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Abstract 

“Given enough time, a hypothetical chimpanzee typing at random would, as part of its output, 

almost surely produce one of Shakespeare’s plays” (Wikipedia, 2009). This statement seems to 

explain why fuzz testing has become so successful since it was made public by Miller in 1990 

(Miller, Fredrikson, & Bryan, 1990) and 1995 (Miller, et al., 1995). But as none of us can effort 

enough bananas to feed the chimpanzee until it finished typing, techniques have to be 

implemented to accelerate that task. This master thesis examines, based on applications in the 

field of satisfiability solving, whether black box fuzz testing can be improved by using feedback 

and adding methods common in the field of evolutionary algorithms. Intel’s pin tool is used to 

get feedback about program behavior and this feedback is then used to construct further input 

by mutating existing ones.  

Abstract 

“Given enough time, a hypothetical chimpanzee typing at random would, as part of its output, 

almost surely produce one of Shakespeare’s plays” (Wikipedia, 2009). Diese Aussage erklärt 

warum Fuzz Testing sehr erfolgreich eingesetzt wurde seit dem es von Miller 1990 (Miller, 

Fredrikson, & Bryan, 1990) und 1995 (Miller, et al., 1995) erstmals nachweislich verwendet 

wurde. Da es sehr kostspielig wäre, einen hypothetischen Schimpansen so lange mit Bananen 

zu versorgen, bis tatsächlich ein derartiges Stück als Teil des getippten produziert wird, müssen 

Techniken entwickelt werden um diesen Vorgang zu beschleunigen. Diese Masterarbeit 

untersucht ob black box fuzz testing von SAT solvern verbessert werden kann, indem 

Rückkopplungen und Methoden des Gebietes der Evolutionären Algorithmen angewandt 

werden. Dazu wird Intels pin tool verwendet, um Informationen über das Laufverhalten einer 

Testanwendung zu erhalten, und weitere Testeingaben werden generiert, indem vorhandene 

Eingaben, basierend auf den gewonnen Informationen, angepasst werden. 

Keywords 

Fuzz testing; satisfiability solving; black box testing; code coverage maximization; generational-

based fuzzing; mutation-based fuzzing 
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1 Introduction 

“Is it possible to better find issues in software, using black box fuzz testing, if the amount of 

code covered during tests is maximized and what are suitable methods to increase coverage?” 

This is the main question that will be examined throughout this thesis by implementing and 

testing different strategies to fuzz SAT solvers.  

Chapter 1 gives some basic information about the field of fuzz testing and code coverage. 

Additionally the subjects under test, which are SAT solving applications, are described and some 

information about a baseline study, used to compare results, are given. Chapter 2 describes a 

fuzzing application which was developed in order to tests certain strategies explored in this 

thesis. The chapter starts with the issue of generating random formulas which act as input to 

SAT solvers and are used as basis for further inputs. To get information about the code covered 

a special way of monitoring is used which is described next in this chapter. After these two 

basic techniques were introduced information about the structure of the developed fuzzing 

application are given whereas the focus is on creating new inputs considering previously 

generated ones. To perform this task methods, common in the field of evolutionary algorithms, 

are used whereas inputs which contribute to the amount of coverage are preferably selected 

and mutated in order to create new inputs. Throughout these sections many tests are carried 

out to check whether certain techniques and parameter sets are suitable. The chapter closes 

with the description of a test suite which is generated throughout the fuzzing process and 

contains all inputs which contributed to the overall coverage or yielded a problem in the tested 

SAT solver. Chapter 3 highlights the results of the work and describes issues which were found 

in the tested SAT solvers. Additionally some concepts to overcome the main limitation of the 

developed fuzzer, which is the required amount of time to process inputs, are described. Finally 

Chapter 4 summarizes the main findings of this thesis. 

1.1 Fuzz testing (fuzzing) 

According to (Takanen, Demott, & Miller, 2008) fuzz testing (fuzzing) is an instance of negative 

testing software. B. P. Miller is said to have invented fuzzing when he tried to find 

vulnerabilities in UNIX tools back in 1990 (Miller, Fredrikson, & Bryan, 1990). He did this by 

feeding the tools with random input and succeeded in breaking most of them. Since then fuzz 

testing has become an important technique to find software vulnerabilities. Many different kind 

of fuzz testing software have been developed: black box, gray box and white box fuzzing tools 

for a great number of different software and protocols. They all share the common 

characteristic to test a certain piece of software with a large number of random and more or 

less valid inputs. Fuzzing has been used successfully many times to find vulnerabilities in 

software as documented e.g. by (Granneman, 2006). 
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1.2 Motivation 

“Intelligent fuzzing usually gives more results” (van Sprudel, 2005). Based on this statement this 

diploma thesis examines whether pure black box fuzz testing can be improved by some kind of 

feedback loop combined with evolutionary methods. The target applications are satisfiability 

(SAT) solving applications. Besides finding bugs, the developed fuzzing tool is able to generate a 

test suite with the goal of maximum code coverage. This way a software engineer is able to test 

many parts of his application in an automated way. The fuzzing tool does this by using nothing 

else than the binary of an application which makes it possible to check an application which is 

highly optimized and has all additional information, e.g. debug symbols or coverage 

information,  stripped which is usually the case with SAT solving applications.  

