
 

 

 
Faculty of Engineering 
and Natural Sciences 

 
 
 
 
 

EUF-Proofs for SMT4J 

 
 
 

MASTER'S THESIS 
 

submitted in partial fulfillment of the requirements 

for the academic degree 
 

Diplom-Ingenieur 
 

in the Master's Program 
 

COMPUTER SCIENCE 
 
 
 
 
 
Submitted by 

 Katalin Fazekas 
 
At the 

 Institute for Formal Models and Verification 
 
Advisor 

 Univ.-Prof. Dr. Armin Biere 
 
Co-advisor 

 Assist.-Prof. Dr. Martina Seidl 
  

 
Linz, August 2015 





Abstract

SMT (Satisfiability Modulo Theories) Solvers are considered as a new, promising gen-
eration of decision engines in numerous software and hardware verification tools due to
their support of various decision procedures for theories beyond propositional logic. One
general theory that is supported by most SMT Solvers is specialized in equalities over
uninterpreted functions (EUF). In this theory one can decide whether an equality is a
logical consequence (in first-order logic with equality) of a conjunction of equalities.

Since SMT Solvers are fairly complex systems with a large, frequently growing code
base, the objective to ensure their correctness is highly challenging. Therefore unsatisfiable
core production i.e., the extraction of an unsatisfiable subformula which is as small as
possible, and detailed proof generation on the level of theories are desirable functions of
an SMT Solver. The constructed unsatisfiable cores can be exploited to build stronger
theory lemmas which reduce the search space considerably. The generated proofs can be
verified automatically by external tools to achieve higher level of confidence about the
correctness of the solver.

SMT4J (SMT for Java) is a simple, java-based lazy SMT Solver that neither sup-
ported the generation of proofs nor exploited the power of unsatisfiable cores for pruning
the search space. The main contribution of this thesis is the extension of the EUF the-
ory solver of SMT4J with unsatisfiable core generation capability based on a congruence
closure algorithm. Furthermore, this work extends the theory solver with detailed proof
production functionality in order to ensure the quality of the produced results. In exten-
sive experiments considerable run time improvements can be observed if the unsatisfiable
cores are used. Furthermore, it is shown that proof generation can be efficiently integrated
into the solving process.





Zusammenfassung

In modernen Software- und Hardware Verifikationsframeworks werden SMT Solver heutzu-
tage als eine neue, vielversprechende Generation von Entscheidungswerkzeugen eingesetzt,
deren Ausdruckstärke in Form von Theorien gesteuert werden kann. Eine allgemeine
Theorie, die üblicherweise von jedem SMT Solver unterstützt wird, ermöglicht logisches
Schließen bezüglich der Gleichheit über uninterpretierten Funktionen (engl. equalities over
uninterpreted functions [EUF]). Mittels dieser Theorie kann entschieden werden, ob die
Gleichheit zweier Ausdrücke eine logische Konsequenz (in Prädikatenlogik mit Gleichheit)
von einer Verknüpfung von Gleichheiten anderer Ausdrücke ist.

Da SMT Solver hochoptimierte Systeme mit umfangreichem, häufig stark wachsendem
Quellcode sind, ist das Sicherstellen ihrer Korrektheit eine große Herausforderung. Eine
detaillierte Beweisgenerierung auf der Ebene von Theorien ist daher eine wünschenswerte
Funktionalität eines SMT Solver. Die erzeugten Beweise können von externen Tools au-
tomatisch verifiziert werden und das Vertrauen der Anwender und Anwenderinnen in den
Solver steigt. Ein weiteres nützliches Feature ist die Extraktion von unerfüllbaren Ker-
nen. Hierbei wird aus einer Menge von unerfüllbaren Einschränkungen eine möglichst
kleine Teilmenge extrahiert, die immer noch unerfüllbar ist.

SMT4J (SMT für Java) ist ein einfacher, Java basierter SMT Solver, der weder Be-
weisgenerierung unterstützte noch die Stärke von unerfüllbaren Kernen zur Einschränkung
des Suchraumes nutzte. Der wichtigste Beitrag dieser Masterarbeit ist die Erweiterung
des EUF Theorie-Solvers von SMT4J um die Fähigkeit unerfüllbare Kerne zu erzeugen.
Hierfür wird ein Congruence-Closure Algorithmus eingesetzt. Weiters erweitert diese
Arbeit den Theorie-Solver um detaillierte Beweiserstellungsfunktionalitäten, welche die
Qualität der erzeugten Ergebnisse sicher stellt. Umfangreiche Tests zeigen eine erhe-
bliche Verbesserung der Laufzeit, wenn unerfüllbare Kerne verwendet werden. Ferner
wird gezeigt, dass die Beweisgenerierung effizient in den Beweisprozess integriert werden
kann.





Contents

1 Introduction 1

2 Preliminaries 4
2.1 Formal Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Equalities over Uninterpreted Functions . . . . . . . . . . . . . . . . . . . . 7
2.3 EUF Solver of SMT4J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Union-Find Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Proof Generation of SMT Solvers 14
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Proof Format of EUF Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 EUF Solver Implementation 21
4.1 Transformations of Input Equalities . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Decision of Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Proof Forest Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Unsatisfiable Core Production . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Using Cores in SMT4J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6 Proof Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.7 Interface Equalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.8 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Proof Checking 48
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 EUFChecker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Experimental Results 53
6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Conclusion 57
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Further Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Appendix A 63





Chapter 1

Introduction

Formal verification processes of hardware and software systems attempt to decide whether
a formal description of a system satisfies a list of constraints or not. Many successful ap-
proaches recast the specifications and the constraints into a satisfiability problem of a
suitable logic, in order to increase the automation level of the verification process. De-
cision procedures for propositional satisfiability, or shortly SAT, are widely used for this
purpose. Current state-of-the-art SAT Solvers are highly accurate and efficient in their
field, therefore it is a widespread practice to utilize them as decision engines. Nevertheless,
in many situations the verification conditions may not be expressible in an efficient way
confined only to propositional logic and therefore tools for more expressive logics are nec-
essary in the verification process. SMT – Satisfiability Modulo Theories – Solvers attempt
to meet this claim by the support of various decision procedures for theories beyond sen-
tential logic. Due to their extended expressiveness, SMT Solvers are recently considered
as the new generation of decision engines in numerous software and hardware verification
tools. An extensive description of SMT solvers and their application domains can be found
for instance in [9].

The range of the supported background theories of an SMT Solver may vary from
solver to solver, but there is a continuously growing core of theories that is covered by
most of the recent SMT Solvers. Some of these most common supported theories are for
example linear arithmetic [20], the theory of arrays and bit-vectors [13] and the theory of
equalities over uninterpreted functions (abbreviated as EUF). In the so-called lazy SMT
Solvers the support of a background theory T is usually materialized as a specialized sub-
module integrated with an efficient SAT solver. These sub-modules, that are called as
theory solvers, implement specialized decision procedures and data structures in order to
decide, as efficient as possible, the satisfiability of a conjunction of T -related literals.

In the context of this thesis, the focus is mainly restricted to the theory of equali-
ties over uninterpreted functions. This theory is frequently used to model overly complex
systems on a higher level of abstraction. More precisely, in this theory the complex and
precise details of e.g. a data structure are represented simply by functions without inter-
pretation. This disregard of information does not influence the unsatisfiability of a logical
formula, therefore it is a comfortable way to simplify a formal specification. Some domains
of application where equalities over uninterpreted functions are frequently exploited as
best-practice are for instance automated hardware verification [14] and translation valida-
tion [33] tasks. The implementation of an EUF theory solver in a lazy SMT Solver usually
builds on a congruence closure based algorithm in order to decide whether an equality is
a logical consequence (in first-order logic with equality) of a conjunction of equalities.

Since SMT Solvers are frequently used in verification processes, it is not surprising that
some kind of assurance of their correctness is highly desired, actually, the correctness of
an SMT Solver is essential. By detailed model generation capability, the work of an SMT

1



Solver is verifiable for satisfiable problem instances almost without any additional effort.
Nevertheless, the trustworthiness of an SMT Solver about unsatisfiable problem instances
is not that obviously checkable. Among others, this reason stresses the importance of
producing independently verifiable results for unsatisfiable instances. Therefore, several
SMT Solvers derive an inconsistency from the input problem during the solving process.
Then, the proof of unsatisfiability is an independently verifiable object. On the level
of theory solvers, a proof can be a small unsatisfiable subset – also called core – of the
accepted theory literals, or even a detailed deduction of the inconsistency from this core,
derived by the rules of the corresponding theory. On the level of the entire SMT Solver, a
proof usually describes the unsatisfiability of the propositional representation of the input
formula, where the derivation is typically based on some form of resolution.

The verification method of a produced proof is another relevant question related to
SMT Solvers. The unsatisfiable core of a problem instance can for example be checked by
another SMT Solver. Nevertheless, a trustworthy tool for verification purposes is a more
attractive option. A more detailed proof production requires collateral works from an SMT
Solver, but simplifies the checking process and a simpler process can be accomplished by
less code, namely with less error proneness. So far, there is no strong consensus in the
SMT solver community on the expected format of unsatisfiability proofs and thus there
are no laid down principles about their verification process neither.

SMT4J (SMT for Java) is a simple, java-based lazy SMT Solver that is under develop-
ment by the Institute for Formal Models and Verification (FMV) of the Johannes Kepler
University Linz. At present, the solver supports satisfiability decisions with respect to a
few background theories (without quantifiers) and is able to produce a trace of its SAT
computations for unsatisfiable problem instances. The employed searching strategy of
SMT4J demands unsatisfiable core production from each theory solver, in order to narrow
down the search space of possible satisfying assignments.

The main contribution of this thesis is the extension of the EUF theory solver of SMT4J
with unsatisfiable core generation capability based on the congruence closure algorithm
introduced by Robert Nieuwenhuis and Albert Oliveras in [29]. Furthermore, this work
complements the theory solver with detailed proof production functionalities in order to
ensure the quality of the produced results. The thesis includes an EUF theory specific
fuzzer tool to support the exhaustive testing of the theory solver and an exceedingly
simple proof checker that serves for verification purposes. Moreover, this thesis attempts
to answer the following questions:

• Is the pure lemmas on demand approach adequately efficient for a competitive SMT
Solver?

• Is it possible to develop an EUF theory solver that efficiently provides exhaustive
unsatisfiable core generation?

• Can the use of all unsatisfiable cores enhance the performance of the lemmas on
demand approach on formulas with EUF as background theory?

• How can the correctness of a theory solver be verified?

• Can the unsatisfiable core producing algorithm be modified to efficiently generate,
besides the core, a detailed deduction of each found contradiction?

• How can the correctness of a generated deduction be verified?

The thesis is structured as follows. Chapter 2 defines the relevant concepts and notation
of the further chapters and describes briefly the most important data structure of the
implementation. Chapter 3 presents the proof generation abilities of some recently popular

2



SMT Solvers and introduces the certificates produced by the EUF theory solver of SMT4J.
Chapter 4, as the core of the thesis, describes in details the proof generation method of
the EUF theory solver in the SMT4J framework. The subsequent chapter demonstrates
possible solutions for proof verification and defines the main properties of the EUF Proof
Checker. The evaluation of the execution experiences are given in Chapter 6. Chapter 7
concludes the thesis and contains suggestions for future developments.

3



Chapter 2

Preliminaries

2.1 Formal Preliminaries

The satisfiability problems considered in this thesis are formulated in a fragment of many
sorted first-order logic with equality, therefore this section provides a short overview of
the syntax and semantics of this logic and introduces the notation used throughout the
thesis.

2.1.1 Syntax

The alphabet of a many sorted first-order language contains logical and non-logical symbols
with auxiliary delimiters. The logical symbols are the standard propositional connectives
{¬,∧,∨,⊃}, propositional constants {>,⊥}, the quantifiers {∀, ∃}, and the variables. The
parentheses and the comma are used for separating the symbols. The logical and the
delimiter symbols are part of every first-order language. The non-logical symbols, however,
are always given by a signature and they define a particular first-order language. The
definitions of the non-logical part of a many sorted first-order language are as follows
(based on [42]).

Definition 2.1 (Alphabet of non-logical symbols). The set of the non-logical symbols of
a many-sorted first-order language are defined as a quadruple 〈S,P,F , C〉, where

1. S is a non-empty set of sorts,
2. P is a non-empty set of predicate symbols,
3. F is a set of function symbols, and
4. C is a set of constant symbols.

Sorts are denoted with π (possibly with subscripts). To each sort π ∈ S belongs a
countably infinite set of variables Vπ = {vπ1 , vπ2 , ...}.

Definition 2.2 (Signature). Let 〈S,P,F , C〉 be an alphabet as defined above. Then a
signature Σ over 〈S,P,F , C〉 is a triplet 〈ΣF ,ΣP ,ΣC〉, where

1. ΣP assigns to each predicate symbol P ∈ P an ordered sequence of sorts
(π1, π2, ..., πk), where k ≥ 0 and π1, π2, ..., πk ∈ S,

2. ΣF assigns to each function symbol f ∈ F an ordered sequence of sorts
(π1, π2, ..., πk, π), where k > 0 and π1, π2, ..., πk, π ∈ S and

3. ΣC assigns to each constant symbol c ∈ C a sort π, where π ∈ S.

Each non-logical symbol can be associated with a non-negative number, which is the
so-called arity of the symbol.

4



Definition 2.3 (Arity of symbols). Let 〈S,P,F , C〉 be an alphabet and Σ = 〈ΣF ,ΣP ,ΣC〉
a signature defined over this alphabet as defined above. Then the arity function arity :
ΣF ∪ ΣP ∪ ΣC → N is defined as follows:

arity(Σ(s)) =


0 if s ∈ C
k if s ∈ F and ΣF (s) = (π1, π2, ..., πk, π)

k if s ∈ P and ΣP(s) = (π1, π2, ..., πk)

A function symbol f (resp. predicate symbol P ) with n as arity is called n-ary function
(resp. n-ary predicate) (when n is one, then unary function (resp. unary predicate), when
n is two, then binary function (resp. binary predicate), and so on). In this work constant
symbols are denoted with a, b, c, d, e (possibly with subscripts) and the letters f, g, h usually
denote the function symbols of F , while the letters P,Q,R denote predicate symbols.

Definition 2.4 (Terms over Σ). Let Σ be a signature over an alphabet 〈S,P,F , C〉. Then
the set of the terms over the signature Σ is the smallest set such that:

1. Each variable vπ of sort π ∈ S is a term of sort π.
2. Each constant c ∈ C of sort π ∈ S is a term of sort π.
3. If f ∈ F is a function symbol of signature (π1, π2, ..., πk, π), and t1, t2, ..., tk are

respectively terms of sorts π1, π2, ..., πk, then f(t1, t2, ..., tk) is a term of sort π.

Definition 2.5 (Formulas over Σ). Let Σ be a signature over an alphabet 〈S,P,F , C〉.
Then the set of first-order formulas of LΣ is the smallest set such that:

1. If P ∈ P is a predicate symbol of signature (π1, π2, ..., πk), and t1, t2, ..., tk are re-
spectively terms of sorts π1, π2, ..., πk, then P (t1, t2, ..., tk) is a formula.

2. If ϕ is a formula, then ¬ϕ is a formula.
3. If ϕ1 and ϕ2 are formulas and ◦ is a binary logical connective symbol, then (ϕ1 ◦ϕ2)

is a formula.
4. If ϕ is a formula, Q is a quantifier and x is an arbitrary variable, then Qxϕ is a

formula.

A language whose expressions (formulas and terms) are built up from the elements of
a signature Σ by using the rules defined above is denoted as LΣ. The first-order formulas
built up from the first rule of Definition 2.5 are called atomic formulas, while the formulas
which contain quantifiers as described in the last rule of Definition 2.5 are called quantified
formulas. The formulas of LΣ in this thesis are denoted by upper or lower Greek letters,
while the letters s, t and u denote arbitrary terms. A given occurrence of a variable x in
a formula ϕ is called bounded, when it is in the scope of a quantifier that names it. A
given occurrence of a variable x is free, when it is not bounded. A term is called ground
term, when it does not contain any variables. A first-order formula is called sentence or
closed, when it does not contain any free variables. As a technical convenience, in the
thesis all the variables will be treated as constants and the signatures are always extended
implicitly by these introduced constant symbols. Therefore in the following, each term is
a ground term. The size (number of symbols) of an arbitrary ground term t is denoted by
|t|: |c| = 1 when c ∈ C is a constant term and |f(t1, t2, ..., tn)| = 1 + |t1| + |t2| + ... + |tn|
when f ∈ F is a non-constant term.

A literal is an atomic formula (positive literal) or its negation (negative literal) and
denoted as l (possibly with subscripts). A clause is a disjunction of literals: l1∨ l2∨ ...∨ ln.
The empty disjunction of literals (empty clause) is denoted by ⊥. A formula in conjunctive
normal form (CNF formula) is a conjunction of zero or more clauses: c1 ∧ c2 ∧ ...∧ cn. An
empty CNF formula is denoted by >. A clause that contains at most one positive literal
is called Horn clause. A quantifier-free formula is a formula in which no quantifier occurs.

5



In the context of the thesis, all formulas are quantifier-free and the alphabets are
implicitly extended for each sort π ∈ S with a binary equality predicate symbol =π of
signature (π, π).

2.1.2 Semantics

To define the meaning of the expressions of a language LΣ, first of all, the universe of the
variables and the factual values of the constant symbols has to be given. Furthermore, it
has to be fixed which operations and relations are represented by the function and predicate
symbols. The establishment of this information is an interpretation of the language. The
formal definitions are as follows (based on [42]).

Definition 2.6 (Domain of interpretation). Let Σ be a signature as defined above. Then
the universe or domain – denoted by U – of the interpretation is defined by

U =
⋃
π∈S
Uπ

Definition 2.7 (Interpretation of Σ). Let Σ be a signature as defined above. Then the
interpretation of Σ is a I = 〈IS , IF , IP , IC〉 quadruple of functions, where

1. IS : π 7→ Uπ assigns to each sort π ∈ S a non-empty set Uπ of elements of sort π.
2. IC : c 7→ cI assigns to each constant symbol c ∈ C of sort π an element cI ∈ Uπ.
3. IF : f 7→ fI assigns to each function symbol f ∈ F of signature (π1, π2, ..., πk, π) a

function fI : Uπ1 × Uπ2 × ...× Uπk → Uπ, and
4. IP : P 7→ P I assigns to each predicate symbol P ∈ P of signature (π1, π2, ..., πk) a

logical predicate P I : Uπ1 × Uπ2 × ...× Uπk → {true, false}.

When the meaning and the universe of the non-logical symbols of the language is es-
tablished by an interpretation, the meaning of the expressions built up from these symbols
can be defined based on this interpretation. The interpretation is also called structure,
when it is over an empty set of variables. In that case, the assignment of a formula un-
der that interpretation does not depend on the variables, therefore the definitions of the
semantics can be simplified by ignoring the variable-evaluation dependency.

Definition 2.8 (Semantics of terms). Let I be an interpretation of a signature Σ as
defined above. Then the value of a term t of sort π under the interpretation I – denoted
by |t|I – is defined as follows.

1. If c ∈ C is a constant symbol of sort π, then |c|I is the element cI ∈ Uπ,
2. If t1, t2, ..., tk are terms respectively of sorts π1, π2, ..., πk, and their values under I are

respectively the elements |t1|I ∈ Uπ1 , |t2|I ∈ Uπ2 , ..., |tk|I ∈ Uπk , then |f(t1, t2, ..., tk)|I ,
the value under I of a function symbol f ∈ F of signature
(π1, π2, ..., πk, π), is the element fI(|t1|I , |t2|I , ..., |tk|I) ∈ Uπ.

Definition 2.9 (Semantics of LΣ). Let I be an interpretation of a quantifier and variable
free language LΣ. Then the truth value of a formula ϕ of LΣ under the I interpretation
– denoted by |ϕ|I – is as follows:

1. |P (t1, t2, ..., tk)|I 


{
true if P I(|t1|I , |t2|I , ..., |tk|I) = true

false otherwise

2. |s = t|I 
 |s|I = |t|I
3. if ϕ has the form of ¬ϕ1, then |ϕ|I 
 ¬|ϕ1|I ,
4. if ϕ has the form of ϕ1 ∧ ϕ2, then |ϕ|I 
 |ϕ1|I ∧ |ϕ2|I ,
5. if ϕ has the form of ϕ1 ∨ ϕ2, then |ϕ|I 
 |ϕ1|I ∨ |ϕ2|I ,
6. if ϕ has the form of ϕ1 ⊃ ϕ2, then |ϕ|I 
 |ϕ1|I ⊃ |ϕ2|I .

6



The interpretation of the propositional constants follows directly, namely > represents
true in every interpretation, while ⊥ means false. Let ϕ be a variable and quantifier free
formula of LΣ. When |ϕ|I = true holds under an interpretation I, then I satisfies ϕ and
it is denoted as I |= ϕ. In that case, ϕ is called satisfiable, and I is called a model of ϕ.
If all interpretations of LΣ satisfy ϕ, then ϕ is valid and denoted as |= ϕ. A valid formula
is also called tautology. When there is no interpretation that satisfies ϕ, then ϕ is called
unsatisfiable. Any inconsistent subset of the clauses of an unsatisfiable CNF formula
is called unsatisfiable core (UC). The unsatisfiable core is called minimal unsatisfiable
core, when by removing any one of the clauses, it turns into satisfiable. Sometimes, the
unsatisfiable core of a formula is also called conflict set.

The interpretation of an atomic equality formula is based on the identity relation of
the arguments, i.e., it is evaluated to true, if and only if a and b are identical. The further
details of these atoms and their interpretation will be in the context of a background
theory clarified during the next section. A theory is defined as follows (based on [42]).

Definition 2.10 (Axiomatic theory). Let LΣ be a first-order language and A be a set of
closed formulas of LΣ. Then the pair T = 〈LΣ,A〉 is an axiomatic theory and the formulas
of A are the non-logical axioms of the theory T .

Definition 2.11 (Model of theory). An interpretation I of a first-order language LΣ is a
model of the theory T = 〈LΣ,A〉, if for all A ∈ A formulas |A|I = true holds.

