 2$

 - $I(x, n) \rightarrow Q(x)$

 $x + \frac{1}{2^{n-1}} = 2 \rightarrow x + \frac{1}{2^{n-1}} = 2$

The approximation of a value by a convergent series.

Wolfgang Schreiner and Wolfgang Windsteiger

http://www.risc.jku.at
Example

- **Program**

  ```
  for(i=0; i<n; i++) x = x+a(i);
  ```

- **Precondition** $P(x) : \iff x = 0$

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4=n</td>
</tr>
</tbody>
</table>

 $a = [2,3,5,7]$

- **Postcondition** $Q(x) : \iff x = \sum_{j=0}^{n-1} a(j)$

- **Loop invariant** $I(x,i) : \iff x = \sum_{j=0}^{i-1} a(j)$

 - $P(x) \rightarrow I(x,0)$

 $x = 0 \rightarrow x = \sum_{j=0}^{i-1} a(j)$

 - $I(x,i) \land i < n \rightarrow I(x+a(j),i+1)$

 $x = \sum_{j=0}^{i-1} a(j) \land i < n \rightarrow x + a(i) = \sum_{j=0}^{i} a(j)$

 - $I(x,n) \rightarrow Q(x)$

 $x = \sum_{j=0}^{n-1} a(j) \rightarrow x = \sum_{j=0}^{n-1} a(j)$

 The summation of an array of values.