1.3 Maximizing code coverage as a goal 

The primary goal of a fuzzer is to find bugs in software. In the case of fuzzing applications it 

seems obvious that flaws will be identified only if those parts of an application which cause the 

flaw are executed. Although higher code coverage does not necessarily mean that more bugs 

are found there may be a high tendency towards this assumption as documented in (Zeller, 

2006). Based on this observation this diploma thesis tries to identify code flaws by finding ways 

to increase the level of code coverage while fuzzing an application. 

1.4 Subjects under test 

As already mentioned, the main subjects under test are SAT solving applications. To be more 

concrete the SAT solvers picosat and precosat (Biere, 2009), developed by Univ.-Prof. Dr. Armin 

Biere at Johannes Kepler University, will be used and tested throughout this thesis. The solvers 

are capable of taking input in DIMACS format (DIMACS Challange, 1993) and decide whether 

the specified SAT problem in conjunctive normal form (CNF) is satisfiable. As the source code of 

the solvers is available it is possible to deeper analyze certain behavior, such as line coverage, 

on a higher level during the development phase. Nevertheless the fuzzing application 

developed in this thesis is available to perform all tasks without using this additional 

information which makes it possible to test highly optimized versions of the SAT solving 

applications too. To get information about the amount of covered code in such applications a 

special kind of monitoring is implemented which traces the basic blocks that are executed at 

binary level.  

1.5 The fuzzing life cycle 

The fuzzing life cycle, introduced by (Takanen, Demott, & Miller, 2008) and depicted in Figure 1, 

shows the major steps to create a fuzzer. The interface to the application is more or less 

defined when SAT solvers are fuzzed although some additional issues, such as fuzzing 

arguments, need to be considered which is described in this thesis in Sec. 2.17. Input 

generation and sending inputs are described in Sec. 2.5.2 and Sec. 2.5.3. Target monitoring is 
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another crucial method when fuzzing applications which becomes very important in this thesis 

as it is used to get feedback from the application. It will be described in Sec. 2.2. The overall 

goal of fuzzing is to find bugs and therefore exception analysis needs to be handled which is 

also described in this section. Finally, reporting will be implemented as a way of generating test 

scripts that cover all the touched code parts which is described in Sec. 2.19. 

Identifying 

interfaces

Input generation

Sending inputs

Target 

monitoring

Exception 

analysis

Reporting

 

Figure 1: The fuzzing lifecycle. Taken from (Takanen, Demott, & Miller, 2008) 

1.6 The baseline study 

Univ.-Prof. Dr. Armin Biere, who developed the SAT solvers under test in this thesis, provided a 

fuzzing tool called cnfuzz which is capable of creating random SAT problems in CNF. The tool 

mainly defines a random model of a formula, as described in more detail in Sec. 6.10, which is 

then serialized in DIMACS format to standard output. This fuzzer is used as baseline value to 

check whether the techniques implemented in this thesis lead to useful results. To estimate the 

capabilities of cnfuzz an initial test is carried out that analyzes which parts of the source code 

were hit when the fuzzer is run for a certain amount of time. To get coverage information the 

gcov utility (GNU Free Software Fundation, 2008) from GNU’s compiler collection is used. The 

utility requires that the binary is annotated with additional instructions, which is done by 

setting certain compiler flags. To be more precise GCC’s compiler flags “–fprofile-arcs” and “–

ftest-coverage” need to be added in the corresponding makefile prior to building the SAT 

solving application under test. To make test results comparable it is possible to specify a fixed 

number of test runs or a fixed amount of testing time. As there may be huge differences in 

processing times for different fuzzing strategies used throughout this thesis, the primary 
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attempt pursued to compare test results is to limit the amount of testing time. Sec. 6.7 

describes a bash script which is used to run a specified application for a certain amount of time 

on Linux based operating systems. The script collects gcov information after every test run and 

appends it to corresponding files. For this test one hour was chosen as an appropriate amount 

of testing time for no particular reason. Within that time the cnfuzz tool was able to cover 

67.966% of picosat’s code lines with 43138 tests and 81.112% of precosat’s code lines with 

36412 tests. Figure 2 and Figure 3 show the change in code coverage over time. The 

logarithmically scaled number of tests is drawn on the x-axis and the overall percentage of 

covered code lines on the y-axis. A more detailed analysis of picosat’s test run showed that the 

final coverage was reached after 21128 tests. The high amount of 67.462% had been reached 

already after carrying out only 1812 tests. The detailed analysis of precosat’s test run showed 

that it took 11072 tests until the final coverage value was reached. The high value of 80.762% 

had been reached already after 3076 tests. 

 

Figure 2: Testing picosat with cnfuzz for 60 minutes 

 

Figure 3: Testing precosat with cnfuzz for 60 minutes 
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1.6.1 Analysis of the code that was not hit 

Further evaluation of the source code lines that were not covered during the tests just 

described yielded two main reasons for not executing many parts of the code. The first reason 

is that certain arguments are required to be passed to the application to enter certain code 

paths. The second reason is that some parts of the SAT solving applications are processed only 

if semi valid or totally invalid data is passed to the application. As the cnfuzz tool generates only 

valid input these parts were omitted from being executed. The creation of semi valid and 

invalid inputs as well as fuzzing arguments is described in more detail in Sec. 2.17. Besides the 

code that was not hit for the two reasons described, some parts in the code exist which were 

not covered because no suitable input was generated during the test. These parts will be 

targeted when feedback from application runs is used to generate test data of higher quality as 

described in Sec. 2.7. 
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2 Developing the fuzzing application 

This chapter describes the strategies tested and or implemented in the developed fuzzing 

application. The explanations start with the generation of a model to create random formulas in 

CNF.  