The models of a theory are also called T -interpretations. A formula ϕ is satisfiable in
a theory, if there is a model of the theory, that satisfies also the formula, i.e., if there is an
interpretation I, that satisfies all the axioms of the theory and the formula. Note, that
the axioms of a theory usually involve quantifiers. As the definition of axioms is the only
place in the thesis where quantifiers are involved, the concise definition of their semantics
is not introduced, for precise details see e.g. [21, Chapter 5.3].

2.2 Equalities over Uninterpreted Functions

SMT Solvers decide the satisfiability of various first-order formulas with respect to some
background theories. These background theories, as was mentioned earlier, tighten the
class of the models for those interpretations, which satisfy the axioms of the theory. The
most general background theory, denoted as Tε, is specialized in equalities over uninter-
preted functions (EUF). An example formula of this theory is

x = y ∧ y = z ∧ f(z) = t ⊃ f(x) = t.

This formula can be translated to the following question: Is f(x) = t a logical consequence
(in first-order logic with equality) of the equalities x = y, y = z and f(z) = t? In other
words, in the theory Tε, one can decide whether an equality is a consequence of other
equalities.

The theory does not impose any kind of restriction on the interpretation of the non-
logical symbols. Moreover, it ignores the semantics of the symbols (except the equality
symbol). This is why this theory is frequently used as a background theory, for example
during automated hardware verification tasks [14] and translation validation processes [33].
When the concrete complex details of the functionality is not in focus, uninterpreted
functions are used to abstract away these details. If a formula in equality logic with
uninterpreted functions is found to be unsatisfiable, it is unsatisfiable with interpreted
functions as well.

In the context of the thesis, the EUF theory handles equalities and disequalities be-
tween ground terms of the same sort as atomic formulas. Predicate symbols are treated as

7



uninterpreted logical functions over ground terms. The equalities are always written in an
infix way, e.g. s = t or s 6= t. Therefore the symbol = can denote the equality predicate
symbol in the logic and the equality at the meta-level as well, nevertheless, the meaning
should be always clear from the context. A ground term of Tε is either a constant symbol
c ∈ C or an uninterpreted function symbol f ∈ F . The set of ground terms over C ∪ F
– denoted as G – is the smallest set containing all constant symbols such that whenever
f ∈ F is a function symbol of signature (π1, π2, ..., πk, π) and t1, t2, ..., tn ∈ G are terms
respectively of sorts π1, π2, ..., πk, then f(t1, t2, ..., tk) ∈ G. A Tε-literal is either an atomic
formula (equality or disequality) or its negation in the theory. The conjunctive formulas
will be denoted as a set of literals {l1, l2, ...ln}. The satisfiability of a conjunction of ground
equalities and disequalities in Tε is decidable in polynomial time by using a congruence
closure procedure [1, p. 24–33].

In the EUF theory, the equality symbol represents a binary monotonic equivalence
relation over G. The properties of the equality predicate can be described in an axiomatic
way.

Definition 2.12 (Axioms of equality). The theory axioms of Tε are defined as follows:

∀t(t = t) (2.1)

∀s∀t(s = t ⊃ t = s) (2.2)

∀s∀t∀u(s = t ∧ t = u ⊃ s = u) (2.3)

Further, for every n-ary function symbol f ∈ F it holds, that

∀s1...sn∀t1...tn(s1 = t1 ∧ ... ∧ sn = tn ⊃ f(s1, ...sn) = f(t1, ...tn)) (2.4)

The first three axioms define the equality predicate as an equivalence relation, i.e., it is
reflexive (2.1), symmetric (2.2), and transitive (2.3). The last axiom (2.4) guarantees that
this equivalence relation is preserved by all the functions, that is to say, all the functions
are consistent and therefore for equal arguments they assign the same result. All in all,
the equality predicate symbol represents a congruence relation on G in the context of Tε.
Some relevant properties of a congruence relation are as follows.

A congruence relation R over a set H is a binary equivalence relation that is compatible
with all the functions defined over H. A binary relation R over a set H is a set of pairs
of H elements, namely a subset of H×H. An equivalence relation R over a set H divides
the elements of H into so-called equivalence classes. Two elements belong to the same
equivalence class, if and only if they are in relation by R and in that case the elements
are called equivalent in R. The equivalence closure is the smallest set that contains R.
Similarly, a congruence relation R over a set H divides the elements of H into so-called
congruence classes. Two elements belong to the same congruence class, if and only if they
are in relation by R, in which case the elements are called congruent in R.

In the context of the thesis, the focus is on the congruence closure of a set of equalities.
Since, the equality predicate is symmetric, equalities will be treated as unordered pairs
of terms on the level of notation, i.e., an equality s = t will denote indifferently s = t
or t = s. A set of equalities built over G is denoted as E, while E6= denotes the set of
disequalities over G. The congruence closure of a set E, denoted as E∗, is the smallest
congruence relation over G that contains E. The expression E |= s = t denotes that two
terms s and t belong to the congruence closure of E, namely (s, t) ∈ E∗. When for all
equations s = t in a set E′ holds that E |= s = t, then E |= E′. The expression E ≡ E′

denotes that E |= E′ and E′ |= E holds.

8



2.3 EUF Solver of SMT4J

The primary purpose of the thesis is to extend the EUF theory solver of SMT4J with
unsatisfiable core and detailed proof generation abilities. SMT4J is an educational lazy
SMT solver that supports satisfiability decisions in multiple quantifier free theories with
(limited) proof-production capabilities. It is under development by the Institute for Formal
Models and Verification (FMV) of the Johannes Kepler University Linz. The essential
strategy employed by the SMT4J Solver is the lazy so-called lemmas on demand approach.
Algorithm 2.1 from [25] contains the basic pseudo-code that implements, in a simplified
way, a decision procedure called LAZY-BASIC, that exploits lemmas on demand.

Algorithm 2.1 LAZY-BASIC (from [25])

1: function Lazy-Basic(ϕ)
2: B ← e(ϕ)
3: while (TRUE) do
4: 〈α, res〉 ←SAT-Solver(B);
5: if res =“Unsatisfiable” then return “Unsatisfiable”;
6: else
7: 〈t, res〉 ←Deduction(T̂ h(α));
8: if res =“Satisfiable” then return “Satisfiable”;
9: else

10: B ← B ∧ e(t);

The key idea of the approach is to combine a theory specific decision procedure of a
theory T with a propositional SAT solver in order to decide satisfiability of a formula ϕ in
a given theory T . As a preparatory step (line 2 of Alg. 2.1) ϕ is encoded into a Boolean
formula B by substituting each T -related literal in ϕ with a unique Boolean variable. The
resulting formula of the encoding is called the propositional abstraction or skeleton of ϕ.
Next, an unconditional loop commences. In each iteration, B is passed to a SAT-Solver
which returns with an assignment α and a result res. In the case B is unsatisfiable,
there is no assignment that could satisfy it, therefor α is empty and the method returns
with “Unsatisfiable” as a result (line 5). Otherwise res is “Satisfiable” and α defines a
mapping of the literals of B to truth values (propositional assignment) in a way that B
is satisfied. Then, in line 7, T̂ h(α), a conjunction of the involved literals of ϕ assigned
by α, is passed to the method Deduction, in order to test whether T̂ h(α) satisfies ϕ
in T . Deduction returns with an answer res for this question and with a clause t. If
the result of Deduction is “Satisfiable”, LAZY-BASIC returns “Satisfiable” in line 8.
Otherwise Deduction generates a T -valid lemma t, that contradicts on the Boolean level
with α (and optionally with further extensions of this assignment). In line 10, the method
conjoins the propositional abstraction of this lemma (e(t)) with the current state of B
and starts again the iteration with this strengthened formula [25]. For some elaborated
applications of this approach see [12, 16].

The design of SMT4J follows this approach closely. The SMT4J framework coordi-
nates the collaboration between a SAT Solver and the theory solvers in order to iteratively
refine the propositional abstraction of the input formula based on the lemmas generated
on demand by the theory solvers. The set of theories supported by SMT4J depends on the
actual configuration of the framework. The supported theories and their solvers are loaded
dynamically based on a configuration file, where the properties and options of the solvers
can be fine tuned. Although SMT4J also supports, with limitations, combinations of the-
ories, the way of combining multiple theories is beyond the scope of the thesis. Therefore,
henceforth it is assumed, that the input of the framework contains only propositional and

9



Tε atoms connected by boolean operators and that initially the EUF Solver is loaded by
SMT4J. The configuration file of this scenario can be found on Figure A.1 of Appendix A.

The instantiation of the SMT4J framework considered in the thesis consists of the
following parts:

Parser: Converts the input text file written in the SMT-LIBv2 [7] language into an input
formula represented by Java objects. It is made up of a lexical analyser and a
grammar parser, generated with jflex1 and byaccj2, respectively.

Encoder: Performs the semantic analysis of the input formula and applies several sim-
plification steps (e.g. expansion and purification of the terms) on it. The Encoder
constructs the CNF propositional abstraction of the input formula by using polar-
ity based Plaisted-Greenbaum encoding [32] and provides the necessary encoding-
decoding steps during the execution.

SAT Solver: Decides incrementally the satisfiability of a CNF propositional formula and
provides satisfying (partial or full) assignments in the case of positive decisions and
proofs in the case of negative decisions. The framework uses the SAT4J-Core3 open
source SAT Solver as a ‘black box’ for this purpose without any further tuning.

Extractor: Extracts a set of theory related literals from the input formula, based on the
model generated by the SAT Solver.

EUF Solver: Decides the satisfiability of a set of Tε-literals. When the set is found to
be inconsistent, the component extracts the literals which are involved in a conflict,
and computes a deductive proof to explain that conflict. The EUF Solver is the
solver of the equalities over uninterpreted functions theory.

Input Lemma

Encoder Abstraction SAT Solver

Parser Formula Model RUP proof

Extractor SAT answer

UF Literals EUF Solver EUF proof

UNSAT Core

unsatsat

unsat
sat

Figure 2.1: Simplified workflow of SMT4J and EUF theory solver

Figure 2.1 illustrates – without claim of being exhaustive – a simplified workflow of
SMT4J when the extended EUF Solver is loaded. The input of the framework is a SMT-
LIBv2 file. The parser of the framework constructs from this input file a formula ϕ, which
represents a satisfiability problem with Tε as background theory. In the second step, the
Encoder processes ϕ, by checking the type correctness of the formula and applying several
simplification steps on it. Then it converts this simplified formula into CNF and constructs

1http://jflex.de/
2http://byaccj.sourceforge.net/
3http://www.sat4j.org/maven234/org.ow2.sat4j.core/index.html

10



the propositional abstraction (e(ϕ)) of it. After these steps, the SAT Solver can decide
the satisfiability (on the boolean level) of e(ϕ). If e(ϕ) is decided to be propositionally
unsatisfiable, then it is unsatisfiable in the EUF theory as well. Therefore the framework
returns with unsat as result. Otherwise, the SAT Solver provides a propositional model,
which has to be checked for Tε-consistency by the EUF Solver. For this, the propositional
model generated by the SAT Solver and the original input formula ϕ is passed to the
Extractor. It extracts the corresponding literals (i.e., the literals whose abstraction appear
in the model) of the input formula into a set µ = {l1, l2, ...ln} based on their assignment
in the abstract model. Then, this result set µ is incrementally added to the EUF Solver.
If µ is found to be consistent in Tε, then the framework accepts the model as a satisfying
interpretation and returns with sat as result. In case µ is Tε-unsatisfiable, the extension
of the EUF Solver begins its work. Namely, it produces an unsatisfiable core η, which
is a subset of µ and contains some literals whose conjunction is still unsatisfiable. More
precisely η can be defined as an arbitrary set of literals where η ⊆ µ and η |=T ⊥ holds.
As soon as the EUF Solver returns with η, the Encoder converts all the literals back to
the propositional level by using the abstract model and builds up a reduced conflict clause
e(η) from it. Then ¬e(η) becomes a so called theory lemma, which can be conjuncted to
e(ϕ). With this step, the SAT solver is prevented from finding the same model again and
can search for further solutions in a narrowed space. The refinement of the abstraction by
these theory lemmas is repeated until the SAT solver either finds a Tε-consistent model or
returns unsat.

Since the theory lemmas produced by the EUF Solver do not introduce new atoms
into the formula, the number of possible propositional assignments is finite. In each
iteration at least one of these satisfying assignments is ruled out, therefore the procedure
will terminate after a finite number of iterations. The following example illustrates the
decision procedure on a formula.

Example 2.13 (Methodology). Assume that the following ϕ formula is given as an input
to the framework:

x = y︸ ︷︷ ︸
a

∧ y = z︸ ︷︷ ︸
b

∧ f(z) 6= t︸ ︷︷ ︸
c

∧(x 6= z︸ ︷︷ ︸
d

∨ f(x) = t︸ ︷︷ ︸
e

).

The propositional abstraction (e(ϕ)) of this formula is a ∧ b ∧ c ∧ (d ∨ e). Assume that
the SAT Solver finds the {a 7→ true, b 7→ true, c 7→ true, d 7→ true, e 7→ false} satisfying
assignment. The extraction of the Tε-literals based on this assignment produces the {x =
y, y = z, f(z) 6= t, x 6= z} set of literals as input for the EUF Solver. The theory solver
decides that this set of literals is inconsistent in Tε, and returns with the conflict set
{x = y, y = z, x 6= z}. The Encoder component constructs from this set the theory-lemma
of the form ¬a∨¬b∨¬d and sends it to the SAT solver as a new clause of ϕ. Then the SAT
Solver has to find a model for this extended formula: a∧b∧c∧(d∨e)∧(¬a∨¬b∨¬d), and
returns with {a 7→ true, b 7→ true, c 7→ true, d 7→ false, e 7→ true}. Now the EUF Solver
has to decide the Tε-satisfiability of the {x = y, y = z, f(z) 6= t, f(x) = t} set of literals.
This set is also inconsistent on the level of the EUF theory, therefore the theory solver
constructs the {x = y, y = z, f(z) 6= t, f(x) = t} unsatisfiable core. The encoding of these
literals results in the a ∧ b ∧ c ∧ e formula, so the new theory-lemma is ¬a ∨ ¬b ∨ ¬c ∨ ¬e.
The framework extends ϕ with this new clause and now the SAT Solver has to find a
model for the formula: a ∧ b ∧ c ∧ (d ∨ e) ∧ (¬a ∨ ¬b ∨ ¬d) ∧ (¬a ∨ ¬b ∨ ¬c ∨ ¬e). This
propositional formula is unsatisfiable, therefore SMT4J returns with unsat.

When a formula is found to be unsatisfiable, SMT4J is expected to produce a proof
about the inconsistency of the input formula as a compound of propositional and theory
specific proofs. The propositional part of this produced proof is a reverse unit propagation

11



(RUP) refutation that explains why the conjunction of the input formula together with
the theory lemmas are unsatisfiable. For the details of this clausal proof form see [41].
The other part of the proof explains the inconsistency of each unsatisfiable core, which
were produced by the theory solvers, in order to validate the theory lemmas used in the
propositional proof. So far, this feature of the solver was not implemented and this is one
of the main contributions of this thesis. The SMT-LIBv2 input and the proof output of
Example 2.13 can be found in Appendix A in Example A.2 and Figure A.3.

2.4 Union-Find Data Structure

The heart of the EUF Solver is a congruence closure algorithm [29] which is based on
the union-find data structure. This structure is applied in many graph related algorithms
and provides an efficient way to handle multiple non-overlapping sets, such as equivalence
classes. A detailed description of the data structure can be found in [15]. The structure
maintains a collection of non-empty disjoint sets: C = {C1, C2, .., Cn}. Each set is identi-
fied by its so-called representative, which is a certain element of the set. As long as a set
Ci is not modified, the representative of it, denoted C ′i, has to stay the same element. The
surjective map of an element t to its corresponding set is denoted by s(t). The operations
supported by this data structure are the following:

makeSet(t): Initializes the data structure by creating the Ct = {t} singleton set, where
the representative C ′t is t.
Precondition: 6 ∃i ∈ {1..n} : t ∈ Ci

union(t1,t2): Merges the two disjoint sets which contain t1 and t2 into a new set. The
representative of the new set depends on the details of the implementation.
Precondition: s(t1) ∩ s(t2) = ∅

find(t): Returns t′, the current representative of the set which contains t.
Precondition: ∃i ∈ {1..n} : t ∈ Ci

Different realizations of this data type can be found in the text book by Cormen et
al. [15]. In this thesis, a proof producing congruence closure algorithm is realized that
extends the so-called disjoint set forests implementation. In this realization each set is
represented by a directed rooted tree, where a node is an element of the set and the root
node is the representative of the set. Each node points only to its parent (parent pointer
representation), and the root node points only to itself. Figure 2.2a shows an example
of a disjoint set forest. With this representation, the operations work as follows: The
makeSet(t) method creates a new tree with a single node, whose parent is itself. The
find(t) method traverses through the parent pointers starting from t, until it finds the
root of the tree. The union(t1, t2) method directs the parent pointer of either t′1 to t′2 or
t′2 to t′1. The illustration of this operation can be seen on Figure 2.2b.

The worst case time complexity of the operations on this data structure can be ex-
pressed based on two numbers: n, the number of makeSet operations, and m, the sum of
the number of makeSet, find and union methods. Since the sets are disjoint, each union
method decreases the number of sets by one, therefore the union method can be called
maximum n-1 times. Furthermore, m ≥ n since m also contains the number of makeSet
calls. The effectiveness of the data structure strongly depends on the height of the trees
in the forest, therefore perceptible improvement can be achieved by reducing them. Two
simple heuristics for that purpose are as follows.

Weighted union: If the union operation connects the trees in an arbitrarily way, then
n−1 union operations might, in the worst case, result in an n-long chain of nodes. To

12



a1

a2

a3

a4

b1

b2

b3

(a)

a1

a2

a3

a4 b1

b2

b3

(b)

Figure 2.2: An example of a disjoint set forest adapted from [15]. (a) Represents two sets:
{a1, a2, a3, a4} with a1 as representative and {b1, b2, b3} with b1 as representative. (b) The
forest after the union of e.g. a2 and b2.

avoid this situation, the union operation decides the direction of the new connection
based on the size of the involved trees, i.e., it makes the smaller tree’s root point
to the root of the bigger tree. This heuristic reduces the upper-bound of the tree
heights in a disjoint set forest from n to log n. The requirement of this optimization
is to maintain the size information of each tree, which can be achieved in many
different ways with minimal costs.

Path compression: This optimization extends the find operation with a further step.
After the traverse from t to the root of the tree (t′), the parent pointer of t and all
its ancestors (except t′) are changed to point directly to t′.

In a disjoint set forest of n elements, the worst case running time of an m long sequence
of makeSet, find, and union operations, using weighted union and path compression si-
multaneously, is O(m α(n)), where α(n) denotes the inverse of the Ackermann function.
The Ackermann function is a simple µ-recursive function with an extremely fast rate of
growth, therefore α is a function with extremely slow rate of growth (for all practical
n α(n) ≤ 4). For the precise derivation of the function α and the computation of the
algorithms’ complexity see [15].

13



Chapter 3

Proof Generation of SMT Solvers

This chapter is dedicated to demonstrate the necessity of proof production capabilities in
the context of SMT Solvers and to present briefly a few recently employed proof systems.
Further, the proof format of the EUF theory solver is introduced in details during this
chapter.

SMT Solvers are fairly complicated systems with a large, frequently growing code base.
Hence, the objective to ensure the proper functioning of them is highly challenging and the
idea to build the system by verified code is not a practically feasible solution. Therefore,
some kind of evidence is expected from a solver, that can be checked with an external
trusted tool in order to achieve a higher level of confidence about the correctness of the
solver. This method discharges the question of trust from a complex system to a simpler
verifier tool. Another relevant application domain of the produced proofs is to integrate the
results of an SMT Solver into proof assistants or similar systems, without expecting that
the tool trusts in the decision procedure. Nevertheless, this aspect of the proof systems
is beyond the scope of this thesis. For SAT Solvers the produced evidence is usually
either a satisfying assignment for a satisfiable problem instance or a resolution proof
for an unsatisfiable problem instance. However, SMT Solvers combine multiple decision
procedures during a decision process, therefore their generated certificates are supposed
to mirror this complexity. This is one of the main difficulties in finding a sufficient proof
system for SMT Solvers.

Another challenge in proof production is in finding the sufficient balance between proof
granularity and performance of the solver and the difficulty of the verification process,
namely to decide the suitable set of rules that already supports the verification but still
not ruins the performance of the solver significantly. If more details are included in
the produced proofs, the implementation of the solver becomes more complicated, but
the verification process is easier. Nevertheless, if the aim is to keep the code base of
the solver simple and the performance untouched, the proof-checker tool has to be more
sophisticated and expensive in general. From this point of view, an unsatisfiable core is
the simplest proof that an SMT Solver or a theory solver can produce. It narrows down
the unsatisfiable problem to a smaller one, but says nothing about how the contradiction
is derivable from it. This amount of information requires a more elaborated method to
verify. On the other hand, a detailed derivation of a contradiction guides the verification
process by referring to the inference rules and axioms of the corresponding theory. For
producing these details, the solver has to maintain several types of information during the
solving process, which are not necessarily required for the decision. This fact indicates
an unavoidable overhead of the proof production. The degree of this overhead mainly
depends on the chosen rule steps. A shallow proof describes the biggest steps that are
necessary to derive a contradiction, while on the other end, a proof can even contain every
necessary steps with clarified semantics. In the former case, during verification the holes

14



of the proof has to be filled, searches that were conducted by the solver already has to be
repeated, while in the latter case, the verification process is reduced only to verify each
step based on their definition. All in all, the desired supreme properties of a certificate
always depends mainly on what the proof is destined for.

Although, for the moment there is no standard or even agreement about the produced
certificates of SMT Solvers, there are some recommendations that may be considered
during the development of this functionality [10]. First of all, SMT Solvers should share
their proof format in order to re-use the already implemented checkers and other proof-
based tools and to facilitate proof exchange between systems. Due to the lack of standard
and high diversity of solvers, currently this suggestion is hard to follow. The produced
proofs are mostly parsed and used with further automatic tools, still it is advisable to
choose a format that is readable by the users. The produced certificates of an SMT Solver
should be preciously designed, namely the granularity of the produced proofs should not
be defined purely by the internal data structures and implementation details of the solver.
Furthermore, it is worth to consider to include not only the applied inference rules in
the proof format, but additionally the explicit derived formulas also. In that way, the
uncertainty of the semantics may reduced. In any case, the most important feature for
a successful adoption of a format is to provide an exhaustive documentation of syntax
and semantics of the proof system in order to facilitate the application of the proof for
verification. For more detailed description of these suggestions see [10].

3.1 Overview

Since the importance of proof certificates is recognized already in SMT community, more
and more SMT Solvers provide proof certificates. Some recently popular SMT Solvers
with proof production capabilities are for example Z3, veriT and CVC4. Most of the SMT
Solvers have their own unique proof system and the aim of this section is to present some of
them briefly. The focus in this thesis is restricted to reasoning in the EUF theory, therefore
several aspects of the proof systems are not discussed here. For a more detailed survey
of current proof formats see e.g. [6]. In Figure 3.1 a very simple formula is presented in
SMT-LIBv2 format. This formula will be used as input henceforth to illustrate the proof
formats of the different solvers.

( set−l o g i c QF UF)
( dec la re−s o r t S 0)
( dec la re−fun f (S S) S)
( dec la re−fun a ( ) S)
( dec la re−fun b ( ) S)
( dec la re−fun c ( ) S)
( a s s e r t (= a b) )
( a s s e r t (= a c ) )
( a s s e r t ( d i s t i n c t ( f b a ) ( f c a ) ) )
( check−sa t )
( e x i t )

Figure 3.1: A simple example problem instance in SMT-LIBv2 format.

3.1.1 Proofs of Z3

Z31 is developed at Microsoft Research and is one of the most popular SMT Solvers
nowadays due to the high performance provided by it. It has model generation and proof
production abilities as well. The architecture of the certificates produced by Z3 is rather

1https://github.com/Z3Prover/z3

15



unique. Figure 3.2 shows an example certificate produced by Z3. First of all, the proof-
objects at the propositional level are not the customary resolution proofs but follow more
a natural deduction style. The certificates are represented as proof terms, where function
symbols representing the inference rules. The last argument of a proof term is always the
consequent of the proof.

( ( set−l o g i c QF UF)
( proo f
( l e t ( ( ? x35 ( f c a ) ) )
( l e t ( ( ? x34 ( f b a ) ) )
( l e t ( ( $x38 (= ?x34 ?x35 ) ) )
( l e t ( ( $x29 (= a b) ) )
( l e t ( ( @x30 ( a s s e r t e d $x29 ) ) )
( l e t ( ( @x48 ( monotonic i ty ( t rans (symm ( a s s e r t e d (= a c ) ) (= c a ) ) @x30 (= c b) ) (=

?x35 ?x34 ) ) ) )
( l e t ( ( $x39 ( not $x38 ) ) )
( l e t ( ( @x44 (mp ( a s s e r t e d ( and ( d i s t i n c t ?x34 ?x35 ) true) ) ( r e w r i t e (= ( and (

d i s t i n c t ?x34 ?x35 ) true) $x39 ) ) $x39 ) ) )
( unit−r e s o l u t i o n @x44 (symm @x48 $x38 ) false) ) ) ) ) ) ) ) ) ) )

Figure 3.2: Proof of Z3 (version 4.4.0)

Reasoning in the EUF-theory in the Z3 Solver is based on all axioms of the theory,
namely even symmetry is handled explicitly in the proofs. The theory axioms are encoded
as inference rules (refl, symm, trans and monotonicity). In Z3, the equality relation is
treated as a logical function that is also contained by the congruence classes. This feature
is a relevant difference compared to the congruence closure algorithm implemented in this
thesis. For more details about the proof generation capability of Z3 see for instance [17].

3.1.2 Proofs of CVC4

CVC4 is the new version of the Cooperating Validity Checker series, that is currently
one of the state-of-the art SMT Solvers. It is developed under the lead of Clark Barrett
and Cesare Tinelli and supports several background theories [5]. The proof production
capability of the solver is still in progress, nevertheless it is designed to have no influence on
the performance of the solver, when it is compiled without this function. The proof format
of CVC4 is based on a (dependently) typed lambda calculus, more preciously formulated
in the Edinburgh Logical Framework with Side Conditions (LFSC) meta-language. LFSC
as a standard for SMT proof format was proposed by Stump et al. [37, 38, 39]. This
flexible language facilitates to describe proof systems with the support for the independent
verification of the certificates. The language of the certificates follow a functional view of
proofs, where the inference rules are represented as functions from proofs to proof. More
preciously, in LFSC a proof systems is encoded as a collection of typing declarations.

Figure 3.3 illustrates the proof of unsatisfiability for the example input formula by
CVC4. The declared signatures in CVC4 cover already the preprocessing steps of the solver
(e.g. CNF clausification), natural deduction steps, resolution steps and theory specific
reasoning for example in the theory of equalities over uninterpreted functions, bit-vectors
and arrays. Each theory solver logs its deductive steps in a separated component during
the solving process and in the final produced proof these components are glued together.
The proof begins with the check keyword that indicates that the produced proof is already
an object of the verification process. The first part of the proof trace defines the involved
terms of the input formula. The input formula contains three assertions and the trace refers
to them as holding theories. The derivation of the empty clause starts by the (: (holds
cln) expression. The next line gives to the atomic formula false a propositional (v1) and
a logical atom (a1) name that can be used in the later steps. The wild-card symbol in the
proof trace means that the value of the argument of the function application is computed

16



( check
(% S s o r t
(% f ( term ( arrow S ( arrow S S) ) )
(% a ( term S)
(% b ( term S)
(% c ( term S)
(% A0 ( th ho ld s true)
(% A1 ( th ho ld s (= S a b) )
(% A2 ( th ho ld s (= S a c ) )
(% A3 ( th ho ld s ( not (= S ( apply ( apply f b) a ) ( apply ( apply f c ) a )

) ) )
( : ( ho lds c ln )
( dec l atom false (\ v1 (\ a1

; ; Input Clauses
( sat lem ( as t a1 (\ l 3 ( c l a u s i f y f a l s e t r u s t ) ) ) ( \ pb1
( sat lem ( a s f a1 (\ l 2 ( c l a u s i f y f a l s e t r u s t ) ) ) ( \ pb2

; ; Theory Lemmas
( s a t l e m s i m p l i f y (R pb2 pb1 v1 ) (\ empty empty ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

Figure 3.3: Proof of CVC4 (version 1.4)

by the types of the further arguments. Although CVC provides proof production for the
EUF theory, the recent version of the solver instead of declaring the precise proof of a
theory lemma, employs the decision of the theory solver as a trusted step. Therefore, in
Figure 3.3 no theory lemmas are depicted explicitly. The last step of the proof shows the
derivation of the empty clause by a propositional resolution tree.

3.1.3 Proofs of veriT

Besson et al. [8] propose a flexible, generic proof format for SMT Solvers that is supposed
to be easy to generate and that at the same time could be verified with a trustworthy
external tool in an efficient way. The proposed proof format is a direct extension of the
SMT-LIB syntax, therefore provides familiar environment for solver implementers. The
main intent of the proposal is to facilitate a generic format that can be fine-tuned by each
SMT Solver based on the actual requirements, that is to say, it can be parametrized by
theory solver-specific proof rules. It is recently employed in the veriT SMT Solver, that
is developed in the cooperation of LORIA (Nancy, France) and UFRN (Natal, Brazil).
In this solver a unique module is responsible for the management of the proof-related
information and currently the QF UF, QF IDL, QF RDL, QF IDL theories are covered
by proof production capability. Although the quantifier handling in the proof format of
veriT is still under development (see [18]), the skolemization process is already fully proof
producing. The generated proof2 of veriT for the simple example input problem instance
is given in Figure 3.4.

As it is obvious from the figure, the proof in this format contains a sequence of set
commands, where each command introduces a new clause. A clause in this context is a
set of arbitrary formulas instead of literals, for instance the clause (not (= c b)) (not (= a
a)) (= (f c a) (f b a)) (clause c5) means the disjunction of the formulas ¬(c = b), ¬(a = a)
and f(c, a) = f(b, a). The empty clause is denoted as ‘()’. The proof trace begins with
the input formulas (c1-c3) and ends with the final empty clause. In each step elementary
inference rules are employed. The inference rules in this format refer to arbitrary many
clauses as premises and conclude a single clause. The fine-grainedness of the rules in
veriT are planned to be high, namely each rule is as small and simple as possible. The
resolution rule represent chain resolution in veriT. The result of each resolution step is
explicitly defined in the proof (not like in the LFSC format). Rules of c5, c6 and c8

2The longer lines of the proof are slightly rearranged compared to the original output result.

17



( s e t . c1 ( input : c onc lu s i on ((= a b) ) ) )
( s e t . c2 ( input : c onc lu s i on ((= a c ) ) ) )
( s e t . c3 ( input : c onc lu s i on ( ( d i s t i n c t ( f b a ) ( f c a ) ) ) ) )
( s e t . c4 ( t m p d i s t i n c t e l i m : c l a u s e s ( . c3 ) : c onc lu s i on (

( not (= ( f c a ) ( f b a ) ) ) ) ) )
( s e t . c5 ( eq congruent : c onc lu s i on (

( not (= c b) ) ( not (= a a ) ) (= ( f c a ) ( f b a ) ) ) ) )
( s e t . c6 ( e q t r a n s i t i v e : c onc lu s i on ( ( not (= a c ) ) ( not (= a b) ) (= c b) ) ) )
( s e t . c7 ( r e s o l u t i o n : c l a u s e s ( . c5 . c6 ) : c onc lu s i on (

( not (= a a ) ) (= ( f c a ) ( f b a ) ) ( not (= a c ) ) ( not (= a b) ) ) ) )
( s e t . c8 ( e q r e f l e x i v e : c onc lu s i on ((= a a ) ) ) )
( s e t . c9 ( r e s o l u t i o n : c l a u s e s ( . c7 . c8 ) : c onc lu s i on (

(= ( f c a ) ( f b a ) ) ( not (= a c ) ) ( not (= a b) ) ) ) )
( s e t . c10 ( r e s o l u t i o n : c l a u s e s ( . c9 . c1 . c2 . c4 ) : c onc lu s i on ( ) ) )

Figure 3.4: Proof of veriT (version 201410) without term sharing option for improved
readability.

introduce valid clauses of the EUF theory, as it will be described more detailed in the
further section.

The proposal of this format suggests an extension of the SMT-LIB language with a
new (get-proof-header) command, that could print the definitions of the implemented rules
of the solver. This is the only location for the proof system where the definition of the
employed inference rules can take place and this description can be informal. Therefore,
the proper formal documentation of the proof system may be incomplete. This can raise
difficulties for the users of the produced proofs. veriT provides this information through
an external option of the solver.

3.2 Proof Format of EUF Solver

A complete proof that is produced by SMT4J contains a propositional refutation (in
RUP form) filled with theory-related sub deductions of the theory lemmas. This section
describes in details the format of the proofs generated by the EUF theory solver of SMT4J.

These proofs are justifications of the Tε-lemmas and are based on Tε-specific reasoning.
The theory solver is expected to collect all the necessary information to generate these
justifications without ruining the efficiency of the framework significantly. These certifi-
cates serve first of all as evidences in order to verify the correct functioning of the theory
solver, therefore they are supposed to be well detailed with simple and atomic proof steps.
Furthermore, the produced proofs provide a deeper insight into the reasoning mechanism
of the theory solver. Thus, readability is an additional important requirement. The cho-
sen proof format of the theory solver follows strongly the proposed certificate format of
the veriT SMT Solver. This format is based on natural deduction and easy to read, that
is to say, user friendly. Furthermore, it follows the main principles of the SMT-LIBv2
language, thus requires only short time to grow familiar with the format. At the moment,
the produced proofs of SMT4J cover only the theory lemmas produced by the EUF theory
solver, therefore only a subset of the original proof format is employed.

Each proof of a theory lemma consists of a context and a sequence of proof steps,
where the context means the SMT-LIBv2 definition of the involved input assertions. By
default the context section is not printed in the detailed proofs, but on request can be
part of the output. Each proof step constructs a new Horn clause by using the gen clause
generation rule, where the new clause is identified with a clause id. The gen clause rule
represents clause derivation either by referring directly to an already constructed clause,

18



or by using a named rule. The syntax of the produced proofs based on [8] is as follows:

〈proof〉 ::= 〈context〉 〈proof step〉∗

〈proof step〉 ::= (set 〈clause id〉〈gen clause〉)
〈gen clause〉 ::= 〈clause id〉

| (〈rule id〉
(: clauses (〈gen clause〉∗))?
(: conclusion 〈clause〉)?)

A proof produced by the EUF theory solver contains always a single conflict causing
disequality (which was asserted as true in the input) and the derivation of the negation
of this disequality from other input assertions or further Tε-valid formulas. Therefore, the
constructed clauses can be grouped into two categories. One set of the clauses in the proof
contains only unit clauses, where one of them is the conflict causing disequality and the
further clauses are the asserted equalities which are necessary to derive the contradiction.
This set of atomic formulas is the unsatisfiable core. Example 3.1 illustrates this part of
the proof.

Example 3.1. Assume that the unsatisfiable core of a contradictory set of literals is the
set of (dis-)equalities {a = c, f(a, d) 6= f(c, d)}. Then the produced proof contains the
following clauses related with the core:

( s e t . c1 ( input : c onc lu s i on ((= a c ) ) ) )
( s e t . c2 ( input : c onc lu s i on ( ( d i s t i n c t ( f a d) ( f c d) ) ) ) )

The other set of clauses of a produced proof contains derivations from the asserted input
equalities or further Tε-valid formulas. One inference rule is to represent the elimination of
the distinct predicate from the conflict causing disequality. In the SMT-LIBv2 language,
the predicate symbol distinct is part of the core theory and denotes a logical function that
returns true if and only if the two arguments of it are not identical. Nevertheless, in the
theory of equalities over uninterpreted functions only equalities can be derived, therefore
this function has to be transformed to an equality predicate in order to reach contradiction.
Therefore, in each produced proof one step stands for representing this transformation:

( s e t . c3 ( t m p d i s t i n c t e l i m : c l a u s e s ( . c2 ) : c onc lu s i on ( not (= ( f a d) ( f c d) ) ) ) )

A derivation step in the proof trace can represent valid formulas constructed based on
the axioms of the EUF theory (see Section 2.2), namely it introduces a tautology of Tε
in clause form. Since the theory solver handles symmetry only implicitly, the formulas
constructed by Axiom 2.2 are not included in the proofs. An example instantiation of the
considered axioms are as follows.

Example 3.2. Assume the following instantiation of the Tε-axioms:

t = t

s = t ∧ t = u ⊃ s = u

a = c ∧ b = d ⊃ f(a, b) = f(c, d)

After the elimination of the implications the formulas become the following Horn clauses:

t = t

¬(s = t) ∨ ¬(t = u) ∨ s = u

¬(a = c) ∨ ¬(b = d) ∨ f(a, b) = f(c, d)

Then the representation of these clauses in the proof language of veriT and the EUF theory
solver of SMT4J are as follows:

19



( s e t . c1 ( e q r e f l e x i v e : c onc lu s i on ((= t t ) ) ) )
( s e t . c2 ( e q t r a n s i t i v e : c onc lu s i on ( not (= s t ) ) ( not (= t u) ) ((= s u) ) ) )
( s e t . c3 ( eq congruent : c onc lu s i on ( not(= a c ) ) ( not(= b d) ) ((= ( f a b) ( f c d) ) ) ) )

Although, the transitivity axiom defines an implication based on exactly two equalities,
in the generated proofs this rule refers to the combination of multiple transitivity steps.
By the default settings, the EUF Theory solver produces all the deduction steps, but
the connection between them, namely the derivation of the empty clause from them is
generated just on request. The precise definition of deduction based on resolution is
beyond the scope of this thesis, for further details see e.g. [21]. The resolution rule in the
context of the generated proofs are binary (without refactoring), except the very last step
of each proof, where the resolution step is expressed as a chain resolution to resolve the
last resolvent with the conflict causing literal and with all the input assertions.

The theory solver provides a minimal informal definition of the here explained inference
rules and clauses in a form of header definition of the inference rules. The produced proof
of the EUF Theory solver for the example input formula of Figure 3.1 will be explained
in detail during the next chapter (see Example 4.11).

20



Chapter 4

EUF Solver Implementation

The first and foremost responsibility of the EUF theory solver in the SMT4J Solver is
to decide whether a conjunction of ground Tε-literals is satisfiable. This problem can be
approached from various directions and there are various algorithms dedicated to solve
this decision problem. Some, but far from all, of these approaches and algorithms can be
found in [3, 19, 28, 34]. In general, the common characteristic of these algorithms is that
they solve the decision problem through congruence closure. Namely, the methodology of
the algorithms is as follows. As a first step, the congruence closure of the given equalities
is calculated and the constructed classes are stored. Then the disequalities are examined
one-by-one, whether they contradict with the obtained congruence classes or not. A
contradiction is found, when a disequality of the input is defined between two terms that
belong to the same congruence class. The implementation of the EUF Solver of SMT4J
realizes this method by following closely the congruence closure algorithm described by
Robert Nieuwenhuis and Albert Oliveras in [29].

Besides the decision of the satisfiability of a given collection of literals, the theory solver
is expected to provide several further functionalities in order to simplify and optimize the
work of the SMT4J Solver. These features are as follows.

Incremental processing: The theory solver is expected to store the state of its compu-
tation between two calls. In practice it means, that whenever a set of input literals
is processed by the theory solver and found to be satisfiable, the extension of the
problem with further literals is supported. In these cases the solver continues the
computation, i.e., modifies the already existing congruence classes based on the addi-
tional equalities, without restarting the process. In that way significant acceleration
of the decision process can be accomplished. This feature is desirable mainly in the
situations, when the theory solver has to interact with other theory solvers.

Deduction of interface equalities: The theory solver is expected to be able to derive
further equalities from a satisfiable set of equalities. These derived equalities are
the so-called interface equalities and are mainly used in the case when multiple
theory solvers work together in order to solve a decision problem with more than
one background theory. For further details about theory combination and the role
of interface equalities in it, see [27]. The produced interface equalities are logical
consequences (in first-order logic with equality) of the input conjunction of theory
literals and they are defined over ground terms. However, these terms not necessarily
occur in the input formula.

Conflict set generation: An unsatisfiable core of an unsatisfiable set of literals is es-
sential in order to produce effective Tε-lemmas, therefore in each case, when the
conjunction of the input literals is found to be unsatisfiable, a conflict set is ex-
pected to be produced by the EUF Solver. The generated inconsistent conflict set

21



contains exactly one disequality and an arbitrary number of equalities from the input
set of (dis-)equalities, namely it can contain only literals of the input formula.

Detailed proof generation: The theory solver is expected to be able to generate a
detailed, human-readable and verifiable proof for each theory lemma which was
found by the EUF Solver. Each proof explains the contradiction of one specific
conflict set and therefore, the premises of the proofs are just literals of the input
formula or tautologies in the equalities over uninterpreted functions theory.

Model generation support: In the case, when the conjunction of the input literals
is found to be satisfiable by the theory solver, the model that would justify this
consistency, cannot be produced without having a knowledge of the interpretation of
the functions and sorts. Therefore, the solver can just support but not accomplish the
model generation, by providing the constructed equivalence classes and the required
disequalities among them to the framework.

Literals Facade
(Dis-)

Equalities
Transformer

Standard
Equalities

Standard
Disequalities

Congruence
Closure

Congruence
Classes

Union Queue

Model
Manager

Disequalities
Congruent
Disequality

Proof
Manager

Interface
Equalities

Lemma
Proof

Theory
Lemma

UNSATSAT

are congruent?

no yes

Figure 4.1: Simplified workflow of EUF theory solver

The implementation of the EUF theory solver is based on the following main compo-
nents.

Facade: Provides a unified and simplified high-level interface to the functionalities of the
theory solver. Any interaction with the EUF theory solver is possible only through
this component. This interface facilitates the usage of the theory solver by hiding
the complexity of the inner architecture and shields the framework from the changes
of the theory solver.

Transformer: Responsible for the correct transformation of the input literals into the in-
ternal representation (standard form) of the EUF theory solver. Stores the alphabet
and signature information of the occurring terms and reconstructs the proper equal-
ities and disequalities from the output of the theory solver. Details are discussed in
Section 4.1.

Congruence Closure: Processes incrementally a set of standard equalities (c.f. Def. 4.7)
in order to be able to decide, whether an equality belongs to the congruence closure
of the processed equalities or not. During the process, stores the newly discovered
congruent deductions and the already applied congruence class merge operations.
The core module of the EUF theory solver. Details are discussed in Section 4.2.

22



Proof Manager: Produces the unsatisfiable cores for each contradiction found by the
congruence closure algorithm based on the actual state of the congruence classes.
Responsible for the outputs of the EUF solver in the cases of unsatisfiable input.
The details of this component are described in Section 4.3 to 4.6.

Model Manager: Propagates implied equalities based on the actual state of the congru-
ence classes. Furthermore, this component is expected to support model generation
in each call, when the decidable problem found satisfiable by the congruence closure
algorithm. The Model Manager is responsible for the outputs of the EUF theory
solver in the cases of satisfiable input. The main functionality of the component is
presented in Section 4.7.

Figure 4.1 depicts the general working process of the EUF Solver in a simplified way.
The input literals are received by the Facade component. It processes the set of the literals
and does some minimal preprocessing on the (dis-)equalities, e.g., it applies negation where
it is necessary. Then these (dis-)equalities are forwarded to the Transformer component.
The Transformer converts each (dis-)equality into the so-called standard form, the internal
term representation of the theory solver. Then all the standard equalities are sent to the
congruence closure algorithm, in order to build up the corresponding congruence classes
based on them. When it is done, the standard disequalities are checked one-by-one. For
each disequality predicate s 6= t there are two possibilities: Either s and t currently belong
to the same congruence class or not.