2.1 Creating random formulas 

To make it possible to get and use feedback from application runs it is necessary to generate 

inputs to start with. As documented in (Takanen, Demott, & Miller, 2008) two widely used 

strategies are available which are to alter predefined inputs as used by mutation-based fuzzers 

or to randomly create new inputs as used by generational-based fuzzers. The fuzzer developed 

in this thesis combines both strategies and uses a generational-based approach to generate 

formulas and mutation-based approaches to further refine the most promising ones. This and 

the following sections are about the generational-based approach and describe a method to 

randomly create new formulas. The described method is based on the creation model used by 

the cnfuzz tool, which is described in more detail in Sec. 6.10. This tool was tested extensively in 

Sec. 1.6 and the results showed that the amount of code covered by the tool is already very 

high. Nevertheless a slightly refined and fully customizable model was created to test if further 

improvements are possible. The following sections make use of Gaussian as well as exponential 

distributed values. The techniques used to generate such values from uniformly distributed 

values, as they are provided by most random number generators, are given in Sec. 6.5. 

2.1.1 Details of the random formula creation model 

The creation of formulas is based on and starts with the number of different variables that will 

be used in the formula. This proved to be a suitable parameter to control the overall size of a 

satisfiability problem. The value is chosen from a Gaussian distribution as described by the 

following formula whereas 𝑛  denotes the number of variables. 𝑚  and 𝛿𝑚  specify the 

parameters of the Gaussian distribution.  

𝑛~𝑁(𝑚, 𝛿𝑚 ) 

The number of clauses 𝑐 in a formula is calculated by multiplying the number of different 

variables by a normal distributed factor with parameters 𝑓 and 𝛿𝑓 . This is based on an analysis 

by (Mitchell, Selman, & Levesque, 1992) which resulted in the finding that satisfiability 

problems tend to be hard if the ratio between the number of clauses and the number of 

variables is within a certain range.  

𝑐~𝑛 ∗ 𝑁(𝑓, 𝛿𝑓) 

The number of literals 𝑙 in a clause is chosen exponentially distributed with parameter 𝜆𝑙  

whereas a minimal length 𝑙𝑚  is specified. Several tests showed that a minimum amount of 

variables in a clause is necessary to prevent the generation of formulas which could be proven 
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as unsatisfiable quickly. If longer clauses are generated by providing a smaller parameter to the 

exponential distribution a large amount of the clauses will tend to contain too many variables 

and they are proven as satisfiable very quickly. 

𝑙~𝑙𝑚 + exp(𝜆𝑙) 

In cnfuzz a model with layers is used to choose variables from neighboring areas and generate 

sets of clauses that connect them. To check if this improves the quality of the generated 

formulas a test was carried out where variables 𝑣 of clauses are chosen equally distributed 

from the total number of available variables 𝑛. The sign of a variable is chosen equally 

distributed between true and false. 

𝑣~𝑈(1, 𝑛) 

The tests showed that modeling formula creation this way tends to create formulas which take 

more time to be solved by the tested SAT solvers compared to formulas created with the cnfuzz 

tool. But the analysis of code lines covered by the generated formulas showed that fewer code 

parts were actually executed by these formulas. This may be explained by the assumption that 

satisfiability solvers try to detect structures in formulas and make decisions on variables that 

connect these structures. That way it is possible to split the whole problem into smaller parts 

which can be evaluated faster. The use of uniquely distributed variables tends to create 

formulas which are highly unstructured and therefore the code which operates on structures in 

the formula is very unlikely to be executed. To create formulas which are more structured an 

initial variable 𝑚 is chosen from all the available variables for each clause and the actual 

variables 𝑣 in the clause are chosen normally distributed with parameters 𝑚 and 𝛿𝑣 around this 

variable as depicted in Figure 4. 

𝑚~𝑈(1, 𝑛) 

𝑣~𝑁(𝑚, 𝛿𝑣) 

 

Vm+3Vm+2Vm+1vmVm-1Vm-2Vm-3
. . . . . .

 

Figure 4: Selection of variables 
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If the selection of the variables is modeled this way it is also possible to approximate clauses 

with uniquely distributed variables by choosing a high value for the parameter 𝛿𝑣 and a wide 

range of different formulas can be created with this single model. Another question is whether 

prohibiting duplicate variables in clauses leads to useful results. Again, this is analyzed by 

carrying out some tests which resulted in the finding that no notable differences between the 

two strategies were encountered. Therefore it was not possible to decide experimentally if 

preventing duplicates in a clause is a valuable strategy. Due to the nature of formulas in CNF 

the underlying problem will most probably get easier if a variable occurs more often within a 

clause. Especially this is the case if a variable occurred in different phases within a clause which 

makes that clause satisfiable immediately. Due to this observation duplicate variables in clauses 

will be prohibited when formulas are created randomly. They may be created when mutators 

will change formulas which will be described in more detail in Sec. 2.7. Finally the creation 

model uses seven parameters and the creation process can be fully characterized by giving the 

parameters concrete values. Although it is not implemented in this thesis one may think of 

optimizing these parameters too while the application is fuzzed. This could be implemented by 

techniques common in the field of parameter optimization as described e.g. by (Bäck & 

Schwefel, 1993). The next section outlines a number of tests that were carried out in order to 

get suitable values for the parameters experimentally. 

2.1.2 Getting suitable values for the random creation model 

A number of different parameter sets were tested to get suitable values for the random 

creation model experimentally which are listed in Table 3 and Table 4. Each test was carried out 

for a time of 15 minutes and the used parameters as well as the corresponding line coverage 

reported by the gcov utility are depicted in these tables. The first two tables, Table 1 and Table 

2, show the amount of covered code lines after using the cnfuzz tool for a time of 15 minutes 

and are used to compare results. 