When s and t do belong to the same congruence class, it means that they are currently
congruent, namely the actual disequality is in a contradiction with the already processed
set of equalities. In that case, the Proof Manager component of the theory solver starts its
work. As a first step, it constructs a so-called proof forest based on the sequence of merge
operations that occurred in the congruence closure algorithm during the generation of the
congruence classes. Then with the help of this proof forest, the Proof Manager produces
an unsatisfiable core of the input problem that contains all the input literals, which cause
s and t to be congruent. In the case, when the theory solver was invoked with proof
generation requirement, the Proof Manager produces an additional detailed explanation
of the contradiction. When one contradiction is found already, the theory solver returns
with the generated lemma and with the result unsat.

When s and t do not belong to the same congruence class, it means that they are not
congruent based on the current state of the congruence classes, namely the disequality
among s and t does not contradict with the processed set of equalities. In that case, the
actual disequality is sent to the Model Manager component. When all disequalities are
found non-congruent, the Model Manager based on the congruence classes propagates the
interface equalities to the framework and the theory solver returns with sat. The collected
disequalities and the full set of congruence classes are used only in the scenario, when the
theory solver was invoked with model generation support requirement.

Note that each component starts its work as delayed as possible in order to avoid
unnecessary overheads. For example, the proof production capability does not influence
significantly the running time of the theory solver in the cases when the set of literals
found satisfiable, and the interface equality propagation capability does not influence the
running time of the unsatisfiable scenarios. The following sections provide a description
of the operations of the main components in details.

4.1 Transformations of Input Equalities

Some necessary initial transformations are applied on the input (dis-)equalities in order
to simplify the input of the congruence closure algorithm and to enhance the internal

23



processing. These transformations are applied only once on each input term and each step
is reversible in order to reconstruct the original proper terms from the outcome of the
EUF solver in scenarios when the output of the theory solver is expected to be more than
a plain sat or unsat answer.

4.1.1 Chainable equalities and pairwise distincs

SMT4J handles, as it is proposed in the SMT-LIBv2 standard (see [7]), equalities as
chainable and disequalities as pairwise expressions. In the context of the SMT-LIBv2
language, it means only a syntactic sugar to describe formulas, which contain some specific
theory-defined function symbols, in a shorter way. However, the (dis-)equality means in
the implemented congruence closure algorithm strictly a binary relation, therefore the
input (dis-)equalities which are applied on more than two arguments, are supposed to
be translated into multiple binary predicates. The infix notation of (dis-)equality in the
following examples would be inconvenient, hence it is neglected. The transformation of the
multiple-distinct expressions is unambiguous, a new distinct predicate has to be created
for all pairs of the argument list.

Example 4.1. Split of disequalities:
split((6= a b c d))→ {(6= a b), (6= a c), (6= a d), ( 6= b c), ( 6= b d), ( 6= c d)}.

On the other hand, the number of possible conversions of an equality with more than
two arguments is not that confined. The following example illustrates the transformation.

Example 4.2. Split of equalities:
split((= a b c d))→ {(= a b), (= a c), (= a d)}.

Note that in the SMT-LIBv2 standard the :chainable function symbol annotation
implies a different conversion of equalities with more than two arguments, i.e., the equality
of Example 4.2 based on the standard supposed to be transformed to the set of equalities
{(= a b), (= b c), (= c d)}. This deviation is performed to avoid an unnecessary
increase of the depth of the proof graph (see Sec. 4.3).

4.1.2 Curryfication

The first more involved transformation of the preparatory process is restricting the maxi-
mal number of arguments of the input ground terms by introducing a new function symbol
that represents partial function application. This transformation is called currification or
function currying after Haskell Curry and very similar to the well-known technique in
the field of functional programming. Formally, during this transformation each function
symbol f ∈ F of signature (π1, π2, ..., πk, π) is replaced with a new unique constant symbol
cf of sort π and at the same time the set of constant symbols C is extended by these new
cf constant symbols. The extended set of constant symbols is denoted in the following by
C′. Furthermore, F is extended with a new binary function symbol that is called Curry-
function and denoted as C, of signature (πc, πc, πc), where πc is the union of all sorts
in S (that is to say, this function can be applied on any terms). The Curry-function is
interpreted as a function application, namely its first argument is supposed to be applied
on its second argument. The new set of ground terms after this transformation step is
denoted by G′. After this transformation, each ground term t ∈ G′ is either a constant
term c ∈ C′ or has the form of C(t1, t2), where t1, t2 ∈ G′, i.e. only constants or the newly
introduced C function symbol with exactly two arguments can occur in each term. The
Curry form of a ground term t ∈ G is a term Curry(t) ∈ G′ and defined based on [29] as
follows:

Curry(t) =

{
c if t is c ∈ C
C(...C(C(f, Curry(t1)), Curry(t2)), ..., Curry(tn)) if t is f(t1, ..., tn) ∈ F

24



Note that the first argument of a Curry-function is either a function-constant cf or another
Curry-function, while the second argument of the function is either a constant symbol c ∈ C
or another Curry-function. A term in Curry form is henceforth called Curry term. The
following two examples demonstrate the currification transformation first on a simple and
then on a slightly more elaborated ground term:

Example 4.3. (Currification of term) The Curry form of the f(a, b, c) term is as follows:

Curry(f(a, b, c)) = C(C(C(f, a), b), c).

Example 4.4. (Currification of term) The Curry form of the f(a, h(b, d), g(a)) term is as
follows:

Curry(f(a, h(b, d), g(a))) = C(C(C(f, a), C(C(h, b), d)), C(g, a))).

The Curry form of a (dis-)equality follows straightforward from the Curry form of the
terms, i.e. Curry(t = s) is Curry(t) = Curry(s) and Curry(t 6= s) is Curry(t) 6=
Curry(s). The equalities and disequalities are not distinguished during the process,
namely the predicates of the input formula are not modified by the transformation at
all. Furthermore, the terms of the input literals are modified just on the representation
level, their meaning is not influenced by the transformation. However the size of the
input formula by this conversion is inevitably augmented. The following more precise
observations about the currification transformation are adapted from [29].

Proposition 1. Let t be a term. Then |Curry(t)| ≤ 2|t|−1, i.e., the Curry transformation
only produces a linear growth of the input.

Proposition 2. Let E be a set of equations over G and let s = t be an equation over G.
Then Curry(E) |= Curry(s = t) if, and only if, E |= s = t.

In practice, the theory solver does not have any knowledge about the alphabet and
signature of the input terms, therefore these information are built up on the fly during
the currification process. Namely, this preprocessing step not just transforms the repre-
sentation of the terms but produces also a so called symbol table of them. The symbol
table contains a bidirectional mapping between a pair of term name and signature, and
an integer value. As was mentioned before, all the function symbols in the input formula
are supposed to be replaced by function-constants. In the implementation of the EUF
solver, not just the function symbols but every symbol of the alphabet is replaced by an
integer constant. This extended replacement is necessary among other things due to the
following reason. The SMT-LIBv2 standard allows the same symbols to represent more
than one operation or constant, as long as they have different signature. However, after
the preprocessing steps of the EUF solver, these signature information are not accessible
any more, hence the different uses of the same symbol could not be told apart easily in the
result terms. In the examples above (and further on) the term symbols are represented by
their original names, and not by their integer identifier. An elaborated example for the
currification with the produced symbol table and integer representation can be found in
the Appendix as Example A.1.

4.1.3 Flattening

The second transformation step of the preparatory process restricts the maximal depth of
the Curry terms by introducing new constant symbols to represent the non-constant (sub-
)expressions. This transformation is defined on the output of the previous transformation
step, namely on a set of currified (dis-)equalities, denoted as E. Formally, for each Curry

25



term t ∈ G′ a new constant symbol ct is introduced into the set of constants C′. Then all
occurrences of t in E are replaced by the new ct constant symbol and a new equation t = ct
is added to E. The constant symbols which are introduced during this transformation step
are called further on flat-constants. The following example illustrates this transformation.

Example 4.5. (Flattening equalities) Assume that E contains only one equality:

a = C(C(C(f, a), b), d)

Then the flattening process on E is as follows. As a first step, all occurrences of the Curry
term C(f, a) are replaced by a new constant symbol c1 and the equality C(f, a) = c1

is added to E. The enlarged E, denoted by E′, after this step is {C(f, a) = c1, a =
C(C(c1, b), d)}. Then the c2 constant symbol is introduced in order to replace the C(c1, b)
Curry term and the new generated equality is C(c1, b) = c2. After this extension E′ is
{C(f, a) = c1, C(c1, b) = c2, a = C(c2, d)}. At last, the C(c2, d) Curry term is replaced by
the new constant symbol c3 and the C(c2, d) = c3 equality is included in E′. The final
state of E′ is as follows.

{C(f, a) = c1, C(c1, b) = c2, C(c2, d) = c3, c3 = a}

As the following example shows, the process is similar when the transformation is
applied on a disequality, namely the result set contains multiple equalities and exactly
one disequality predicate, which is the original disequality after the replacement of the
subterms with the new constant symbols.

Example 4.6. (Flattening disequalities) The C(C(C(f, a), C(g, a)), d) 6= a disequality in
flattened form is as follows.

{C(f, a) = c1, C(g, a) = c2, C(c1, c2) = c3, C(c3, d) = c4, c4 6= a}

A closer study of these examples reveals some interesting observations about the result
of the transformation. Each atomic formula in E′ is either an equality between two
constant symbols or an equality between a constant symbol and a Curry term. The
preceding (dis-)equalities are called henceforth constant-equalities while the latter type
of eqalities are denoted as Curry-equalities. Among others, this observation about the
flattening preprocessing step is described more precisely in [29]:

Proposition 3. Assume that signature G′ is obtained from C ∪F by introducing a Curry-
function C and converting all other function symbols into function-constants. Let E0 be
a set of equations, let s = t be an equation, (both built over G′), and let E be obtained
by applying zero or more constant introduction and replacement steps on E0. Then the
following holds.

1. E0 |= s = t if, and only if, E |= s = t.
2. If a and b are constants not occurring in E ∪{s = t}, then E |= s = t if, and only if,
E ∪ {s = a, t = b} |= a = b.

3. By applying a linear number of constant introduction and replacement steps to E0

an E can be obtained such that all equations of E have a constant side, E has depth
at most 2, and |E| ≤ 2|E0|.

After this transformation step, all initial input Tε-literals are transformed to constant-
equalities and constant-disequalities. The isomorphic subexpressions of the input currified
formula are substituted during the process by the same fresh constant symbols and this
Curry term sharing is maintained through a global hash table of all Curry terms. This
hash table further on is called flat mapping. The resulting set of equalities and disequalities
E′ is called the standard form of the initial input equalities and disequalities of the theory
solver. More precise definition of standard form of a set of equalities adapted from [29] as
follows.

26



Definition 4.7. [Standard form] A set of equations E is in standard form if its equations
are of the form a = b or of the form C(a, b) = c whose (respective) left hand side terms a
and C(a, b) only occur once in E.

4.2 Decision of Satisfiability

This section is dedicated to the technical description of the congruence closure algorithm
introduced by Robert Nieuwenhuis and Albert Oliveras in [29]. The basic Congruence
Closure component (without core or proof generation capability) of the EUF theory solver
was already implemented in the SMT4J Solver, therefore the concise details of the imple-
mentation are not included in this thesis, but the description of the basic algorithms is
necessary in order to build on it in the following sections.

Henceforth, it is assumed that all equalities and disequalities are already in standard
form, that is to say, all (dis-)equalities have either the form of C(a, b) = c (Curry-equality)
or the form of a = b (constant-equality), where a, b and c are constants. This assumption
makes the congruence closure algorithm substantially more comprehensible and efficient.

The Congruence Closure component of the EUF theory solver maintains a congruence
relation defined by E0, a set of standard equalities between constant terms. In order to
fulfil this requirement, the implementation provides an operation called Merge(s = t),
that enlarges E0 with the equality s = t and updates the congruence closure of this
relation. The other expected functionality of the implementation, is to decide whether
two terms s and t belong currently to the same congruence class, that is to say, whether
(s, t) ∈ E∗0 . In practice, the component accepts multiple standard equality predicates and
stores them in order. Later on, when the corresponding congruence closure of the given
equalities is required, the component initializes the underlying data structures and starts
the calculation by calling the merge operation on each stored equality predicate. When it is
done, the disequalities can be examined one-by-one, whether any of them contradicts with
the current state of the calculated congruence classes. When a contradiction is found, i.e.,
two congruent terms are supposed to be disequal, the theory solver returns with unsat.
It follows that indirectly the Congruence Closure component is responsible to decide the
Tε-satisfiability of the input literals. The basic data structures used by the procedure are
as follows.

Representatives: Maps each ci constant symbol to its current representative c′i. Through
this data structure, the representative of any symbol can be reached in constant time.
Initially, each constant symbol is mapped to itself.

Class Lists: Maps each representative ci constant to its corresponding congruence class
s(ci). Namely, it contains a list of all the constants who are in the congruence class
represented by ci. At initialization, the class list of each c constant symbol contains
only c.

Use Lists: Contains for each representative ci constant symbol the list of Curry-equalities
C(a, b) = c, where either a′ or b′ (or both) is ci. Namely, it maps each representative
constant symbol to the list of those input Curry-equalities, whose arguments (at
least one of them) are represented by the given constant. This data structure is
initialized as an empty mapping.

Lookup Table: Maps pairs of representative constant symbols (c1, c2) to the list of
Curry-equalities C(a1, a2) = a, where currently a′1 is c1 and a′2 is c2. In the case,
when such a Curry-equality exists for a given pair of representative constant symbols
(c1, c2), the Curry-equality is contained by the use lists of c1 and c2 too. This data
structure is initialized as an empty mapping.

27



Pending Queue: A queue that represents those equalities, whose merge is currently
pending. There are two possible elements of this list: Each element is either a
constant-equality or a pair of Curry-equalities. In the case, when the pending element
contains two Curry-equalities C(a1, a2) = a and C(b1, b2) = b, the merge of a and b
is pending. Initially the Pending Queue is empty.

Union Queue: An ordered sequence of the arguments of each merge operation executed
during the congruence closure calculation. Each element of the queue contains two
constants that were merged by the algorithm and either a constant-equality or a
pair of Curry-equalities as the reason of the union step. Initially the Union Queue
is empty.

These data structures effectuate implicitly a union-find data structure (see [15]), where
the Representatives mapping stores the disjoint set forest. Before the congruence closure
calculation process starts, the initialization of the underlying data structures is necessary.
An essential condition of the initialization is to know all constant symbols that can occur
in the equalities and disequalities. This information is stored during the preprocessing
phase of the theory solver, and passed to the congruence closure procedure as an input for
the calculation. In the cases when the congruence procedure is invoked to continue the
closure calculation with an enlarged set of equalities, the initialization process is confined
only to the newly introduced constant symbols. The responsibility to distinguish these
new symbols from the already processed ones, belongs to the Transformer component.
When the initialization of the data structures is accomplished, the Congruence Closure
component is ready to execute a sequence of merge operations based on the stored equality
predicates.

4.2.1 Merge operation

The merge operation on a standard equality predicate is illustrated by Algorithm 4.1 and
Algorithm 4.2 from [29]. In the following algorithms of the congruence closure procedure
a′ denotes always the representative of the a constant symbol.

Algorithm 4.1 Merge from [29]

1: procedure Merge(s = t)
2: if s and t are constants a and b then
3: add a = b to Pending
4: Propagate()
5: else . s = t is of the form f(a1, a2) = a
6: if Lookup(a′1, a

′
2) is some f(b1, b2) = b then

7: add ( f(a1, a2) = a, f(b1, b2) = b ) to Pending
8: Propagate()
9: else

10: set Lookup(a′1, a
′
2) to f(a1, a2) = a

11: add f(a1, a2) = a to UseList(a′1) and to UseList(a′2)

The above procedure divides the input standard equalities into two groups: constant-
equalities and Curry-equalities. In line 3 and 4 of Algorithm 4.1 the constant-equalities
are forwarded directly to the Pending Queue and the propagate method is called. A
Curry-equality C(a1, a2) = a is processed as follows: When the Lookup Table contains
already a Curry-equality C(b1, b2) = b belonging to the (a′1, a

′
2) pair of representatives, a

new pending element is constructed from these two Curry-equalities and the propagate
method is invoked. If the representative pair (a′1, a

′
2) is not contained in the Lookup Table

28



yet, then the (a′1, a
′
2)→ C(a1, a2) = a mapping is stored in the Lookup Table and the Use

Lists of a′1 and a′2 are amplified with C(a1, a2) = a, since a1 and a2 are arguments in this
Curry-equality.

Algorithm 4.2 Propagate adapted from [29]

1: procedure Propagate
2: while Pending is non-empty do
3: Remove E from Pending

. E is of the form a = b or (f(a1, a2) = a, f(b1, b2) = b)
4: if a′ 6= b′ and wlog., |ClassList(a′)| ≤ |ClassList(b′)| then
5: old repr a := a′

6: SaveUnion(a,b,E)
7: for all c in ClassList(old repr a) do
8: set Representative(c) to b′

9: move c from ClassList(old repr a) to ClassList(b′)

10: for all f(c1, c2) = c in UseList(old repr a) do
11: if LookUp(c′1, c

′
2) is some f(d1, d2) = d then

12: add ( f(c1, c2) = c, f(d1, d2) = d ) to Pending
13: remove ( f(c1, c2) = c from UseList(old repr a)
14: else
15: set Lookup(c′1, c

′
2) to f(c1, c2) = c

16: move f(c1, c2) = c from UseList(old repr a) to UseList(b′)

The propagation process is responsible to update the data structures and to find all
the new pairs of constants which are supposed to be merged. This procedure is described
by Algorithm 4.2, that is adapted from [29]. The method iterates through the elements of
the pending list, in order to accomplish the necessary modifications of the data structures.
As before was mentioned, each element of the pending list is either a constant equality
a = b or a pair of Curry-equalities C(a1, a2) = a,C(b1, b2) = b and in both cases, the
symbols that should be merged are a and b. In line 4 of Algorithm 4.2, the method checks
whether a and b belong already to the same congruence class. If they belong to the same
class, it means, the current equality is redundant, therefore there is nothing to update.
Otherwise the equality a = b is supposed to be added to the union-find data structure.
In that case, the corresponding constants of the current equality and pending element is
saved in the Union Queue in line 6. The union of the corresponding classes is weighted,
namely the representative of the already bigger class will be the representative of the new
merged class. Lines 7-9 of Algorithm 4.2 accomplish the merge of the classes with path
compression. All elements of the originally smaller congruence class are from now on
belong to the congruence class of the other representative. Lines 10-16 are updating the
Uselist and Lookup Table entries of the old representative constant symbol and detect if
whether this merge implied new pairs of constants to be merged.

4.2.2 Congruency checking

After merging all input and propagated equality predicates, the information if two constant
symbols are currently congruent is easily obtainable. For this, only the normalization of
the terms in question is necessary, namely two constant symbols s and t are congruent, if
and only if the Normalize method, as described in Algorithm 4.3 from [29], returns with
the same constant for s and t.

The Normalize procedure returns for each t constant symbol its representative t′. For
a Curry-function C(t1, t2) the procedure recursively normalizes t1 and t2 and then checks

29



Algorithm 4.3 Normalize from [29]

1: procedure Normalize(t)
2: if t is a constant then
3: return t′

4: else . t is f(t1, t2)
5: u1 := Normalize(t1)
6: u2 := Normalize(t2)
7: if u1 and u2 are constants and Lookup(u1, u2) is f(a1, a2) = a then
8: return a′

9: else
10: return f(u1, u2)

whether there is an input equality in the Lookup Table that belongs to the obtained pair of
representatives. If such an equality is found, the method returns with the representative of
its constant side. Otherwise, the method returns with a Curry-function with the obtained
representatives as arguments.

Based on the result of this method, when exists such a disequality that makes the
set of input literals unsatisfiable, the EUF theory solver identifies the conflict causing
disequalities without any difficulty.

4.3 Proof Forest Building

When a contradictory disequality is found by the Congruence Closure component, the EUF
theory solver is expected to produce an unsatisfiable core of the given input set of literals
or a more detailed explanation of the conflict. A disequality s 6= t that causes a conflict is
defined between two constants which are congruent, namely the explanation of this conflict
is derivable by finding all the equalities that are needed to imply s = t. These required
equalities are actually the applied union steps on the congruence classes. To keep the
congruence closure algorithm fast and efficient, it applies path compression in every step
on the internal union-find data structure, therefore at the end of the calculation, the chain
of each class unions is not traceable back any more. Hence, during the propagation method
(Alg. 4.2, line 6) the storage of the sequence of executed union methods is inevitably
necessary. In the cases, when the set of input literals is found satisfiable, this collected
information is unused, but when the Congruence Closure component deems the set of
literals unsatisfiable, the Proof Manager component accepts as an input the queue of
unions and the conflict causing disequality. This sequence of unions provides the basis for
the construction of the centrepiece of the Proof Manager, the so-called proof forest data
structure that is also proposed in [29].

The proof forest of the Proof Manager component is a weighted non-compressed union-
find data structure, where the disjoint sets are stored as trees (see Section 2.4). Each tree
consists of a root node that contains the current representative of the corresponding set.
All edges in the tree are directed towards that root. The nodes of the graph represent the
terms, while the edges indicate the equality relation between two terms. Since, there is
no redundancy among the given equalities, the forest, as the name suggests, contains no
cycles. Each node possesses exactly one outgoing edge that points to the parent of the
node. The root node of a tree has also an outgoing edge that points to an artificial node
where the actual size of the corresponding tree is stored. These artificial nodes are called
henceforth size nodes. Each edge between two nodes s and t (where neither s nor t is a
size node) is labelled by the reason, that explains why the s = t equality holds. A reason
is either an input constant-equality s = t or a pair of Curry-equalities C(s1, s2) = s and

30



C(t1, t2) = t. Note, that although all the edges are directed, the equality relation that is
represented by them is symmetric, therefore the orientation of a given edge is not relevant.

The construction of the proof forest is based on the Union Queue of the Congruence
Closure component and uses only the union and the find methods of the proof forest data
structure. Each element of the Union Queue is a triple 〈s, t, E〉, where s and t are constant
terms and E is a set of standard equalities. Note, that E already determines the value of
s and t, this redundancy serves just as code readability enhancement. The Proof Manager
component, as an initialization step, iterates through the Union Queue and calls the union
method of the Proof Forest with each current triplet as arguments.

Algorithm 4.4 Union method of Proof Forest

1: procedure Union(s, t, reason)
2: s′ := Find(s)
3: t′ := Find(t)
4: if wlog., s(s′).size ≥ s(t′).size then
5: s(s′).size := s(s′).size + s(t′).size
6: ReversePath(t, t′)
7: t.parentId := s
8: t.label := reason

Algorithm 4.4 describes the union method in details. The main functionality of the
method is to place an edge between the nodes of s and t in the forest, i.e., to merge two
yet independent trees without breaking the desired structure of the forest. As a first step
in line 2 and 3 the corresponding root nodes of the involved trees are determined. These
nodes are the actual representatives of s and t. In line 4 the corresponding size nodes are
compared in order to determine the orientation of the new edge. The size information of
the selected new root node is updated in line 5. When the involved nodes are identified,
the corresponding roots are found and the orientation of the required edge is decided,
the procedure restructures the tree of the source node, in order to maintain the desired
structure of it. Here, “desired structure” means that each node has exactly one parent
therefore in the cases when the source node of the new edge is not a root node in its tree,
the insertion of the edge would just ruin this structure invariant. However, by reversing
the unique path between the source node and its current root, the source of the new
edge becomes the root of its tree. After that step, the new edge can be inserted into the
forest (line 7) without violating the structure invariant. In line 8, as a last step, the given
explanation of the symbolized equality is stored as a label of the new edge. Figure 4.2
depicts a simplified example proof forest and union query when the reorganization of the
source tree is necessary. Note that the procedure assumes that s and t do not belong to the
same tree yet. This precondition is fulfilled by the Congruence Closure algorithm, since it
stored only those equalities in the Union Queue, that gave rise to a merge operation.

The Find method of the proof forest data structure is simple and straightforward. It is
described by Algorithm 4.5. In the case, when the searched term is not contained by any
of the trees yet (line 2), the method constructs a new tree and returns with the freshly
created node. The new tree contains only one node and the size node of it is labelled
with -1. By this implicit makeSet step, the initialization of each node is postponed to the
very first time, when they would be used. When the searched term is not new (line 5),
the method traverses up on the corresponding tree as long as it finds a size node, namely
while it finds the current root of the tree and returns with it. As was mentioned already,
this method does not execute path compression on the proof forest.

31



-3

-3 x

c5 y

c2 t z

x = y

y = z
C(f, x) = c5
C(f, z) = c2

c5 = t

(a)

-6 z

c5 y

c2 t x

x = y

y = z

c5 = z

C(f, x) = c5
C(f, z) = c2

c5 = t

(b)

Figure 4.2: An example of a proof forest. (a) The state of the proof forest where
the edges are constructed based on the following unions: 〈x, y, {x = y}〉, 〈y, z, {y =
z}〉, 〈c5, c2, {C(cf , x) = c5, C(cf , z) = c2}〉, 〈c5, t, {c5 = t}〉 (b) The same forest after
reversing the edges between z and x in order to process the 〈c5, z, {c5 = z}〉 union.

Algorithm 4.5 Find method of Proof Forest

1: procedure Find(c)
2: if c is not in the Proof Forest then
3: CreateNode(c)
4: return c
5: else
6: if c.parentId < 0 then
7: return c
8: else
9: return Find(c.parentId)

4.4 Unsatisfiable Core Production

The main functionality of the Proof Manager component is the same in each case where
a conflict causing disequality s 6= t is found. It has to prove that the equality s = t
is indicated by the congruence relation generated by the input equalities. However, the
component offers two different configurations: either it produces directly such a set of
input equalities El or it generates a detailed proof of the currently found conflict, where
the unsatisfiable core is a byproduct of this proof. This section describes the behaviour
how the Proof Manager extracts the unsatisfiable core. When the proof forest is already
constructed, it is quite simple to find the explanation of an equality s = t. In order to
explain why s and t are congruent, one has to only walk through the unique path in the
proof forest between s and t and recursively repeat this traversal for the arguments of
the upcoming Curry-equalities. Then the edges on the involved paths contain those input
equalities that derive the equality s = t. Since the proof forest was built based on the
Union Queue, it can be assumed that El, the collection of these visited equalities will form
a subset of the Union Queue. Furthermore, the traversal of the proof forest is exhaustive,
i.e., it finds recursively all the necessary equalities, therefore it can be also assumed, that
El will indicate s = t, namely that (s, t) ∈ E∗l . The details of this traversal method are
described by Algorithm 4.6 as it is proposed in [29].

The algorithm strongly exploits the special structure of the built proof forest, namely
that if a path exists between c1 and c2 then it is unique and acyclic. In the method, the
Pending Proofs list always consists of those equalities that still wait to be proved and at
the beginning it contains only the equality c1 = c2, i.e., the negation of the conflict causing

32



Algorithm 4.6 Explain method from [29]

1: procedure Explain(c1,c2)
2: Set PendingProofs to {c1 = c2}
3: while PendingProofs is not empty do
4: Remove an equation a = b from PendingProofs
5: c := NearestCommonAncestor(a, b)
6: ExplainAlongPath(a, c)
7: ExplainAlongPath(b, c)

disequality (Alg. 4.6, line 2). The procedure runs as long as there are still equalities to
be proved and in each iteration exactly one equality is investigated. To collect all the
necessary equalities that imply c1 = c2, one has to traverse through the path between c1

and c2 in their tree. For this, as a first step (in line 5 of Alg. 4.6) the method identifies
the nearest common ancestor of c1 and c2. Then it calls the ExplainAlongPath method on
both branches of the path between c1 and c2, once for the c1-c section (line 6 of Alg. 4.6),
then to the c-c2 part (line 7 of Alg. 4.6).

Then the ExplainAlongPath method collects all the occurring equalities from the labels
along the given path step-by-step. The realization is shown in Algorithm 4.7.

Algorithm 4.7 ExplainAlongPath method adapted from [29]

1: procedure ExplainAlongPath(a,c)
2: a := HighestNode(a)
3: while a 6= c do
4: b := parent(a)
5: if edge a→ b is labelled with a single input merge a = b then
6: Output a = b
7: else . edge is labelled with {C(a1, a2) = a,C(b1, b2) = b}
8: Add a1 = b1 and a2 = b2 to PendingProofs

9: Union(a, b)
10: a := HighestNode(b)

This procedure steps through one specific straight path in the tree that ends at the
nearest common ancestor node. From the structure of the tree it follows that just by
stepping on the parent in each iteration, once it will reach the ancestor node, namely the
method will terminate. In each iteration, the procedure investigates the edge between the
actual two nodes. When the edge is labelled with a constant-equality s = t, then it can
be stored into the output collection without further works on it. Nevertheless, when the
current edge contains a pair of Curry-equalities C(s1, s2) = s and C(t1, t2) = t, it means
that the proof of the equalities s1 = t1 and s2 = t2 are needed in order to assume the
s = t equality proved. Hence, the two equalities s1 = t1 and s2 = t2 are stored into the
Pending Proofs list. Note that in these cases the equality of s and t is derived by the
propagation method of the Congruence Closure component or simply introduced by the
preprocessing phase, i.e., the equality s = t is not part of the input literals, but implied
from them. Therefore, in these steps (line 8 of Alg. 4.7), the s = t equality is not included
into the output collection. After processing the actual edge, the procedure steps further
up in the tree, in order to examine the next edge of the path. However, the size of this
step depends on the already processed edges. Namely, the algorithm narrows down the
traversal only for those edges, that were not visited yet.

To avoid already visited edges, the Proof Manager component maintains an additional
weighted and compressed union-find data structure, that is called Explain Forest. This

33



data structure stores all those equalities (edges), that were already discovered during the
traversal of the proof forest. Whenever an edge between a and b was already processed
by the ExplainAlongPath method, the union of a and b in the Explain Forest is invoked
(line 9 of Alg. 4.7). The Union method merges the equivalence classes of a and b in the
Explain Forest based on their current size, while the Find method returns with their actual
representatives and applies path compression on the corresponding trees. Each traversal of
the Proof Forest starts in an arbitrary node and steps towards an ancestor of the starting
node, therefore whenever an already visited sequence of path is found, the direction of the
short-cut is always the same, namely it starts deeper or right at the current node and ends
in another node that is higher in the tree. Since the unions of the Explain Forest consider
the current sizes of the involved trees, and the find methods compress the depth of the trees,
the locations of the nodes in the Explain Forest do not mirror the locations in the Proof
Forest, i.e., the representatives of the Explain Forest are not necessarily the highest nodes
in the Proof Forest. Therefore, beyond the Union and Find methods, the Explain Forest
data structure provides an additional HighestNode(t) operation. This method identifies
the equivalence class of t in the Explain Forest data structure and returns with the one
element of it, which is closest to the root of the corresponding equivalence class tree in the
Proof Forest. The maintenance of the highest node information is relative simple, due to
the fact, that each union in the Explain Forest is of the form Union(t,parent(t)), i.e, the
highest node of the new class is always the highest node of the actual parent node.

During the ExplainAlongPath procedure, these short-cuts are checked in line 2 and line
10. Before each sub-explanation, the start node of the current path is set to the highest
yet not explained equality, and during the iterations, whenever a jump over a sequence
of edges is applicable, it is found with the aid of the Explain Forest. Note that already
during the nearest common ancestor seek (line 5 of Alg. 4.6) are the short-cuts provided by
the Explain Forest exploited. Furthermore, the NearestCommonAncestor method returns
in each case with the highest node of the equivalence class where the nearest common
ancestor belongs.

The Explain and ExplainAlongPath procedure continue as long as there are no more
equalities to be justify. When the list of Pending Proofs is empty, all the input equalities
that are involved in the current conflict are identified and the collection of them (El)
can be retrieved by the Proof Manager component as an unsatisfiable core of the input
literals. While the theory solver returns with El, the SMT-LIBv2 representation of the
unsatisfiable core is printed onto the proof stream. The following example demonstrates
the process of the Explain and ExplainAlongPath methods informally on a simplified set
of equalities.

Example 4.8. Assume that the following set of equalities is given as an input to the
theory solver:

E = {b = h, c = b, e = d, d = c, g(e, e) = a, g(e, h) = b, d 6= a}.

After the preprocessing transformations the equalities in standard form are as follows:

E′ =

{b = h, c = b, e = d, d = c, C(g, e) = c1, C(c1, e) = c2, c2 = a,C(c1, h) = c3, c3 = b, d 6= a}

The result of the Proof Forest building process is shown in Figure 4.3. The conflict
causing disequality of this example is d 6= a, therefore the Proof Manager component
invokes the Explain(d, a) method. The equality d = a initializes the Pending Proofs list
and the main iteration of the method starts. First, the nearest common ancestor of d
and a is identified, that is b. Then the traversal of the path d → b in the Proof Forest
begins. Since at this state the Explain Forest is still empty, the highest node of d will

34



-8 -1

b c1

h c c3

d c2

e a

b = h c3 = b

C(c1, h) = c3
C(c1, e) = c2

a = c2

c = b

c = d

e = d

Figure 4.3: Proof Forest of E’

be itself. At the first iteration, the edge between the nodes d and c is examined. This
edge is labelled with an input equality, therefore the procedure saves the equality c = d in
the output set, El. Then the nodes c and d are merged in the Explain Forest in order to
avoid the repeated traversal of this edge. Since the highest node of the new equivalence
class of c in the Explain Forest is c, the next examined edge is between the nodes c and b.
This edge brings the input equality c = b into El. Then the equivalence class [c, d] in the
Explain Forest is merged with the equivalence class [b], with b as the new highest node.
With this, the d → b path is processed and the ExplainAlongPath procedure starts to
work on the a→ b path. The first edge of the new path contains a simple input equality,
a = c2, therefore it is passed to El, and the union of the two nodes in the Explain Forest
is invoked. Since the highest node of the new class is c2, the next investigated edge is
between c2 and c3. This edge contains two Curry-equalities, namely to justify the equality
c2 = c3, one has to prove that, c1 = c1 and h = e, therefore these two equalities are
appended to the Pending Proofs list. After merging the [a, c2] tree with the c3 node in the
Explain Forest, the next iteration is about the c3− b edge. This edge enlarges El with the
input equality c3 = b. In the Explain Forest the trees [d, c, b] and [a, c2, c3] are merged,
where b remains the highest node and the ExplainAlongPath method returns.

Now the next element in the Pending Proofs is the c1 = c1 equality. The Explain
method finds c1 as nearest common ancestor, therefore there is no path to traverse and
the method steps forward to the next pending equality. To prove that h = e holds, the
explanation of the h → b and e → b paths are required. The h − b path contains just
one edge, with an input equality, so El is extended with the equality b = h. Furthermore,
the equivalence classes of h and b are merged in the Explain Forest into the following
class: [c, d, b, a, c2, c3, h], where b is the highest node. The explanation of the e → b
path demonstrates the benefits of the additional Explain Forest union-find data structure.
First the e − d edge is examined, where the input equality e = d is added to El and the
equivalence classes of e and d in the Explain Forest are merged. The highest node of the
new class remains b. If the method would step forward in the tree, it recognizes that all
the equalities on the edges in the path d→ b have already been saved in El, and therefore
the method jumps directly to b as the highest node of the element d and avoids to traverse
again this path. With this jump, the ExplainAlongPath(e, b) method stops after only one
iteration, instead of three.

Since the Pending Proofs list is empty, the loop of the Explain method terminates.
The returned set of the collected equalities is as follows:

El = {c = d, c = b, a = c2, c3 = b, b = h, e = d}

35



Although in this example all the input equalities were used in order to prove the given
contradiction, it is not difficult to see that in most of the cases El, the produced result
set, is substantially smaller than E. Furthermore, based on this example, the benefits of
the additional Explain Forest may appear minimal, but on realistic problem instances the
cumulative enhancement is significant. The input formula of this example in the SMT-
LIBv2 format can be found in Figure A.4 in the Appendix. Since all the assertions were
required to prove the contradiction, it is not hard to see that the output SMT-LIB proof
contains the same assertions (although in different order).

4.5 Using Cores in SMT4J

As described in Section 2.3, the basic lemmas on demand approach expects from the theory
solvers to produce an unsatisfiable core in the cases when a formula is found unsatisfiable
on the level of the theory. Then the framework transforms this core into a theory lemma
and conjoins the propositional abstraction of the lemma to the input problem instance in
order to refine the search space of the SAT Solver. The experimental results show that
this approach in that form is not sufficiently efficient to solve industrial problem instances
(see Section 6.3.2). Therefore, the strategy employed by SMT4J slightly modifies the basic
lemmas on demand approach. The implemented version of the approach is described in
Algorithm 4.8.

Algorithm 4.8 LAZY-MULTICORES

1: function Lazy-MultiCores(ϕ)
2: B ← e(ϕ)
3: while (TRUE) do
4: 〈α, res〉 ←SAT-Solver(B);
5: if res =“Unsatisfiable” then return “Unsatisfiable”;
6: else
7: 〈ts, res〉 ←DeductionMultiCores(T̂ h(α));
8: if res =“Satisfiable” then return “Satisfiable”;
9: else

10: B ← B
∧
t∈ts

e(t);

The main differences of the algorithm compared to Algorithm 2.1 are in line 7 and 10.
While in the original approach, the deduction method returns only with one clause, in the
implementation of SMT4J the result of this method is a sequence of clauses. It follows,
that in line 10 then not just one theory lemma, but a conjunction of multiple T -valid
lemmas is conjoined to the propositional abstraction of the input formula.

The calculation of the congruence classes and the construction of the Proof Forest are
unavoidable tasks each time when the theory solver is asked about the satisfiability of a
conflicting set of literals. Nevertheless, the same congruence classes and Proof Forest can
be employed with minimal further efforts to explain every conflict in the set of literals
instead of just one. Thus, the overhead of this modification on the level of the theory
solver is not significant, namely just the Explain method is called repeatedly. The number
of method calls is exactly the number of contradictions in the input set of literals. In each
refinement iteration a theoretical upper bound of the contradictions found by the theory
solver is the number of the distinct literals in the model of the corresponding iteration.
This is just an upper bound, because most (probably many) of the disequalities do not
contradict with the congruence closure generated from the equalities. Still, it can be said,
that in most of the cases there is more than one contradiction identifiable, which means

36



that more than one theory lemma can be constructed for the SAT Solver. The influence
of this extension to the performance of SMT4J is presented in Section 6.3.2.

4.6 Proof Production

When the Proof Manager component is instrumented to produce a detailed proof of the
currently found conflict, the component employs a different method to traverse through
the Proof Forest. The main challenges of this procedure are to reveal all the implicit steps
of the theory solver in the proof trace. Furthermore, since the solver conducts several
transformations on the input literals, the proof production process has to transform back
the produced certificates to the signature of the input terms. The base of the concept is
exactly the same as at the core production method: traverse through the proof forest in
order to find all those equalities which imply the negation of the current conflict causing
disequality. Each path in the forest encodes an inference rule, and the task of the pro-
cedure is to decide which axiom schema is instantiated on a given path. Then the rules
eq transitive, eq reflexive, eq congruent introduce equational tautologies. As described
in Section 3.2, the procedure returns with a set of tagged Horn clauses, where the input
clauses, also called assertions, represent the original input literals of the theory solver
while further clauses are derived from these input clauses by instantiating the axioms of
the Tε-theory. The generated clauses consist of at most one positive literal, this is called
henceforth conclusion, and arbitrary many negative literals, denoted as premises, where
the negation of each premise literal is a conclusion equality of exactly one other clause.
The generation of these clauses is the main responsibility of the proof producing Explain
method, that consists of the following main components.

Proof Lemma: Contains those clauses that derive the actual contradiction. The clauses
are separated into two categories, namely the involved input literals (assertions) are
distinguished from the clauses that are instantiations of the theory axioms. The
former set forms the unsatisfiable core of the problem instance.

Pending Proofs: Contains those clauses, whose premises are not collected yet, namely
clauses that consist of exactly one positive literal. For some of the pending clauses
the applied inference rule is already determined when added to the Pending Proofs
list.

Proved Clauses: Contains those clauses that are already complemented with all the
necessary negative literals, namely those clauses whose premise literals are conclu-
sions of clauses that are either in the Pending Proofs or in the Proved Clauses list.
The Proof Lemma is a subset of this set of clauses. This container is in practice a
mapping of each proved equality to the clause whose positive literal is the equality
in question. Since an equality can be derived just in one way in the Proof Forest,
one can search between the proved clauses without the knowledge of the applied
inference rule or the involved premises.

Since in the clauses of the proof trace the negative literals are actually references to
further clauses, it is an essential requirement that each clause exists only once. Otherwise,
either the produced proof would be incorrect (e.g. contains clauses that are not valid in
the theory) or the procedure should conduct several repeated traversals to collect the
necessary premises of an already proved clause. During the explanation method, when as
a premise an equality is identified, there are two possibilities. Either there is already a
(proved or pending) clause with this equality as conclusion and in that case the reference
of this clause is employed, or a new clause is built up and stored into the Pending Proofs

37



list. This invariant is maintained by the GetClause supportive method in the following
algorithms.

Algorithm 4.9 Proof Production

1: procedure Explain(c1,c2)
2: proofLemma := new ProofLemma(c1 6= c2)
3: proofRoot := GetClause(c1 = c2,undecided)
4: Add proofRoot to PendingProofs
5: while PendingProofs is not empty do
6: currentClause := a clause with conclusion a = b from PendingProofs
7: 〈path size, nca〉 := NearestCommonAncestor(a, b)
8: SetStepRule(currentClause,path size)
9: switch currentClause.StepRule do

10: case assertion
11: AddAssertion(proofLemma,currentClause)

12: case reflexive
13: AddStep(proofLemma,currentClause)

14: case congruent
15: AddStep(proofLemma,currentClause)
16: ExplainCongruent(currentClause)

17: case Curry
18: ExplainCurry(currentClause)

19: case default
20: AddStep(proofLemma,currentClause)
21: ExplainAlongPath(a, nca)
22: ExplainAlongPath(b, nca)

23: Add currentClause to ProvedClauses
24: MergeClauses(proofLemma)
25: if withResolution is true then
26: GenerateResolutionTree(proofLemma)

The noteworthy steps of the explain procedure with proof generation are shown in
Algorithm 4.9. The structure of the method follows closely the mechanism of the original
core producing explain method. The procedure expects two ground terms c1 and c2 as
input arguments, where c1 6= c2 is a conflict causing disequality. Algorithm 4.9 starts
with the initialization of the Proof Lemma object, where the starting point of the proof
trace is built. The initialization steps of the procedure are depicted in detail through an
example later on (Example 4.11). At the beginning, the Pending Proofs list consists only
of the clause of the c1 = c2 equality, namely the clause, whose conclusion is the c1 = c2

literal. At line 5 of Algorithm 4.9 the method starts to iterate through the Pending Proofs
queue. Each iteration fills up a clause with the corresponding premise literals by moving
one clause from the Pending Proofs list to the Proved Clauses collection. For this, similar
to the original explain method, the nearest common ancestor of a and b is detected in
the proof forest. Nevertheless, this time the NearestCommonAncestor method does not
employ the Explain Forest but returns the length of the a → b path in the proof forest
beside the common ancestor. Based on this length information, one can identify the
applied inference rule of the current clause (line 8 of Alg. 4.9) in the cases when it is still
undecided. When the path consists of more than one edge, then the actual equality is
proved by using the transitivity axiom of the theory. When the length is zero, it means
that the current equality has a = a form i.e., it is an instance of the reflexivity axiom.

38



A path that consists of exactly one edge represents either an asserted input equality or a
congruence step based on two Curry-equalities, depending on the label of the corresponding
edge, as it was already in the previous Explain method.

When the inference rule is identified, the method decides how to continue. An input
(assertion) or reflexive clause has no premise, i.e., in these cases (line 10-13) there are no
further clauses to search, thus the actual unit clause is just simply appended to the Proof
Lemma and saved in the Proved Clauses list. A transitive clause refers to a sequence of
further equalities as premises, therefore after storing it in the Proof Lemma (line 20 of
Alg. 4.9), the ExplainAlongPath method moves along the paths a → nca and b → nca
(line 21-22). This procedure is described in Algorithm 4.10.