Test with cnfuzz for 15 min – picosat 

Tests Coverage 

Total Sat Unsat Timeout   

9033 4924 4109 0 67.72 
Table 1: Baseline test of cnfuzz - picosat 

Test with cnfuzz for 15 min – precosat 

Tests Coverage 

Total Sat Unsat Timeout   

7830 4154 3676 0 78.11 
Table 2: Baseline test of cnfuzz - precosat 
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Tests with picosat for 15 min 

NumVariables ClausesFactor NumLiterals Var Tests Coverage 

Mean Deviation Mean Deviation Min ExpMean Deviation Total Sat Unsat Timeout   

1000 800 13.5 3.5 3 3 10 2620 1120 1500 0 66.73 

100 80 13.5 3.5 3 3 10 11896 6135 5760 1 67.25 

100 80 13.5 3.5 3 3 50 1424 774 550 100 67.67 

100 80 10 0.5 3 3 50 16227 16164 63 0 66.87 

100 80 17 0.5 3 3 50 1245 31 1116 98 67.50 

100 80 13.5 7 3 3 50 2051 1040 915 96 67.72 

100 80 13.5 0.5 3 3 50 778 460 203 115 67.67 

100 80 13.5 7 3 0.01 50 20534 1619 18915 0 67.72 

100 80 13.5 7 2 0.01 50 27237 568 26669 0 51.40 

100 80 13.5 7 1 0.01 50 35181 277 34904 0 43.76 

100 80 13.5 7 5 0.01 50 803 624 33 146 67.16 

100 80 13.5 7 8 0.01 50 10295 10295 0 0 53.99 

100 80 13.5 7 3 5 50 2142 1771 266 105 67.63 

100 80 13.5 7 3 8 50 5719 5642 37 40 67.50 

100 80 13.5 7 3 12 50 6797 6796 1 0 64.06 

100 80 13.5 7 3 1 50 8157 1420 6701 36 67.72 

100 80 13.5 7 3 2 50 3270 1021 2179 70 67.50 

100 80 13.5 7 2 4 50 11956 2002 9954 0 63.55 

100 80 13.5 7 2 6 50 9430 2745 6684 1 63.55 

100 80 13.5 7 2 8 50 8293 3677 4616 0 63.55 

100 80 13.5 10 3 1 50 8043 1195 6488 360 67.72 

100 80 13.5 13 3 1 50 8512 1652 6839 21 67.50 

100 80 13.5 8.5 3 1 50 6666 1255 5387 24 67.50 

100 80 13.5 5 3 1 50 7551 872 6655 24 67.72 

100 80 13.5 5 3 3 10 14194 1553 12641 0 66.73 

100 80 13.5 5 3 3 75 6285 739 5529 17 67.67 

100 80 13.5 5 3 1 100 6651 790 5841 20 67.76 

100 80 13.5 5 3 3 100 1150 605 473 72 67.46 

200 80 13.5 5 3 1 100 2066 196 1819 51 67.46 

200 80 13.5 5 3 3 100 257 117 81 59 66.39 

200 80 13.5 5 3 3 50 275 118 104 53 67.12 

50 40 13.5 5 3 4 18 18298 14077 4221 0 67.72 

Table 3: Random model creation - picosat 
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Tests with precosat for 15 min 

NumVariables ClausesFactor NumLiterals Var Tests Coverage 

Mean Deviation Mean Deviation Min ExpMean Deviation Total Sat Unsat Timeout   

100 80 13.5 5 3 1 100 4435 509 3899 27 80.948 

100 80 13.5 5 3 2 100 1217 325 836 56 81.2426 

100 80 13.5 5 3 3 50 932 486 377 69 81.3813 

100 80 13.5 10 3 3 50 1295 608 624 63 80.3673 

100 80 13.5 5 3 4 50 1056 808 180 68 80.8786 

100 80 13.5 5 3 3 25 1736 938 752 46 81.7107 

100 80 13.5 5 3 3 10 7389 3816 3573 0 80.9826 

100 80 13.5 5 3 3 18 4526 2411 2110 5 81.7627 

100 80 13.5 5 3 3 30 1307 694 548 65 80.9133 

50 80 13.5 5 3 3 25 3495 1881 1579 35 81.3813 

50 40 13.5 5 3 3 25 9328 5130 4196 2 81.78 

25 20 13.5 5 3 3 25 25031 14405 10626 0 80.9826 

50 40 13.5 5 3 3 18 10745 5871 4874 0 81.78 

50 40 13.5 3 3 3 18 9781 5532 4249 0 81.676 

50 40 13.5 7 3 3 18 10514 5529 4985 0 81.5287 

50 40 13.5 5 2 4 18 23677 2979 20698 0 78.4171 

50 40 13.5 5 3 4 18 9563 7363 2200 0 81.8147 

50 40 13.5 5 3 5 18 10025 9179 846 0 81.676 

Table 4: Random model creation - precosat 

2.1.3 Analysis of the experiments 

The tables, Table 3 and Table 4, show that good control over the created SAT problems is given. 