Algorithm 4.10 ExplainTransitive method

1: procedure ExplainAlongPath(a,nca)
2: while a 6= nca do
3: b := parent(a)
4: if clause with conclusion a = b is not in ProvedClauses then
5: if edge a→ b is labelled with a single input merge a = b then
6: currentPremise := GetClause(a = b,assertion)
7: AddAssertion(proofLemma,currentPremise)
8: AddPremise(currentClause,currentPremise)
9: Add currentPremise to ProvedClauses

10: else . edge is labelled with {C(a1, a2) = a,C(b1, b2) = b}
11: currentPremise := GetClause(a = b,congruent)
12: AddPremise(currentClause,currentPremise)

13: else
14: currentPremise := GetProvedClause(a = b)
15: AddPremise(currentClause,currentPremise)

16: a := b

The ExplainAlongPath method of the proof production process employs the found
equalities on a given sequence of edges to construct or identify the clauses that are involved
in the derivation of the equality a = b. Note that although the method traverses always
an a → nca path, the current clause is still the explanation of the a = b equality. Each
premise of a transitive clause is either an input or a congruent clause depending on the
corresponding edge, as it was already in Algorithm 4.7. The main difference between
the two algorithms is that this time the Explain Forest can not be employed. While the
responsibility of the ExplainAlongPath method in the unsatisfiable core production was to
collect all those input equalities from the proof forest that participate in the conflict and
not identified yet, this time the method has to collect all those equalities (both input and
congruence) that are necessary to derive the currently examined equality. Thus, all the
edges on the path between a and the nearest common ancestor have to be traversed, even
if some of them were processed already, in order to add the reference of the corresponding
equalities to the premise list of a = b. When the clause of any of the edges is already
proved or waits to be proved, the GetClause or GetProvedClause method returns with the
reference of it (lines 6, 11 and 14 of Alg. 4.10), therefore it will be not proved repeatedly.
When the ExplainAlongPath procedure finds a new input equality on an edge (line 5-9
of Alg. 4.10), it builds up a new assertion clause from it and appends it to the Proof
Lemma. This new clause is then saved as a premise of the clause under proving. Since
input clauses do not require further steps, they are saved in the Proved Clauses list in
place without storing them in the Pending Proofs queue. When the actual edge represents
a new congruence step (line 11-12), the method constructs the corresponding congruent

39



clause and appends it to the premise list of a = b.

When the conclusion equality of the clause that is currently investigated by the Explain
method is implied by congruency (line 14 of Alg. 4.9) the two Curry-equalities on the
corresponding edge define the two premises of the clause. Algorithm 4.11 describes the
details of this scenario. This method assumes, that the conclusion of the current clause is
an equality a = b and in the Proof Forest there is only one edge between a and b labelled
with two Curry-equalities C(a1, a2) = a,C(b1, b2) = b.

Algorithm 4.11 ExplainCongruent method

1: procedure ExplainCongruent(currentClause)
. edge between a and b is labelled with {C(a1, a2) = a,C(b1, b2) = b}

2: currentPremise1 := GetClause(a1 = b1,curry undecided)
3: currentPremise2 := GetClause(a2 = b2,undecided)
4: AddPremise(currentClause,currentPremise1 )
5: AddPremise(currentClause,currentPremise2 )

As it was mentioned already in Section 4.1.2, in that case a2 and b2 are either constant
symbols from C or flat-constants that were well formed terms before the curryfication
and flattening processes. Therefore, the equality a2 = b2 has to be proven and this
proof belongs to the Proof Lemma. Since at this point it is undecided which axiom
implies a2 = b2, the constructed clause is initialized with the temporal tmp undecided
inference rule and saved in the Pending Proofs list (line 3 of Alg. 4.11). In the case this
clause has already been proved or exists in the Pending Proofs list, the GetClause method
returns with the corresponding reference without further steps. Nevertheless, a1 and b1 are
either function-constants (e.g., f = f) or flat-constants that are encoding partial function
applications (e.g., f(c1) = f(c2), where arity of f is greater than one), that is to say,
these terms are not well formed in the language of the input literals. The partial terms
were introduced during the currification process of the theory solver, when each function
was transformed into a set of binary Curry-functions encased in each other. After this
transformation, the only function symbol of the language is the binary Curry-function
C. Therefore, in the internal representation of the theory solver there is only one axiom
related with congruency, and that one can be used just for proving that the results of two
C functions are equal. The following example demonstrates in practice the consequences
of this fact in the proof system.

Example 4.9. Assume that the following set of equalities is given to the theory solver:
{a = f(a1, a2), b = f(b1, b2), a1 = b1, a2 = b2, a 6= b}. To prove the equality a = b, one has
to instantiate the transitivity (formula 4.1) and then the congruency (formula 4.2) axiom,
namely

a = f(a1,a2) ∧ f(a1, a2) = f(b1, b2) ∧ f(b1,b2) = b ⊃ a = b (4.1)

a1 = b1 ∧ a2 = b2 ⊃ f(a1, a2) = f(b1, b2) (4.2)

where the bold equalities are input literals. Nevertheless, in the internal representation
of the theory solver, the proof looks quite different. First of all, the equalities after
preprocessing are the following: {a1 = b1, a2 = b2, C(cf , a1) = c1, C(c1, a2) = c2, c2 =
a,C(cf , b1) = c3, C(c3, b2) = c4, c4 = b, a 6= b}. It follows, that during the proof production
only these equalities can be employed. Thus, the proof (in unflattened form) looks as

40



follows.

a = C(C(cf ,a1),a2)︸ ︷︷ ︸
c2

∧C(C(cf , a1), a2)︸ ︷︷ ︸
c2

= C(C(cf , b1), b2)︸ ︷︷ ︸
c4

∧C(C(cf ,b1),b2)︸ ︷︷ ︸
c4

= b ⊃ a = b

(4.3)

C(cf , a1)︸ ︷︷ ︸
c1

= C(cf , b1)︸ ︷︷ ︸
c3

∧ a2 = b2 ⊃ C(C(cf , a1), a2)︸ ︷︷ ︸
c2

= C(C(cf , b1), b2)︸ ︷︷ ︸
c4

(4.4)

cf = cf ∧ a1 = b1 ⊃ C(cf , a1)︸ ︷︷ ︸
c1

= C(cf , b1)︸ ︷︷ ︸
c3

(4.5)

cf = cf (4.6)

In the internal representation of the produced proof, each congruence step (e.g., For-
mula 4.4) is proved through a sequence of further steps, due to the currification process.

To be able to transform the latter (inner) proof format of Example 4.9 to the expected
format where all terms suit to their initial signatures, the steps that conclude equalities
between partial functions have to be distinguished from the other steps of the proof.
This purpose is served by an additional clause tag prefix: tmp curry. The clauses that
are constructed with this label are henceforth called Curry-clauses. Based on this tag,
the Explain method easily identifies the case where the current clause requires special
management (line 17 of Alg. 4.9) and invokes the ExplainCurry function on it.

The special management of the Curry-clauses requires several modifications in the
explanation method of them. First of all, since these clauses contain not well formed
terms, they are not allowed to appear in the result Proof Lemma. Nevertheless, the
premises of these clauses are indirectly premises of a valid congruent clause of the proof,
therefore they have to be proven just like the normal equalities and the valid premises
have to be forwarded to the clause where they really belong without appending the Curry-
clauses to the Proof Lemma. Algorithm 4.12 presents the main steps of the ExplainCurry
method. Each Curry-clause concludes an equality between either two function-constants
or two flat-constants. Equality of function-constants (e.g. Formula 4.6 in Example 4.9) is
identified as a tmp curry reflexive clause and it is an instance of the reflexivity axiom in the
internal representation of the theory solver. Therefore, in that case there are no necessary
premises and the method can simply return (line 3-4 of Alg. 4.12). Nevertheless, equalities
between flat-constants can be instances of any of the three theory-axioms. The simplest
scenario is when the Curry-clause is an instance of the congruency axiom like Formula 4.5
in Example 4.9. In that case, the flat-constants of the equality are neighbours in the Proof
Forest and connected with an edge labeled by two Curry-equalities. Therefore, these
clauses can be proved just like the valid congruence clauses with the ExplainCongruent
method (line 5-6 of Alg. 4.12). The only difference is that the clause is not appended to
the Proof Lemma. Most of the Curry-clauses are proved through a sequence of this step
till it reaches a reflexive function-constant equality. Nevertheless, proving the equalities of
flat-constants that are implied by transitivity or reflexivity is not that straightforward. An
instance of the reflexivity axiom in the context of the Curry-clauses means that the two
partial functions are the same, i.e., the same function is applied on the same arguments.
If the term in question would not be a partial function application, it would simply be
a reflexive instance. However, in that case this reflexivity has to be proven for all of the
arguments of the function. In currified and flattened form it can be achieved just through
further steps. The following example demonstrates this scenario.

Example 4.10 (Isomorphic Curry-clause). Assume, that the theory solver accepted the
following set of literals: {b1 = b2, f(a, b1) 6= f(a, b2)}. After currification and flattening,

41



Algorithm 4.12 ExplainCurry method

1: procedure ExplainCurry(currentClause)
2: switch currentClause.StepRule do
3: case tmp curry reflexive
. e.g. cf = cf where cf is function-constant

4: Return
5: case tmp curry congruent
. e.g. ci = cj where ci = C(cf , a1), cj = C(cf , b1) and arity(f) > 1

6: ExplainCongruent(currentClause)

7: case tmp curry isomorph
. e.g. ci = ci where ci = C(cj , a) is a partial function

8: 〈cj , a〉 := GetCurryArguments(ci)
9: currentPremise1 := GetClause(cj = cj ,curry undecided)

10: currentPremise2 := GetClause(a = a,undecided)
11: AddPremise(currentClause,currentPremise1 )
12: AddPremise(currentClause,currentPremise2 )

13: case tmp curry transitve
. e.g. ci = ck where ci = cj ∧ cj = ck and ci, cj , ck are flat-constants

14: 〈sci, ai〉 := GetCurryArguments(ci)
15: 〈sck, ak〉 := GetCurryArguments(ck)
16: currentPremise1 := GetClause(sci = sck,curry undecided)
17: currentPremise2 := GetClause(ai = ak,undecided)
18: AddPremise(currentClause,currentPremise1 )
19: AddPremise(currentClause,currentPremise2 )

the set of equalities looks as follows: {b1 = b2, C(cf , a) = c1, C(c1, b1) = c2, C(c1, b2) =
c3, c2 6= c3}. The negation of the c2 6= c3 disequality is simply derivable with congruency,
however the currification splits this congruence step into a sequence of several steps:

C(cf , a)︸ ︷︷ ︸
c1

= C(cf , a)︸ ︷︷ ︸
c1

∧ b1 = b2 ⊃ C(C(f, a), b1)︸ ︷︷ ︸
c2

= C(C(f, a), b2)︸ ︷︷ ︸
c3

(4.7)

cf = cf ∧ a = a ⊃ C(cf , a)︸ ︷︷ ︸
c1

= C(cf , a)︸ ︷︷ ︸
c1

(4.8)

cf = cf (4.9)

a = a (4.10)

Formula 4.8 is an example for a tmp curry isomorph clause. In that example, the Ex-
plainCurry method is invoked to explain the c1 = c1 equality. Nevertheless, since c1 was
introduced to encode the C(cf , a) function, the equality c1 = C(cf , a) can not be found
in the Proof Forest but in the flat mapping hash table produced by the Transformer com-
ponent. Therefore, to generate the necessary reflexive premise (a = a), the Transformer
component of the theory solver is asked to forward the arguments (cf and a) of the encoded
Curry-function (line 8 of 4.12).

When the current Curry-clause defines an equality relation between two flat-constants
that are not neighbours in the Proof Forest (line 13 of Alg. 4.12), the algorithm labels it
with the special tmp curry transitive tag. The obvious management of these clauses would
be to traverse the path between the constants in the Proof Forest just as with the normal
transitive clauses. However, in that case, the involved constants encode partial-functions,
that is to say, the current equality was derived by the congruence closure algorithm based

42



on the equalities of the arguments. Therefore, instead of constructing a transitive chain of
further Curry-clauses as premises, the ExplainCurry method directly proves the equality
of the arguments based on the Curry-functions that are encoded by the current flat-
constants. For this, the flat-mapping table of the Transformer component is looked up
(line 14-15 of Alg. 4.12). When the represented Curry-functions are given, two new clauses
are constructed as premises, where one of them is a Curry-clause while the other is a proper
clause (line 16-19 of Alg. 4.12), just as in the ExplainCongruent method.

When all the clauses are already complemented with the necessary premises (the Pend-
ing Proofs queue is empty), there are just a few more steps back to complete the proof.
First of all, the Curry-clauses have to be eliminated, i.e, their valid premises have to be
forwarded to the clauses where they really belong. This step is conducted by the Merge-
Clauses method of the Proof Lemma (line 24 of Alg. 4.9). The procedure iterates through
the clauses of the proof (note, that the Curry-clauses are not part of the proof directly)
and whenever it finds a Curry-clause as premise it recursively replaces this clause with the
non-Curry negative literals of it. Moreover, when it is assumed already that no Curry-
clause is referenced in the proof, the clauses have to be serialized. Each clause which was
generated during the Explain method gets an internal id number at construction. This
helps the debugging process and shows the order of the construction of the clauses. Since
the result proof lemma should be started with the input assertions, a reordering of the
clauses is necessary, i.e., a new serial number has to be attached to each clause of the
lemma.

After merge and serialization, in the case it is expected, the resolution part of the proof
is generated (see Section 3.2). The GenerateResolutionTree method recursively resolves
each clause with the premise clauses. The starting point of the recursion is the clause
that concludes the negation of the conflict causing disequality. In each step, the method
declares the result clause which was inferred by the resolution. During the derivation,
the input assertion clauses are ignored from the premises, that is to say, they are carried
forward by the resolvent clauses. Then the very last step of each Proof Lemma is as
follows: Resolve the last resolvent clause with the result clause of the distinct predicate
elimination step and with all the input assertions. If the proof was correct, the result clause
of this step is empty, otherwise the last clause of the proof contains all those equalities
of the trace that are not proven. Hence, the GenerateResolutionTree method provides an
internal checking process for the Proof Manager component.

The following example depicts the whole detailed explanation method.

Example 4.11. Assume that the following set of equalities is given to the EUF theory
solver (see Example 3.1):

E = {a = b, a = c, f(b, a) 6= f(c, a)}

After preprocessing, the standard form of E is as follows:

E′ = {a = b, a = c, C(cf , b) = c1, C(c1, a) = c2, C(cf , c) = c3, C(c3, a) = c4, c2 6= c4}

After that the Congruence Closure algorithm finds E′ Tε-unsatisfiable, the Proof Forest of
Figure 4.4 is built by the Proof Manager component. The found contradiction is related
with the c2 6= c4 disequality, therefore the Explain(c2,c4) method is invoked in order to
generate a detailed explanation of the conflict. First of all, the object of the trace has
to be created (line 2 of Alg. 4.9). Each proof lemma is destined to contain the clauses
that are proving the inconsistency related with one disequality. Therefore, the conflict
causing disequality is a necessary argument of the initialization. The proof lemma saves
the disequality as an input assertion clause. Since the SMT-LIBv2 format has a special
predicate symbol for disequalities, as a first step, the distinct predicate is transformed to

43



-2 -3 -2

c3 a c4

c1 b c c2

C(cf , c) = c3
C(cf , b) = c1

a = b a = c
C(c1, a) = c2
C(c3, a) = c4

Figure 4.4: Proof Forest of E’

a negation of an equality predicate by the rule distinct elimination. That is to say, the
following two clauses are appended to the Proof Lemma:

( s e t . c0 ( input : c onc lu s i on ( ( d i s t i n c t c2 c4 ) ) ) )
( s e t . c1 ( t m p d i s t i n c t e l i m : c l a u s e s ( . c0 ) : c onc lu s i on ( not (= c2 c4 ) ) ) )

The aim of the proof production process is to derive the negation of the .c1 clause from
the subset of the input equalities and further Tε-valid formulas. Therefore, the root of the
proof trace has to be the following clause (line 3 of Alg. 4.9):

( s e t . c2 ( eq undec ided : conc lu s i on ((= c2 c4 ) ) ) )

Since at this point it is not known which inference rule will be applied to draw the c2 = c4

conclusion, this field of the new clause remains the default value, eq undecided. This
clause is appended to the Pending Proofs list (line 4 of Alg. 4.9) and the iteration of the
Explain method starts. Since at the first run, the only clause in the Pending Proofs list is
.c2, the procedure starts with the explanation of this clause. First, the nearest common
ancestor and the distance between c2 and c4 are identified in the Proof Forest (line 7 of
Alg. 4.9). The nearest ancestor in that case is c4, while the size of the path between c2

and c4 is one. Based on the path-size information and on the label of the given edge, the
SetStepRule method modifies the inference rule of .c2 from eq undecided to eq congruent
(line 8 of Alg. 4.9). Then the Explain method appends .c2 to the Proof Lemma and
invokes the ExplainCongruent method (line 15-16 of Alg. 4.9). The ExplainCongruent
method processes the two Curry-equalities C(c1, a) = c2 and C(c3, a) = c4 on the edge
between c2 and c4. First, a clause is searched in the Pending Proofs and Proved Clauses
lists which concludes the c1 = c3 equality. Since, c1 and c3 are left arguments of a Curry-
function, it can be assumed, that their equality is proved by a Curry-clause. This equality
was not examined yet by the explain method, so the GetClause method (line 2 of Alg. 4.11)
returns with the following new clause:

( s e t . c3 ( tmp curry undecided : conc lu s i on ((= c3 c1 ) ) ) )

Then the equality of the Curry-function’s second arguments is searched, and the following
clause is constructed:

( s e t . c4 ( eq undec ided : conc lu s i on ((= a a ) ) ) )

Although, in that case it is easy to see that the equality is an instance of the reflexivity
axiom, the method constructs it with the eq undecided tag, because this clause belongs to
another iteration of the Explain method. The GetClause method saves the constructed
clauses in the Pending Proofs queue. The references of the generated new clauses .c3 and
.c4 are appended to the premise literals of the current clause (lines 4-5 of Alg. 4.11) and
the ExplainCongruent method returns. After the procedure the current clause looks as
follows:

( s e t . c2 ( eq congruent : c onc lu s i on ( not .c3 ) ( not .c4 ) ((= c2 c4 ) ) ) )

where the premise clauses at the moment contain only their conclusion equality but no
further literals. In that form the clause .c2 is assumed to be done and saved into the

44



Proved Clauses set. The Explain method starts the next iteration, where the current
clause is .c3 with the equality c3 = c1 as conclusion. In the Proof Forest c3 and c1 are
neighbours, therefore the SetStepRule method modifies the inference rule of the clause from
tmp curry undecided to tmp curry congruent and the clause through the ExplainCurry
method ends up in the ExplainCongruent procedure. There, based on the label of the
edge between c1 and c3, the two necessary premises are constructed:

( s e t . c5 ( tmp curry undecided : conc lu s i on ((= cf cf ) ) ) )
( s e t . c6 ( eq undec ided : conc lu s i on ((= c b) ) ) )

Then the references of the clauses .c5 and .c6 are appended to the premise list of .c3:

( s e t . c3 ( tmp curry congruent : c onc lu s i on ( not .c5 ) ( not .c6 ) ((= c3 c1 ) ) ) )

When the ExplainCurry method returns, the Explain method saves .c3 into the Proved
Clauses list (without saving it into the Proof Lemma) and starts the next iteration. The
next clause in the Pending Proofs list is .c4 that concludes the equality a = a. The
SetStepRule method identifies it as a simple reflexive clause. Therefore, the Explain
method stores it in the Proof Lemma and Proved Clauses containers (lines 13 and 23 of
Alg. 4.9) and moves on to the next clause in the Pending Proofs. The final form of .c4 is
then:

( s e t . c4 ( e q r e f l e x i v e : c onc lu s i on ((= a a ) ) ) )

The examined clause in the next iteration is .c5 with the equality cf = cf as conclusion.
This equality is also a reflexivity instance. However, this one is a Curry-clause, therefore
the ExplainCurry method handles it (line 3-4 of Alg. 4.12). Since it defines an equality
between two function-constants, the method has nothing to do and returns. The last
element of the Pending Proofs list is then .c6, that explains the c = b equality. The
nearest common ancestor of c and b is a and the length of the path is two. The SetStepRule
method decides that .c6 is an instance of the transitivity axiom and, therefore, modifies its
inference rule tag from eq undecided to eq transitive. Then the Explain method saves .c6
in the Proof Lemma (line 20 of Alg. 4.9) and invokes the ExplainAlongPath method, first
on the c → a path. The ExplainAlongPath method traverses through the path between
c and a in the Proof Forest, that in this case contains only one step. The input equality
a = c is not contained neither by the Pending Proofs list, nor the Proved Clauses set.
Therefore, the ExplainAlongPath method examines the edge between the two constants.
The label on this edge is a single input equality, thus, the method constructs only one new
clause (line 6 of Alg. 4.10):

( s e t . c7 ( input : c onc lu s i on ((= a c ) ) ) )

At this point it is sure that c.7 is a new input assertion clause that requires no further
literals, therefore the ExplainAlongPath method appends .c7 to the Proof Lemma and
Proved Clauses set. Furthermore, the reference of the new clause is included into the
premise list of the current clause .c6 (lines 7-9 of Alg. 4.10). Then the course of the
ExplainAlongPath method repeats over the path between b and a. This time the procedure
constructs the following clause:

( s e t . c8 ( input : c onc lu s i on ((= a b) ) ) )

After the two explanation methods, the final form of .c6 is as follows:

( s e t . c6 ( e q t r a n s i t i v e : c onc lu s i on ( not .c7 ) ( not .c8 ) ((= c b) ) ) )

At this point the Pending Proofs list is empty, therefore the iteration of the Explain method
is over. After merging and serialization, the final form of the proof with the resolution
tree is as follows:

( s e t . c1 ( input : c onc lu s i on ((= a c ) ) ) )
( s e t . c2 ( input : c onc lu s i on ((= a b) ) ) )
( s e t . c3 ( input : c onc lu s i on ( ( d i s t i n c t ( f b a ) ( f c a ) ) ) ) )

45



( s e t . c4 ( t m p d i s t i n c t e l i m : c l a u s e s ( . c3 ) : c onc lu s i on ( not (= ( f b a ) ( f c a ) ) ) ) )
( s e t . c5 ( eq congruent : c onc lu s i on ( not (= a a ) ) ( not (= c b) ) ((= ( f b a ) ( f c a ) ) ) ) )
( s e t . c6 ( e q r e f l e x i v e : c onc lu s i on ((= a a ) ) ) )
( s e t . c7 ( e q t r a n s i t i v e : c onc lu s i on ( not (= a c ) ) ( not (= a b) ) ((= c b) ) ) )
( s e t . c8 ( r e s o l u t i o n : c l a u s e s ( . c5 . c6 ) : c onc lu s i on ( not (= c b) ) ((= ( f b a ) ( f

c a ) ) ) ) )
( s e t . c9 ( r e s o l u t i o n : c l a u s e s ( . c8 . c7 ) : c onc lu s i on ( not (= a c ) ) ( not (= a b) )

((= ( f b a ) ( f c a ) ) ) ) )
( s e t . c10 ( r e s o l u t i o n : c l a u s e s ( . c4 . c9 . c1 . c2 ) : c onc lu s i on ( ) ) )

4.7 Interface Equalities

The previous sections described the behaviour of the theory solver in detail, when the set
of input (dis-)equalities was found unsatisfiable by the Congruence Closure component.
Nevertheless, the theory solver is expected to provide further functionalities for the satisfi-
able formulas as well. At present, the theory combination strategy of SMT4J is not finally
implemented yet, therefore the requirements on the theory solver in order to support
the final method of the theory combination might change. However, it is most probable
that the final implementation will be an extension or refinement of the Nelson-Oppen
approach [27].