The mean amount of used variables gives control over the size of the created problems and if 

the number of clauses is set to create hard problems the processing time, required to solve the 

SAT problem, can be influenced. The fact that high line coverage and problems that require a 

relatively high amount of processing time are possible with as little as 50 different variables 

mean is a bit of a surprise. Based on the assumption by (Mitchell, Selman, & Levesque, 1992) it 

is no surprise that the tendency of the formula to be satisfiable or unsatisfiable can be 

controlled by the ratio between the number of clauses and the number of used variables. This 

work concluded that a ratio of 4.3 is a suitable value to generate formulas which are near the 

point where around 50% of the formulas are satisfiable and therefore expected to be hard to 

solve. In the paper all clauses had a fixed length of three variables. The fact that clauses in the 

generated code are longer by a certain factor, and thus easier to satisfy, explains why the 

optimal ratio between the number of generated clauses and the number of different variables 

in the tests are higher respectively. The tests also emerged that a minimum of three variables 

should be in a clause to have high code coverage. Fewer variables in a clause tend to make 

formulas proven as unsatisfiable very quickly without executing uncovered code. Removing 

variables to produce short clauses will be handled by mutation of existing formulas anyway as 
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described in more detail in Sec. 2.7. Having clauses that are significant longer than three 

variables, tends to make formulas proven as satisfiable quickly and the amount of covered code 

lines did not increase too. Another finding is that decreasing the local connectivity of variables 

chosen for a clause by increasing the value of the deviation when variables are chosen, tends to 

increase processing time necessary to solve the generated formulas but does not increase the 

amount of covered code lines. 

2.1.4 Conclusion of the experiments 

Compared to the cnfuzz tool the creation model yielded no significant gain in line coverage 

when picosat was fuzzed but increased the overall line coverage when fuzzing precosat by more 

than three percent which is a remarkable amount as depicted in Figure 5. The main advantage 

of this new model is that it is fully customizable and covers a wide range of created formulas. 

Additionally it would be possible to optimize the parameters of the creation model using 

feedback from carried out tests while the target application is fuzzed. As already mentioned 

this is not considered in more detail in this thesis. 

 

Figure 5: Comparison of the random model generation 

2.2 Getting feedback from application runs 

Having the output of gcov and analyzing the source code that was not tested by the fuzzer 

would make it possible to generate inputs that cover these parts too. But as this thesis is about 

black box fuzz testing and creating test cases in an automated way a mechanism to get 

feedback from carried out tests is necessary. That way a fuzzer can determine whether certain 

input data reveals newly executed parts of the tested application. Many different kinds of 
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information about an application run are available. In the current implementation the fuzzer 

retrieves information about the return value of the solver, the processing time and the trace 

information which are described in more detail in the next sections. 

2.2.1 The return value 

The return value is often used by sat solvers to indicate whether the problem is SAT, UNSAT or 

not calculated for some reason. The SAT solvers used in this thesis are designed to return 10 if a 

problem is SAT and 20 if the problem is UNSAT. A value of zero is returned if no decision could 

be made, e.g. the input or the arguments are invalid. In case of an abnormal termination a 

value according to the specifications of the runtime environment is returned. The fuzzer checks 

whether a certain problem is recognized as SAT or UNSAT by checking the return value of the 

solver. The concrete return values can be specified in a configuration file which is used by the 

fuzzing application where it is also possible to specify a list of accepted return values, e.g. zero 

for invalid input. If the return value doesn’t match any of the defined values the execution is 

handled as abnormal and the input is considered to unveil an error. 

2.2.2 The execution time 

The time it takes to execute the solver given a certain input is measured and saved for each 

input. This value is of interest because it indicates how difficult it was to determine the 

satisfiability of the problem for the solver. Especially the ratio between the execution time and 

the size of the formula gives information about the inability of the solver to find structures in 

the formula and to speed up the solving process. Nevertheless this information is not used in 

the final version of the fuzzing application because it does not fit into the pursued strategy. The 

execution time is used solely to specify timeouts in the SAT solver. This is necessary to prevent 

inputs which block the fuzzing process for a long time and decrease the overall number of 

inputs that can be tested. 

2.2.3 Monitoring 

This is the most expensive information the fuzzer will get about a certain test run and may be a 

profit-yielding innovation compared to other fuzzing tools. The first attempt to get information 

about the executed parts of a program was to use the processor’s single step debugging mode 

and to trace all the executed code by the values of the instruction pointer at every step. As 

explained in more detail in Sec. 6.6.1 this approach failed because it dramatically slows down 

performance when running an application in single step mode which would make it impossible 

to run the desired amount of tests within an appropriate amount of time. After some further 

investigation Intel’s pin tool (Luk, et al., 2005) proved to be of great value in getting the desired 

information. The tool executes code a virtual machine and offers methods to inject and execute 

user supplied code at defined positions by providing a dynamically linked library to the tool. A 

test was carried out by creating a library for the tool to intersect every instruction of an 
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application and trace physical addresses. To be more precise it was not necessary to store every 

address but the address of the first instruction of every encountered basic block (BBL) 

(Wikipedia, 2009) which are those parts of code that have a single entrance single exit nature as 

depicted in Figure 6. Therefore if the first instruction of a basic block is executed all other 

instructions will be executed too and there is no need to store this information which greatly 

improves performance of the monitoring process without losing information. The data from 

monitoring allows generating an exact trace of an application’s run within a short time as 

documented in Sec. 6.6.2. Although this approach seemed to be very promising at first glance it 

proved that running it with real data on a SAT solving application was unfeasible too. As 

example, running the sat solver precosat with a rather hard satisfiability problem turned out to 

execute about 239 million basic blocks. If just the address of every executed basic block was 

stored with a minimum of 4 bytes the amount of data required for a single trace would be 

about 911 MB as demonstrated in Sec. 6.6.3. Although providing that much storage would not 

be a problem, processing that many data would again significantly decrease performance. The 

final attempt is to abandon some information and to monitor only which of the static basic 

blocks were executed which provides the most suitable tradeoff between information and 

performance. The tested attempts are additionally described in Sec. 2.3.5 and Sec. 6.6. The 

optimized version finally used in this thesis will be described next. 
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Figure 6: Basic Blocks 

2.3 Description of the Monitoring tool 

The Monitoring tool is implemented in the C++ programming language and must be compiled 

specific to the target system which can be Microsoft Windows or a Linux based operating 

system. Detailed instructions on building and running the tool on these systems are given in  

Sec. 6.2.3. The Monitoring tool generally traces three kinds of information of a target 

application which are the binary layout of the main image, the executed basic blocks and 

exceptions in case they occurred. Details about this information are given in the next sections. 

Information about the implementation of the monitor tool and certain code excerpts are given 

in more detail in Sec. 6.3. 

2.3.1 Binary layout of the image 

The monitoring library instructs the pin tool to intersect all binary image loads which are the 

loading of the main image and all dynamically linked libraries. In the final version the tool only 

traces data about the main image as the dynamically linked libraries are usually part of the 

operating system and of little use to the fuzzer. The information traced about the main image 

are the path to the image in the file system, the high and the low address of the image in the 

virtual address space and the sections the image is made of. Executable images may contain a 

different number of sections which is described in more detail at (Wikipedia, 2009). As the 
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fuzzer is only interested in code that can be executed and not the data of the application only 

sections which are marked as executable are reported. The monitor tool traces information 

about each executable section in the main image such as the name of the section, the offset in 

the binary image and the size of the section. With this information the fuzzer has information 

about the amount of executable code and can produce coverage information. 

2.3.2 Executed Basic Blocks 

The pin tool is instructed via the monitor library to insert code every time a new basic block 

(Wikipedia, 2009) is discovered. The inserted code stores basic information about the basic 

block, such as the address, the size and an execution counter. Additionally a small amount of 

code is dynamically inserted into each recognized basic block and executed every time the basic 

block is executed. The inserted code simply increments the execution counter stored for every 

recognized basic block. That way it is possible to report how often each basic block was actually 

executed by a certain application run. More details about the implementation are given in Sec. 

6.3. 

2.3.3 Assertions 

Anomalies, such as invalid memory accesses which are detected by the execution environment 

are notified by certain mechanisms which are signals in the case of Linux based operating 

systems and exceptions in the case of Windows based operating systems. As the pin tool uses 

the debugging interface to instrument a target application these notifications are signaled to 

the pin tool via a context change debugging event (Intel Corporation, 2009). The monitor library 

instructs the pin tool to execute code of the monitor library every time this happens. This code 

tracks some information about the anomaly which is basically the reason for the anomaly such 

as a fatal signal caused by a divide by zero or a segmentation fault caused by invalid memory 

access. Check instructions such as assert or abort are usually implemented to raise the 

debugging interrupt of the system which will be detected by the same mechanism. Therefore 

they will also be handled and reported as assertions in case they are used and executed in the 

code. 

2.3.4 Communication between the fuzzing application and the monitoring tool 

Having a library which runs in process space of the tested application requires a method to 

communicate with the outside. Although many different technologies such as messages or 

shared memory are possible using files as buffer proved to be very simple and robust. 

Therefore the monitor library simply serializes all the collected information to a file. The 

information is then de-serialized by the fuzzing application and used for further processing. As 

the fuzzer is implemented using Microsoft’s .Net framework technology which offers full 

serialization support for XML files and XML provides information in a structured and readable 

way it is used as format for the temporary trace information. Figure 7 depicts the basic layout 
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of such a trace file in the form of a class diagram and Figure 8 shows some excerpts of such a 

file. 

 

Figure 7: Class diagram of the generated trace information 
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<?xml version="1.0" encoding="utf-8"?> 

<Trace xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

OutFile="trace.xml"> 

 <TraceItems> 

  <TraceItem xsi:type="BinaryImage"> 

   <Path>/home/juergen/Documents/bin-picosat/picosat</Path> 

   <LowAddress>134512640</LowAddress> 

   <HighAddress>134655455</HighAddress> 

   <Sections> 

    <Section> 

     <SecName>.init</SecName> 

     <SecAddress>2808</SecAddress> 

     <SecSize>48</SecSize> 

    </Section> 

    <Section> 

     <SecName>.plt</SecName> 

     <SecAddress>2856</SecAddress> 

     <SecSize>704</SecSize> 

    </Section> 

    <Section> 

     <SecName>.text</SecName> 

     <SecAddress>3568</SecAddress> 

     <SecSize>100636</SecSize> 

    </Section> 

    <Section> 

     <SecName>.fini</SecName> 

     <SecAddress>104204</SecAddress> 

     <SecSize>28</SecSize> 

    </Section> 

   </Sections> 

  </TraceItem> 

  <TraceItem xsi:type="BasicBlockCount"> 

   <Address>3568</Address> 

   <BasicBlockSize>33</BasicBlockSize> 

   <NumberOfExecutions>1</NumberOfExecutions> 

  </TraceItem> 

  <TraceItem xsi:type="BasicBlockCount"> 

   <Address>3128</Address> 

   <BasicBlockSize>6</BasicBlockSize> 

   <NumberOfExecutions>1</NumberOfExecutions> 

  </TraceItem> 

    : 