For the moment, the theory solver produces as interface deduction the conjunction
of those equalities which were propagated by congruency during the congruence closure
calculation without considering the involved constants. Moreover, on request the solver
generates all equalities that were found so far based on the actual state of the congruence
classes. As the resulting set of literals significantly blows up the search space, optimizations
are necessary, which is, however, beyond the scope of this work. Still, the former two
facilities provide already sufficient information for the combination procedure of stably
infinite convex theories without inconvenient effort.

It is not decided yet, how SMT4J will support the combination of decision procedures
for nonconvex or finite background theories, therefore this topic is beyond the scope of
this thesis. For further details of these scenarios see e.g. [31, 40]

4.8 Implementation Details

The most important modules of the theory solver and their responsibilities can be found
at the beginning of this chapter. This section provides a short overview of their imple-
mentation details and briefly describes some decisions made during the development. The
implementation of the theory solver consists of 26 classes and approximately 3000 lines of
code. Although, it is a medium sized project, the complexity of the system is considerable
at some parts, especially when taking into account the required familiarization efforts.

A main objective during development was to decompose the solving process into small
steps. Each step is implemented by a small component that is responsible only for a con-
fined set of isolated tasks. This high degree of modularization supports the verification of
intermediate results and increases the extensibility of the solver. Furthermore, it provides
easy replacement for the implementation of several components in the theory solver.

The module exchange facility of the implementation is required for instance to pro-
vide a comfortable way to switch between core and proof production mode. Figure 4.5
depicts the partial class diagram of the related classes. The initialization of the Proof
Manager component is based on the actual input options of the solver. The core produc-
ing component and the detailed proof producing component implement the same interface
and return with a Proof Lemma object. When the theory solver is in core production
mode, the textual description of the proof object contains the SMT-LIBv2 definition of
the conflict set. When the theory solver is expected to produce detailed certificates of

46



Figure 4.5: UML class diagram of Proof Manager classes

the upcoming conflicts, the proof object contains the textual representation of a sequence
of clauses. In both cases, the proof object contains a sequence of (dis-)equalities as the
unsatisfiable core. Both Proof Manager implementation works on the same Proof Graph
object. An additional abstract base class guarantees that the graph related operations do
not modify the graph and provides code sharing between the different algorithms.

Another relevant principle of the development was to extend the theory solver with
the core and proof production facilities but without the influence on the performance and
memory usage of the solver when these functions are not used. Thus, the core or proof
producing component is created just when a contradiction is already found. Furthermore,
the information that the congruence closure algorithm has to store during the process
is minimized. As a result, the proof production capability of the theory solver has only
minimal overhead when the input set of literals is satisfiable.

One decision was made during the implementation of the clause class which may influ-
ence the extensibility of the proof generation functionality. At first sight, clauses should
be implemented through a common abstract parent clause class and each type of proof
step should be a new child of this element. However, in the implementation there is only
one general clause class which contains a label to store the current type (e.g, undecided,
transitive, etc.) of a proof step. In this way, the different types of proof steps are imple-
mented by the same class where only the label of the instance in question describes the
applied rule. Tagged classes usually fall under the category of ’code smell’; however, in this
situation it is reasonable. The proof generation algorithm handles the proof steps based
on their current type. However, the behaviour of a proof step object does not depend on
the current type. Furthermore, many clauses are created without the knowledge of their
type, i.e., a proper class hierarchy of the clauses would induce several casting statements
in the proof generation algorithm.

47



Chapter 5

Proof Checking

5.1 Overview

As already described in Section 3, it is difficult to establish a sufficient level of trust in an
SMT Solver due to its complex implementation. One possible solution for this challenge
is to force the solver to produce some kind of evidence about the correctness of the made
decisions. Then, this evidence can be independently verified with a much simpler and more
trustworthy tool. In the following, such an evidence of correctness is called certificate.
Since the format and content requirements of SMT certificates are not standardized yet,
most of the proof producing SMT Solvers use proprietary formats and employ different
tools for proof verification. The following sections illustrate some verification tools together
with experimental results on their performance. The environment of these experiments is
described in Section 6.1. Note that these checkers are responsible for the verification of
the entire proof of an SMT Solver, while in the context of this thesis the proof generation
and checking is restricted only to the deduction of the Tε-lemmas. A brief description of
the implemented checker for these lemma-proofs is given later on in this chapter.

5.1.1 veriT - SMTCoq

The certificates produced by the veriT SMT Solver [11] can be verified, for example,
with SMTCoq. This software contains a modular certified checker for the veriT answers.
SMTCoq defines its own general notation of certificates and uses an OCaml preprocessor in
order to integrate the produced proofs of veriT into the Coq system. Coq is an interactive
proof assistant which facilitates, among other things, the automatic check of proofs by a
relatively small verified kernel. The details of Coq are beyond the scope of this thesis, for
an exhaustive documentation of Coq see e.g. [4].

To use this verified kernel of Coq, SMTCoq transforms the variables, literals, clauses
and theories of the produced proofs into an internal representation of Coq. This means
that the checker verifies an encoded version of the produced proofs. SMTCoq handles
the CNF transformation steps, resolution on the propositional level and theory reasoning
(in EUF and LIA) in a separate manner. That is to say, the checker is built up from
the combination of several small independent checkers where each of them is dedicated to
the verification in one specific domain. These small checkers are actually computational
functions inside Coq and they are proved to be correct. For precise details of SMTCoq
see e.g., [2, 24].

Figure 5.1 presents the performance of the veriT SMT Solver (version 201410) on some
parts of the QF UF benchmarks (see Section 6.2.2). The veriT SMT Solver without proof
generation could decide the satisfiability of almost all of the formulas; merely three problem
instances remained unsolved. Since certificates can be generated only for contradictory

48



Figure 5.1: veriT overheads of proof production and verification

formulas, the diagram is restricted to those problem instances which the solver decided
to be unsatisfiable. The blue line of the chart shows the required running time of the
solver on these instances, without proof production. The distance between the blue and
red lines of the figure shows the cost (in seconds) of the proof production. The average
factor of the slow-down at proof generation is generally 5, but, if the instances which
could not been solved by proof production in less than 300 seconds are also considered,
this average factor is increased to approximately 30. This may appear as a significant
overhead, but still 93% of the problem instances were solved in less than 10 seconds
with proof production and only 144 problem instances remained unsolved within 300
seconds. The green line in Figure 5.1 represents the sum of the running times of the veriT
solver (version Verit2c2b43b) and the SMTCoq (version 1.2) tool. The proof producing
and checking together took approximately five times longer, on average, than just the
proof producing experiments. Note that this overhead was measured on the Verit2c2b43b
version of the solver (since the checker tool recommended this version), which is slightly
slower then version 201410 of the veriT solver. The SMTCoq checker was invoked on
3949 generated certificates. Since the first step of the proof checking process with this
tool is to transform the produced proofs into another representation, the overhead of
the verification with SMTCoq is not so surprising. When the encoding of a produced
certificate is unsuccessful, SMTCoq returns with an error message. Although the proofs
were generated by the recommended version of the veriT SMT solver, the current version
of SMTCoq failed during the transformation process for most of the proof traces. It could
only verify less than 150 proof objects (mainly the proofs of the NEQ, PEQ, SEQ and
eq diamond benchmark families); for all further proofs it returned without a decision. All
in all, it appears that SMTCoq as a verification tool for veriT certificates is not complete
yet.

5.1.2 CVC4 - LFSC Checker

As described in Section 3.1.2, the CVC4 SMT Solver [5] produces certificates in the format
of LFSC. In this format the inference rules are encoded as signatures and a generated
certificate is actually a term, that is to say, type checking of this object can serve as
a verification process. An efficient LFSC proof checker is provided in C++ by Andy
Reynolds and Aaron Stump that comes together with the CVC4 solver and can be invoked
automatically for each generated proof object. This tool takes the signatures and side
conditions that are defined as the proof system of the solver and based on them checks
whether the type of the proof object is as it is expected.

The LFSC checker employs several performance optimizations in order to facilitate
efficient proof checking. A characteristic feature of the checker is that it is designed to
handle really large proof traces [36]. First of all, it avoids to read and parse the entire

49



proof at once, but keeps always just the parts that are relevant for the current state of
the checking process in the memory. With this incremental checking strategy the memory
usage of the tool is considerably reduced. Furthermore, during the verification of deeply
nested proof objects the checker employs tail recursion at many points when it is possible
instead of naive recursion in order to avoid the possibility of a stack overflow.

In LFSC one can define computational side conditions for the inference rules in a
simple functional programming language. These side conditions are then compiled into
C++ code and accessible by the checker directly. In each step where an inference rule
with constraints is employed, the compiled code of the condition is called. If the code fails
(either explicitly or implicitly), it means that the side condition of the rule is not granted
and therefore the application of the rule is not possible. In the proof system of CVC4
side conditions are defined corresponding to, for example, the resolution steps. These
conditions facilitate the so-called deferred resolution during proof checking. The main
idea of this strategy is to delay the computation of the resolvent clauses and perform the
condition checks only in a final simplification step. In that way, checking resolution steps
requires only constant time. For more details about deferred resolution and the LFSC
checker see e.g. [30, 35, 38, 39].

Figure 5.2: CVC4 overheads of proof production and verification

Figure 5.2 shows the performance on a logarithmic scale of the CVC4 SMT Solver
on the QF UF benchmarks (see Section 6.2.2). CVC4 without proof production could
solve almost all of the problem instances (except 19). Figure 5.2 contains the running
times of those instances which were unsatisfiable. It appears, that the average overhead
of proof production in CVC4 is approximately 85%. The solving process with the proof
production and checking process together is on average more than 5 times slower than
the pure solving process. With proof producing and checking only 49 formulas remained
unsolved, where 16 instances could not be solved because of the space limitation (which in
that experiment was only 5GB). It indicates, that the memory management of the LFSC
checker with the before described optimizations is effective. All in all, although the factor
of slow-down with proof production and validation appears great, with this configuration
still 89% (3611 from 4052) of the instances were solved and verified in less than 10 seconds.

5.2 EUFChecker

This section briefly presents the prototypical checker that was developed in C++ to effi-
ciently verify the produced Tε-proof witnesses of the EUF theory solver of SMT4J. Since
the produced certificates are well detailed and contain all necessary information, there is
no need for elaborated reasoning techniques during the checking process. The implemen-
tation of the EUF Checker tool consists of 13 classes, where 12 of them contain less than
100 lines of code. The biggest class (with 380 LOC) is responsible for the parsing tasks in

50



the verification process. The generated unsatisfiable cores of SMT4J are generally quite
small (see Section 6.3.2,’avg. core size’). Therefore, it can be assumed, that the generated
certificates can be read into memory and there is no need for special memory management.
Note that the main purpose of the checker is to provide information about the correctness
of the proofs generated by the EUF theory solver of SMT4J, and nothing more. Thus,
extensibility was not a main requirement on the system during development. All in all,
although the code of the checker is not verified, due to its simplicity, it can be employed
to increase the trust in the generated certificates and therefore also in the solver results.

The full proof generated by SMT4J contains several sections beside the theory related
certificates, nevertheless the checker is focusing on the steps of the EUF deductions and
does not require the context or the resolution tree sections of the proofs. The identification
of these parts of the proofs is simple. The responsibility of the EUF Checker is to decide
the correctness of each of these proof traces. Two important components of the tool are
the following.

Term Table: Contains all occurring terms of the proof. Each term is described by its
name and arity and represented by an integer value. The responsibility of the Term
Table is to guarantee that one term is constructed only once and the same instance
is shared in all occurrences.

Equality Table: Contains all occurring atoms of the proof, namely it is a collection
of all the equalities in the proof. The responsibility of the Equality Table is to
guarantee that one equality is constructed only once and the same instance is shared
everywhere. The conflict causing disequality is also stored here separated from the
other equalities.

When an EUF-theory proof trace is extracted from the output of SMT4J, the checker
starts to parse the proof line by line. The checker assumes, that the equalities are defined
over same-sorted terms and the function symbols do not violate their signatures, namely
type checking is not included into the process. It is not difficult to see that by including
the context of the proofs into the output of SMT4J or by referring to the original problem
instance that was solved by it, this functionality could be easily added. Nevertheless, in
the former case the produced certificates would consume unreasonably more space, while
the latter case would involve unnecessary terms into the verification process.

In the EUF Checker the equalities are identified by their arguments, without consider-
ing the order of them. In that way, the symmetry property of them is handled implicitly.
Each equality object has two arguments. Furthermore, each equality has a state that
indicates whether the given equality is proved already or not. An equality is assumed to
be proved when it is implied by a correct step of the proof whose all premise equalities are
proved. Moreover, each equality contains a sequence of references for those proof steps,
where the equality in question is employed as premise.

The parsing process of the EUF Checker conducts syntactical checks on the proof steps
and terminates with an error message in the case of problem (e.g., missing parenthesis,
unrecognised inference rule etc.). The proof steps are represented as a pair of an equality
and a (possibly empty) sequence of further equalities {〈p1, p2, ..., pn〉, c}. Although the
order of the clauses in the produced certificates is fixed, the checker does not rely on it,
that is to say, there are no assumptions about the order of the proof steps in the trace.
When an input clause is parsed by the checker, it marks already the asserted equality to
be proved. The other proof steps are saved in a collection without influencing the state
of the involved equalities. When all the steps are parsed, it means that the Term Table
and the Equality Table collections of the checker are successfully filled up based on the
current proof trace and the asserted equalities are marked to be proved. Moreover, after
all steps were processed successfully, it can be assumed that the checker identified the

51



conflict causing disequality and checked, whether there is a proof step that concludes the
negation of it or not. In the latter case the checker returns with an error message.

After parsing, the verification of the proof steps starts. Each proof step has to be a
valid instantiation of its corresponding inference rule. The reflexive step verifier checks
that the premise list is empty and the conclusion equality is defined between identical
terms. The congruent step checker examines more details. First of all, the conclusion
equality has to be between two function symbols where the signature of the two symbols
are the same (in that case it means only the arity, since type information is not handled).
The number of the premise equalities has to be equal with the arity of the given function
symbol. Then the procedure builds equalities from the pairwise arguments of the function
symbols on the two sides of the conclusion equality and checks whether this equality is
contained in the premises or not. When an equality was not found, the method returns
with an error message. Moreover, in the case when one of the premises was not used during
this checking process, the method throws another error message. Note that the checker
assumes that each necessary equality is included as premise exactly as many times, as it
is used, namely the premise list can be redundant, but the order of the premises is not
constrained. The transitive steps have to fulfil the following constraints. The conclusion
equality is not allowed to be reflexive and the number of premise equalities has to be
at least two. The order of the premises is not fixed in this rule either, therefore the
verification of the transitive chain is done step-by-step. Starting from one of the arguments
of the conclusion equality, the procedure seeks a premise equality that contains it. Then
this premise is marked as used and the step is repeated with the other argument of the
premise equality as the starting point. The process picks and seeks as long there are no
more unused and fitting premises left or the other argument of the conclusion equality is
reached. In the former case the transitive chain is not correct, therefore an error message
is sent. In the latter case if there are no unused premise equalities the method returns
with true. If at some point there is no premise with the currently searched argument, it
means the transitive chain is broken, therefore the return value is false.

When the verification of the proof steps was successful, the checker starts to process
them, namely it iterates through them and examines the state of the premise equalities.
When a proof step contains only proved premises (or no premises at all), the conclusion
equality is marked to be proved. Then this recently proved equality forces all the other
proof steps where it was involved as a premise to evaluate their new state. When there
are no more proof steps to fire, the method stops. At this point the checker examines
the equality that was the negation of the conflict causing disequality, whether it became
proved or not. Obviously, when it is not proved, the checker returns with false. As a
secondary check, the tool evaluates the state of all the further equalities in the Equality
Table.

In that way, the EUF Checker tool recognizes when a produced proof trace does not
contain enough information to derive a contradiction. However, the checker does not
return with false when the proof contains unnecessary asserted equalities or proof steps
as long they are correct instantiation of an inference rule.

52



Chapter 6

Experimental Results

This chapter is dedicated to summarize and evaluate the experiences. The general per-
formance and properties of the SMT4J framework had minor importance due to its’ in-
completeness. In order to examine the performance and other attributes of the extended
EUF theory solver, a series of experiments has been conducted on the QF UF benchmarks
and on further Fuzzer-generated EUF theory specific problem instances. For comparison,
other state-of-the-art SMT Solvers were included in the examination.

6.1 Experimental Setup

The experiments were conducted on a 3.40GHz Intel Core i7-2600 machine with 16 GB
memory and Ubuntu 14.04 (64-bit) as operation system. The constraints of the executions
were controlled by the tool called RunLim1. The default limits of each formula instance
were 300 seconds real time and 10GB space. The involved further SMT Solvers of the
experiments are CVC4, veriT and Z3. Henceforth the experiments without proof gener-
ation nor checking are considered as the base experiments of each SMT solver. For this
base scenario, CVC4 (version 1.4, compiled with gcc 4.8.2) was built with its standard
configuration, without any optimization support, i.e., without the --best and --enable-gpl
options. For the proof generation capabilities, another instance of CVC4 was installed
with the --enable-proof option. The veriT SMT Solver was necessary also in two different
versions. The default instance has version 201410 and was used for the base case running
time experiments. The SMTCoq-1.2 verifier (see Section 5.1.1) recommends a specific
development version of veriT (Verit2c2b43b). Furthermore, the verifier builds on native-
coq (version 140702). For independent reference results the Z3 SMT Solver was employed
(version 4.4.0 - 64 bit).

6.2 Input

6.2.1 EUF Fuzzer

The main intention of the EUF Fuzzer tool is not to tense the performance of the theory
solver but to reveal as many bugs and malfunctioning steps of the solver and the proof
checker as possible. Therefore, the problem instances produced by the fuzzer tool consist
only of Tε-literals, namely each assertion of the generated problem instances is an atomic
formula with either an equality or a distinct predicate symbol. The propositional abstrac-
tion of a generated formula is satisfiable always by assigning true for each literal, but in
no other way. It follows, that the theory solver is invoked only once during the solving
process and the result of the decision depends just on the EUF theory solver. All in all,

1http://fmv.jku.at/runlim/

53



the generated formulas are suitable to test directly the theory solver by minimizing the
role of the SAT Solver and the entire framework in the decision process.

The EUF Fuzzer tool is designed to be flexible and provides several calibration possibil-
ities. For problem instance generation, seven properties of the formulas can be restricted.
First of all, the maximum number of involved sorts, as well the maximum number of
constant and function symbols is decidable. For the given theory, multiple sorts are not
necessarily usefull, since it splits the problem space of the theory solver into several in-
dependent partitions, i.e., it simplifies the instances. The maximum number of symbols
and the properties of the function symbols influence the likely size of the congruence
classes. For the function symbols the maximal width (arity) and depth is also config-
urable. Furthermore, the number of generated assertions and the proportion of equalities
and disequalities are also parametrized.

At initialization the tool generates the possible signatures based on the given parame-
ters. Then the formulas are built from top to bottom where each new assertion combines
the generated signatures randomly. For each term of the constructed expressions first the
arity of the signature is picked. This selection is random based, where the possibility is
decreasing for the bigger numbers. When the arity is decided, a function symbol, whose
signature suits to the expected arity and sort requirements, is selected randomly. The
sub-expressions are built in a same way as long either a constant symbol is picked or a
function symbol reaches the depth constraint (in that case a random constant symbol
is used). The procedure does not try to avoid repetition in the generated expressions,
since the congruence closure component has to correctly handle redundancy. Actually,
the repetition on the level of sub-expressions is essential, in order to generate unsatisfiable
instances.

Solving the problem instances generated by the EUF Fuzzer tool invokes the EUF
theory solver only once. When the generated problem instance is Tε-satisfiable, the theory
solver does not produce theory lemmas or proofs. Therefore, to use the tool for testing
these functions of the theory solver, it is important to calibrate it in such a way, that
the Tε-unsatisfiable formulas outnumber the Tε-satisfiable instances. Furthermore, the
complexity of the generated proofs is also relevant, i.e., the fuzzer should avoid to gen-
erate too obvious contradictions (e.g. conflict that involves only two literals). Therefore,
as an initialization step of the running experiments, the tool was executed with several
parameter combinations in a small interval, in order to find the best calibration for the
proper problem instances. As a result, three different calibrations of the tool were selected
as settings for the test case generation. Two of them generate more probably unsatisfi-
able problem instances, while the third one provides a balanced distribution of satisfiable
and unsatisfiable formulas. In the running experiments each calibration was employed to
generate 300 problem instances.