    : 

    : 

 </TraceItems> 

</Trace> 

 

Figure 8: Excerpts of a trace file 

2.3.5 Performance of Monitoring 

Pin requires a user supplied library which specifies the intersection points and contains all the 

methods which are to be called at these intersection points. Sec. 6.3 describes these 

mechanisms in more detail. In early phases of the development a full featured version of the 

monitor tool was used to test many behaviors of pin in more detail. Table 5 and Table 6 

compare the performances of various libraries used with the pin tool at these early phases. The 

table shows the number of tests that could be executed within 15 min using cnfuzz as formula 

generator and picosat as well as precosat as solver. The cnfuzz tool was seeded with a 

predefined set of numbers and created the same set of formulas for every test. Inscount2 is 

delivered as an example tool with the pin installation package and simply counts the number of 

executed basic blocks. The initial test with the monitor tool showed that the number of tests 

which could be performed within the testing time is significantly below the number of tests 

possible with inscount2. In the next attempt all parts of a binary which belong to OS specific 

code were omitted by skipping tracing information of loaded libraries. This way only code of the 

main image was instrumented which raised the performance to around the level of the 
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inscount2 tool. Finally a downgraded version of the tool was tested which collects only required 

information as described in the previous section and is the version of the tool that will be used 

throughout this thesis. Although performance of the tool could be raised by 50% compared to 

the initial version there is still a penalty of factor 20 speed compared to running the solver 

without monitoring. 

Performance of Monitor Tool – picosat 

Time 15 min  

Solver Picosat 

  num tests time/test [s]   

no tool  15935 0.056 100% 

inscount2 644 1.398 2474% 

monitor full featured 494 1.822 3226% 

monitor full featured main image only 677 1.329 2354% 

monitor optimized 778 1.157 2048% 
Table 5: Performance of Monitor Tool - picosat 

Performance of Monitor Tool – precosat 

Time 15 min 

Solver Precosat 

  num tests time/test [s]   

no tool  13658 0.066 117% 

inscount2 536 1.679 2973% 

monitor full featured 442 2.036 3605% 

monitor full featured main image only 564 1.596 2825% 

monitor optimized 660 1.364 2414% 
Table 6: Performance of Monitor Tool - precosat 

2.4 The fuzz application 

The next sections describe the fuzz application which implements the random creation model 

described in Sec. 2.1 and uses feedback from application runs to direct the fuzzing process. The 

application is implemented in the C# programming language using Microsoft’s .Net Framework 

and is compiled with Microsoft’s C# compiler. The application runs natively on Windows 

operating systems and requires the mono runtime to execute on Linux based systems. Because 

the generated CIL code (Wikipedia, 2009) is binary compatible across these operating systems 

no recompilation is necessary to run the fuzzer on Linux based systems. Detailed instructions on 

installing the fuzzing application as well as setting up the runtime environment is given in Sec. 

6.2. 

2.5 The application main loop 

The main loop of the fuzzing application is depicted in Figure 9. The core task of the application 

after initialization is to repeatedly create a new input, execute the target application with that 
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input, get execution information and update the internal state as well as provide statistics and 

visualizations of the fuzzing progress. In case the tool is terminated it will generate final 

statistics as well as a test suite with inputs that cover all the code locations that were executed 

by the fuzzer. If exceptional behaviors, such as assertions, invalid return values or long 

execution times are detected by the fuzzer the corresponding inputs will also be provided as 

part of the test suite. The following sections describe every step of the main loop of the fuzzer 

in greater detail. 

Create input
Execute target 

application

Analyze 

execution 

information

Update 

application state

Statistics and 

visualization

Initialization

Generate final 

statistics and 

test suit

Terminate?

 

Figure 9: Main loop of the fuzzer 

2.5.1 Initialization of the fuzzer 

In this step the internal state of the fuzzer is set up. This mainly involves analysis of the 

arguments to the tool and all the settings in the configuration file used by the fuzzer. Both are 

described in more detail in Sec. 6.1. 

2.5.2 Create input 

If the loop is entered the first time an initial input is created as described in Sec. 2.1. At further 

runs the input is created corresponding to the information collected in previous runs. 

Possibilities are to create another input reusing the random input creation model or to choose 

an existing input and mutate it. Selection of inputs is described in detail in Sec. 2.8 and 

mutation of these inputs is described in detail in Sec. 2.7. As described in Sec. 2.17 the fuzzer 

also supports generation of invalid inputs and fuzzing of arguments which is handled in this step 

too. 

2.5.3 Execute target application 

In this step the solver application is started via the pin tool using the monitor library. 

Arguments are passed to the solver if specified and the input formula is serialized to a file if this 

is required by the arguments. The input formula is then sent to the solver via the standard input 

stream. The actual sending of the input is done asynchronously by a separate thread. This is 
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necessary to prevent a deadlock in the fuzzer in case the target application does not accept 

input data, e.g. due to a crash. If the target application does not quit within a certain amount of 

time, passed as another argument to the fuzzing application, it will be terminated which is done 

in two phases. In the first phase the target application will be closed by rising the terminate 

signal and the application has the possibility to shut down properly. If this does not succeed 

within a certain amount of time the application will be closed by killing the corresponding 

process. The drawback of the second method is that the application as well as the monitor tool 

which runs in the address space of the application will not finish properly and therefore no valid 

trace will be generated. The details of closing an application are specific to the operating 

system and will be given in Sec. 6.4.  