6.2.2 Benchmarks from the SMT-LIB

The SMT-LIB initiative provides a large library of input problem instances that are for-
mulated in the SMT-LIBv2 language and classified by logic. These formulas facilitate
the evaluation and the proper comparison of SMT Solvers. For the (quantifier free) logic
of equalities over uninterpreted functions currently 6650 problem instances are provided
grouped into 6 families.

54



6.3 Results

6.3.1 Fuzzer Results

The fuzzer tool arranged with the SMT4J solver and the EUF Checker tool in a pipeline
forms a perfect test bed for the system. In that way, during the development process an
exhaustive, automatic regression testing environment focusing on the correct functioning
for the theory solver was built. As a secondary check for the decisions made by the
EUF theory solver of SMT4J, each generated input formula is evaluated by the veriT and
the CVC SMT Solvers as well, in order to compare the results. Solving of the problem
instances generated by the EUF Fuzzer is very fast. Thus, it does not make sense to
include performance comparison for them.

6.3.2 Benchmark Results

The lazy SMT solving approach of SMT4J with the single core producing EUF theory
solver unfortunately did not prove to be efficient enough for the standard QF UF bench-
marks, that is to say, the solver could decide the satisfiability only of 42 formulas from
the 6650 problem instances. Nevertheless, these experiments provide also some interesting
statistics about the properties of the theory solver, since even if the satisfiability of the
problem instances at the end mostly were not decided, during the process the theory solver
was asked to decide the Tε-satisfiability of enormous amount of propositional assignments.

benchmark avg. iteration avg. input size avg. core size avg. red.

eq diamond 10473,9 99,1 99,1 0%

loops6 3869,4 374,2 8,3 97,8%

NEQ2 1315,5 456,0 4,9 98,9%

PEQ 1576,2 902,0 15,3 98,3%

Q
G

-c
la

ss qg5 5982,5 228,7 7,5 96,7%
qg6 3324,0 349,0 8,4 97,5%
qg7 1898,0 535,9 9,1 98,3%

SEQ 2507,0 418,2 11,1 97,3%

TypeSafe 1,0 4,0 3,0 25%

Table 6.1: Average results of the EUF theory solver with single core production on the
QF UF benchmark grouped family-wise

Table 6.1 presents the aggregated results of the EUF theory solver with single core
production on the QF UF benchmark grouped by families. As in Section 2.3 was described,
the main concept of the solver is to iteratively refine the propositional abstraction of
the input formula by the generated theory-lemmas. The first column (’avg. iteration’)
indicates how many times the theory solver was asked to decide the Tε-satisfiability of
a conjunction of Tε-literals in average, namely how many lemmas were produced by the
theory solver during the decision of one problem instance in average. The second column
(’avg. input size’) shows that for a given benchmark family in average how many Tε-literals
were assigned by the SAT-Solver during the iterations, namely this column describes the
average size of the input set of literals of the theory solver. The third column (’avg. core
size’) presents the average size of the unsatisfiable cores produced by the theory solver in
each iteration. The last column of the table labelled ’avg. red.’ presents average reduction
of the input problem size in percentage.

2The version of SMT4J that was employed for this experiment contained still a minor bug in the
Extractor component that was influencing the results of the problem instances in this family.

55



The large differences between the average input size and average core size, and so
the high percentages in the last column, indicate effective problem reduction. Although,
the problem instances of the eq diamond family were not reduced at all (as expected),
all things considered, one can conclude that the produced unsatisfiable cores prune the
search space of the SAT Solver significantly. The average number of iterations shows that
the theory solver does not form the bottleneck in the solving process. Furthermore, the
large size of input sets indicates that the theory solver serves well under large loads.

Figure 6.1: Experimental Results for multiple core production compared to single core
production and Z3

Figure 6.1 presents the experimental results of the enhanced approach (see Section 4.5).
The results show the superiority of the multiple-core production over the single-core gen-
eration method in the solver. While with single-core production the solver could decide
only less than 50 problem instances from 6650 within 2 minutes, the multi-core production
was already able to decide more than 4500 instances. The third line depicts the running
results of Z3 for the same benchmarks, and shows that it could solve almost all instances.
The results are presented numerically in Table 6.2.

SMT4J SCore SMT4J MCore Z3
# % # % # %

unsat 22 0,33 2558 56,4 4017 61,18

sat 0 0 1977 43,6 2549 38,82

solved 22 0,33 4535 68,2 6566 98,74

unsolved 6628 99,67 2115 31,8 84 1,26

sum 6650 100 6650 100 6650 100

Table 6.2: Numerical results of SMT4J and Z3 for the QF UF benchmark

Note that the experiments of Figure 6.1 and Table 6.2 were conducted on a cluster
of approximately 30 machines (Intel(R) Core(TM)2 Quad CPU,Q9550,@2.83GHz,8 GB
memory) and with a more recent version of SMT4J, therefore the results are not directly
comparable to the former experiences.

56



Chapter 7

Conclusion

7.1 Summary

Based on the experimental results, the main conclusion of this thesis is as follows. Although
the exploitation of theory lemmas on demand approach is a simple way to integrate the
support of various background theories into an SMT Solver, without further strategies and
optimizations the method is not adequately efficient to produce a competitive SMT Solver.
One possible strategy to enhance the performance of the approach is to generate as many
theory lemmas in each refinement iteration as possible, in order to prune the searching
space more effectively. In the implemented algorithm the number of possible contradictions
is finite, the exhaustive core production is feasible without significant further efforts.

The EUF theory solver satisfactorily withstood the execution experiences and did not
hinder the performance of SMT4J. The module provided correct and fast functionalities
even under large loads. Moreover, the improved version of the theory solver with the
multiple-core production functionality served already as an effective basis for the solving
process of industrial problem instances.

Beyond the lemmas on demand approach, there are further satisfiability decision pro-
cedures, where the produced unsatisfiable cores of a theory solver are applicable in order
to provide performance enhancement. The cost of production showed minimal in the
case of the EUF theory, therefore it is a remunerative investment of effort to provide this
functionality. A detailed proof production requires additional expenditures from an SMT
Solver without concrete benefits in the decision process and this functionality may seem
not really necessary. Nevertheless, a generated proof significantly reduces the required
efforts to verify the correctness of the theory solver, consequently it is a supportive ca-
pability during the development process in order to ensure the quality of the produced
results.

7.2 Further Works

Several options to improve the implemented procedure arose during the development pro-
cess. This section is dedicated to describe shortly some of them.

There is one particularly notable failing of the extension of the union-find based explain
method. It can not efficiently exploit when a concerned path in the proof forest was already
traversed. More precisely, future work should examine how the proof generation procedure
could take advantage of the Explain Forest in order to collect the necessary, and just the
necessary clauses of an already discovered path in the proof forest. The most obvious
optimization of the algorithm would be to store the already built and proved clauses in
the proof forest right at the corresponding edges. This solution would provide a significant
improvement of the proof generation procedure in multiple-core production mode, since

57



the already constructed and proved clauses could be reused in the proving process of the
next unsatisfiable core. Namely, the algorithm would be influenced in a positive way by
this optimization in the cases, when the same proof forest is reused for proving more than
one contradiction. Nevertheless, the current solution is more supportive for the debugging
process by the separation of the proof forest from the proof generation process.

Another performance enhancement could maybe achieved by improving the quality
of the produced unsatisfiable cores for example by the reduction of their size when it
is possible. A smaller unsatisfiable core precludes more propositional assignments from
the search space of the SAT Solver, hereby each call of the theory solver would provide
substantially more benefits to the decision procedure. Thus, it would be fruitful to consider
a simple post-process of the generated unsatisfiable cores, in order to eliminate unnecessary
literals.

An obvious side effect of the implemented congruence closure algorithm is that re-
dundant equalities are not exploited. This feature is relevant only in the case, when an
input equality is found redundant because it was already deducted by the congruence
closure algorithm through transitivity or congruency. When such an equality is involved
in a contradiction, the produced unsatisfiable core contains all those equalities, which are
necessary to deduce the equality in question. It may be worth to store the unprocessed,
redundant equalities during the congruence closure algorithm, in order to find reduction
possibilities during core production.

The current implementation of the EUF theory solver provides deduction of inter-
face equalities in order to support the theory exchange capabilities of SMT4J. The set of
deducted equalities either contains all the found equalities based on the calculated con-
gruence classes, or only those equalities, that were propagated by the Congruence Closure
algorithm directly. The former case generates an impracticable large set, while the latter
solution may not provide all the necessary equalities. Since SMT4J is still under devel-
opment and the principles of the theory combination method are not completely clear,
the development of an efficient strategy to select the most relevant deductions remains on
the list of further works. Anyway, the actual state of the implementation stores all the
necessary information that would be required to identify a specific subset of the deducted
equalities, i.e., to identify the equalities over shared variables.

Besson et al. in [8] gave some suggestions about the implementation of a proof verifier
for their flexible proof format. Since the produced proofs of the EUF theory solver differ in
many points from their proof script proposal, the implemented checker is overly simplified
and less generic compared to their recommendation. When other theory solvers of SMT4J
also start to produce detailed proofs and the main principles of the supported proof format
are final, a programmable and more flexible verifier tool will be required.

The theory of equalities over uninterpreted functions has the so called ground inter-
polation property. Computation of ground interpolants has a valued role in predicate
refinement methods [23] and in model checking systems [26]. Fuchs at al. proposed in [22]
an efficient and simple algorithm to compute ground interpolants from coloured congru-
ence graphs for the EUF Theory. Although, the proof forest of the theory solver differs
from the graphs described in the paper, in future implementations the algorithm could be
employed.

58



References

[1] W. Ackermann. Solvable cases of the decision problem. North Holland Publishing
Co., 1954.

[2] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Wener. Verifying SAT
and SMT in Coq for a fully automated decision procedure. In Proc. of International
Workshop on Proof-Search in Axiomatic Theories and Type Theories (PSATTT),
2011.

[3] L. Bachmair and A. Tiwari. Abstract congruence closure and specializations. In Proc.
of 17th Conference on Automated Deduction (CADE), pages 64–78. Springer, 2000.

[4] B. Barras, S. Boutin, C. Cornes, J. Courant, Y. Coscoy, D. Delahaye, D. de Rauglau-
dre, J.-C. Filliâtre, E. Giménez, H. Herbelin, et al. The Coq Proof Assistant Reference
Manual, 1999.

[5] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli. CVC4. In Proc. of 23rd International Conference on
Computer Aided Verification (CAV), pages 171–177. Springer, 2011.

[6] C. Barrett, L. De Moura, and P. Fontaine. Proofs in satisfiability modulo theories.
All about Proofs, Proofs for All. College Publications (to appear in 2015), 2014.

[7] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. Technical
report, Department of Computer Science, The University of Iowa, 2010.

[8] F. Besson, P. Fontaine, and L. Théry. A flexible proof format for SMT: a proposal.
In Proc. of First International Workshop on Proof eXchange for Theorem Proving
(PxTP), 2011.

[9] A. Biere, M. Heule, and H. van Maaren. Handbook of satisfiability, chapter 26: Sat-
isfiability Modulo Theories, volume 185. IOS press, 2009.

[10] S. Böhme and T. Weber. Designing proof formats: A user’s perspective. Proc. of
First International Workshop on Proof Exchange for Theorem Proving (PxTP), pages
27–32, 2011.

[11] T. Bouton, D. C. B. De Oliveira, D. Déharbe, and P. Fontaine. veriT: an open,
trustable and efficient SMT-solver. In Proc. of the 22nd International Conference on
Automated Deduction (CADE), pages 151–156. Springer, 2009.

[12] R. Brummayer and A. Biere. Lemmas on Demand for the Extensional Theory of
Arrays. In Proc. of 6th International Workshop on Satisfiability Modulo Theories and
First International Workshop on Bit-Precise Reasoning, pages 6–11, 2008.

[13] R. Brummayer and A. Biere. Boolector: An efficient SMT solver for bit-vectors and
arrays. In Proc. of 15th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pages 174–177. Springer, 2009.

59



[14] J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor control.
In Proc. of 6th International Conference on Computer Aided Verification (CAV),
pages 68–80. Springer, 1994.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms,
chapter 21: Data Structures for Disjoint Sets. MIT press, 2009.

[16] L. De Moura, H. Rueß, and M. Sorea. Lemmas on Demand for Satisfiability Solvers.
In Proc. of Fifth International Symposium on the Theory and Applications of Satis-
fiability Testing (SAT), pages 244–251, 2002.

[17] L. M. de Moura and N. Bjørner. Proofs and refutations, and Z3. In Proc. of 15th
International Conferences on Logic for Programming, Artificial Intelligence and Rea-
soning (LPAR), 2008.

[18] D. Deharbe, P. Fontaine, and B. W. Paleo. Quantifier inference rules for SMT proofs.
In Proc. of First International Workshop on Proof eXchange for Theorem Proving
(PxTP), 2011.

[19] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpression
problem. Journal of the ACM (JACM), 27(4):758–771, 1980.

[20] B. Dutertre and L. De Moura. A fast linear-arithmetic solver for DPLL(T). In Proc. of
18th International Conference on Computer Aided Verification (CAV), pages 81–94.
Springer, 2006.

[21] M. Fitting. First-order logic and automated theorem proving. Springer Science &
Business Media, 2. edition, 1996.

[22] A. Fuchs, A. Goel, J. Grundy, S. Krstić, and C. Tinelli. Ground interpolation for the
theory of equality. In Proc. of 15th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages 413–427. Springer,
2009.

[23] R. Jhala and K. L. McMillan. A practical and complete approach to predicate re-
finement. In Proc. of 12th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pages 459–473. Springer, 2006.

[24] C. Keller. A Matter of Trust: Skeptical Communication Between Coq and External
Provers. PhD thesis, Ecole Polytechnique X, 2013.

[25] D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point of View.
Springer Publishing Company, Incorporated, 1. edition, 2008.

[26] K. L. McMillan. An interpolating theorem prover. Theoretical Computer Science,
345(1):101–121, 2005.

[27] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems, 1(2):245–257, 1979.

[28] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure.
Journal of the ACM (JACM), 27(2):356–364, 1980.

[29] R. Nieuwenhuis and A. Oliveras. Fast Congruence Closure and Extensions. Informa-
tion and Computation, 205(4):557–580, 2007.

60



[30] D. Oe, A. Reynolds, and A. Stump. Fast and flexible proof checking for SMT. In
Proc. of 7th International Workshop on Satisfiability Modulo Theories, pages 6–13.
ACM, 2009.

[31] D. C. Oppen. Complexity, convexity and combinations of theories. Theoretical com-
puter science, 12(3):291–302, 1980.

[32] D. A. Plaisted and S. Greenbaum. A structure-preserving clause form translation.
Journal of Symbolic Computation, 2(3):293–304, 1986.

[33] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Proc. of 4th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), pages 151–166. Springer, 1998.

[34] R. E. Shostak. An algorithm for reasoning about equality. Communications of the
ACM, 21(7):583–585, 1978.

[35] A. Stump. Checking Validities and Proofs with CVC and flea. PhD thesis, Stanford
University, 2002.

[36] A. Stump. Proof checking technology for satisfiability modulo theories. Electronic
Notes in Theoretical Computer Science, 228:121–133, 2009.

[37] A. Stump and D. Oe. Towards an SMT proof format. In Proc. of the Joint Work-
shops of the 6th International Workshop on Satisfiability Modulo Theories and 1st
International Workshop on Bit-Precise Reasoning, pages 27–32. ACM, 2008.

[38] A. Stump, D. Oe, A. Reynolds, L. Hadarean, and C. Tinelli. SMT proof checking
using a logical framework. Formal Methods in System Design, 42(1):91–118, 2013.

[39] A. Stump, A. Reynolds, C. Tinelli, A. Laugesen, H. Eades, C. Oliver, and R. Zhang.
LFSC for SMT Proofs: Work in Progress. In Proc. of Second International Workshop
on Proof Exchange for Theorem Proving (PxTP), page 21, 2012.

[40] C. Tinelli and C. G. Zarba. Combining nonstably infinite theories. Journal of Auto-
mated Reasoning, 34(3):209–238, 2005.

[41] A. Van Gelder. Verifying RUP Proofs of Propositional Unsatisfiability. In Proc. of
10th International Symposium on Artificial Intelligence and Mathematics (ISAIM),
2008.

[42] K. P. Varga and M. Várterész. A matematikai logika alkalmazásszemléletű tárgyalása.
Panem, 2003.

61



Appendices

62



Appendix A

<?nonexml nonev e r s i o n=” 1 .0 ” encoding=”UTF−8”?>
<smt4j:SMT4JConfig xmlns:smt4j=” ht t p : //www. smt4j . org /SMT4JConfig” xmlns :x s i=

” h t tp : //www. w3 . org /2001/XMLSchema−i n s t ance ” xs i : s chemaLocat ion=” h t tp : //
www. smt4j . org /SMT4JConfig SMT4JConfig . xsd ”>
<smt4j :TSolver c la s sPath=” org . smt4j . s o l v e r . t s o l v e r . CoreSolver ” name=”

CoreSolver ”></ smt4j :TSolver>
<smt4j :TSolver c la s sPath=” org . smt4j . s o l v e r . t s o l v e r . UFSolver” name=”

UFSolver”></ smt4j :TSolver>
<smt4 j :Log i c name=”QF UF” >

<s m t 4 j : t s o l v e r>CoreSolver</ s m t 4 j : t s o l v e r>
<s m t 4 j : t s o l v e r>UFSolver</ s m t 4 j : t s o l v e r>
<smt4 j :un inte rpretedFuns>UFSolver</ smt4 j :un inte rpretedFuns>
<s m t 4 j : u n i n t e r p r e t e d S o r t s>t rue</ s m t 4 j : u n i n t e r p r e t e d S o r t s>
<s m t 4 j : q u a n t i f i e r s> f a l s e</ s m t 4 j : q u a n t i f i e r s></ smt4 j :Log i c>

<smt4j:SATSolver c la s sPath=” org . smt4j . s o l v e r . d p l l . s a t 4 j . SAT4J” name=”
SAT4J” />

</smt4j:SMT4JConfig>

Figure A.1: Configuration file of SMT4J

( set−l o g i c QF UF)
( dec la re−s o r t S1 0)
( dec la re−fun x ( ) S1 )
( dec la re−fun y ( ) S1 )
( dec la re−fun z ( ) S1 )
( dec la re−fun t ( ) S1 )
( dec la re−fun f ( S1 ) S1 )
( a s s e r t (= x y ) )
( a s s e r t (= y z ) )
( a s s e r t ( d i s t i n c t ( f z ) t ) )
( a s s e r t ( or ( d i s t i n c t x z ) (= ( f x ) t ) ) )
( check−sa t )
( get−proo f )
( e x i t )

Figure A.2: Input formula of Example 2.13

63



4 7 9 12 13 −14
( s e t . c1 ( input : c onc lu s i on ((= y z ) ) ) )
( s e t . c2 ( input : c onc lu s i on ((= x y ) ) ) )
( s e t . c3 ( input : c onc lu s i on ( ( d i s t i n c t x z ) ) ) )
( s e t . c4 ( t m p d i s t i n c t e l i m : c l a u s e s ( . c3 ) : c onc lu s i on ( not (= x z ) ) ) )
( s e t . c5 ( e q t r a n s i t i v e : c onc lu s i on ( not (= y z ) ) ( not (= x y ) ) ((= x z ) ) ) )
4 7 9 12 −13 14
( s e t . c1 ( input : c onc lu s i on ((= ( f x ) t ) ) ) )
( s e t . c2 ( input : c onc lu s i on ((= y z ) ) ) )
( s e t . c3 ( input : c onc lu s i on ((= x y ) ) ) )
( s e t . c4 ( input : c onc lu s i on ( ( d i s t i n c t ( f z ) t ) ) ) )
( s e t . c5 ( t m p d i s t i n c t e l i m : c l a u s e s ( . c4 ) : c onc lu s i on ( not (= ( f z ) t ) ) ) )
( s e t . c6 ( e q t r a n s i t i v e : c onc lu s i on ( not (= ( f x ) ( f z ) ) ) ( not (= ( f x ) t ) )

((= ( f z ) t ) ) ) )
( s e t . c7 ( eq congruent : c onc lu s i on ( not (= x z ) ) ((= ( f x ) ( f z ) ) ) ) )
( s e t . c8 ( e q t r a n s i t i v e : c onc lu s i on ( not (= y z ) ) ( not (= x y ) ) ((= x z ) ) ) )

Figure A.3: SMT4J proof

Example A.1. (Symbol table) After the currification of the f(a, b, c) term, the symbol
table and result Curry term is as follows:

Curry(f(a, b, c)) = C(C(C(0, 1), 2), 3), where

0←→ 〈f, (π1, π1, π2, π)〉,
1←→ 〈a, (π1)〉,
2←→ 〈b, (π1)〉,
3←→ 〈c, (π2)〉.

( set−l o g i c QF UF)
( dec la re−s o r t S 0)
( dec la re−fun g (S S) S)
( dec la re−fun a ( ) S)
( dec la re−fun b ( ) S)
( dec la re−fun c ( ) S)
( dec la re−fun d ( ) S)
( dec la re−fun e ( ) S)
( dec la re−fun h ( ) S)
( a s s e r t (= b h) )
( a s s e r t (= c b) )
( a s s e r t (= e d) )
( a s s e r t (= d c ) )
( a s s e r t (= ( g e e ) a ) )
( a s s e r t (= ( g e h) b) )

( a s s e r t ( d i s t i n c t a d) )

( check−sa t )
( e x i t )

Figure A.4: Input formula of Example 4.8 and 4.11

64



Sworn Declaration

I hereby declare under oath that the submitted Master’s degree thesis has been written
solely by me without any third-party assistance, information other than provided sources
or aids have not been used and those used have been fully documented. Sources for
literal, paraphrased and cited quotes have been accurately credited. The submitted doc-
ument here present is identical to the electronically submitted text document.

Linz, 17 August 2015