2.5.4 Analyze execution information 

In this step the generated information, as described in Sec. 2.2, will be analyzed. This involves 

obtaining the return value and storing the amount of time it took to execute the application or 

specifying a flag in case the application was closed by the fuzzer because of exceeding the 

available processing time. The execution trace is de-serialized using the XML serialization 

methods of Microsoft’s .Net framework (Microsoft Corporation, 2009). This operation results in 

a tree of objects that correspond to the class diagram depicted in Figure 7. 

2.5.5 Update application state 

The information gathered in the previous step is used to update the state of the fuzzing 

application. This mainly involves traversing the object tree representing the application trace 

and updating the corresponding coverage information. Details about the stored information 

and the update process are given in Sec. 2.6. 

2.5.6 Statistics and visualization 

To give response about the current fuzzing progress several statistics such as the current 

amount of covered code as well as information about the used inputs and mutators is printed 

to the console. Additionally the progress of the fuzzing tool is visualized as depicted in Figure 

10. The form displays the execution status of the basic blocks in an image and the amount of 

covered code in a progress bar. Every pixel in the image represents one address of the main 

image of the target application and is colored according to the execution state of the address. 

The meaning of the different colors is described in more detail in Table 7. 
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Figure 10: Visualization of the fuzzing progress 

Color Meaning 

Black The address belongs to the binary main image 

White The address is within an executable section 

Dark Gray The address was recognized as executable code 

Green The address was executed by one of the tests 
Table 7: Colors of the visualization form 

2.5.7 Generate final statistics and test suite 

The main loop of the fuzzing application can be terminated by user input or if the testing time 

exceeds a certain duration which can be specified by an argument to the application. In both 

cases the fuzzing application generates a number of files in a specified output directory which 

includes statistics of the carried out tests and optionally a number of input files which caused 

anomalies in the tested application. Additionally a test suite is generated which covers all the 

basic blocks that were detected and executed during the overall fuzzing progress. Details about 

the output and the test suite are given in Sec. 6.9. 

2.6 Managing the state of the fuzzing progress 

The following sections describe how information gathered by executing the target application is 

stored within the fuzzing application. Before these details are given the next section highlights a 

certain problem that must be handled due the way the pin tool detects basic blocks. 



[26] 
 

2.6.1 Problem of overlapping basic blocks 

Basic blocks may overlap due to the way they are recognized by the pin tool as depicted in 

Figure 11. A new basic block is generated every time the CPU starts working after a control 

instruction has been processed. The basic block ends whenever another control instruction is 

encountered. If the target of further jump instructions is within an already detected basic block 

a new basic block is generated although it overlaps with the existing one. To get accurate 

information about coverage further attention has to be given to these situations. A simple and 

effective approach is to store coverage information per basic block and to have a reference to 

the basic block at every address it contains. The other way around every address will store a list 

of all the basic blocks that have been detected which contain the address. The additionally 

required memory is not a real problem as the amount of available addresses as well as static 

basic blocks is constant. Therefore the amount of additionally required memory will be 

constant too. 
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Figure 11: Overlapping basic blocks 

2.6.2 Managing Coverage information 

Coverage information is tracked in the fuzzer in address arrays grouped by sections of the 

binary image. They are generated if the target application is executed for the first time. Every 

used input is stored in an input cache and a reference to the input is stored at every basic block 

that has been executed or was recognized by the input. Every address that is contained in the 

basic block stores a reference to it as described in the previous section. The overall layout is 

depicted in Figure 12. This way all the relevant information generated by the monitor tool is 

available to the fuzzing application. The drawback of storing all the information is the linear 
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grow of memory consumption as depicted in Figure 13, which is caused by storing all the 

inputs. This limits the total number of tests that can be carried out before performance drops 

drastically which is caused by system load. On the test environment, as described in Sec. 6.8, 

this happens after about 1100 tests when the total amount of consumed memory reaches 

nearly 700 MB. Nevertheless, throughout the tests carried out in this thesis the full information 

is stored and used to get accurate information about the behavior of different strategies. Sec. 

2.13 later in this thesis describes a strategy to limit overall memory consumption by dropping 

some of the information which makes it possible to use the fuzzer for an unlimited number of 

tests. 
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Figure 12: Layout of the stored coverage information 
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Figure 13: Memory consumed by coverage information 

2.6.3 Usage of the input cache 

As described in the previous section references to all inputs are additionally stored in the input 

cache which is for two reasons. The first reason is that an input which has already been 

processes can be used by mutators to generate a new input. The second reason is that prior to 

monitoring an application it is checked if the input has already been used. This may happen 

especially if very short formulas are generated by the mutation progress. The basic idea behind 

preventing a certain input to be monitored multiple times is that this step is, by far, the most 

time consuming one. The drawback of this strategy is that storing all inputs constantly 

consumes memory as described previously. Detailed analysis of the effect of caching inputs in 

Sec. 2.11 show that the gain in the number of tests carried out is negligible and can be 

compensated by increasing testing time. 

2.6.4 Calculation of coverage by the fuzzer 

This is the first time information from application runs is used. Nevertheless it is not used to 

influence the fuzzing process but to get basic information about the amount of code coverage 

while the target application is fuzzed by calculating the ratio between the number of executed 

code bytes and the total number of executable code bytes given by the sum of the sizes of all 

executable code sections which is also shown by the formula below. The gained coverage 

information is also visualized as described in Figure 10. There is a remarkable difference 

between the coverage values determined this way compared to the line coverage value 

determined by tools such as gcov which is also shown in Table 8. This seems plausible as there 

is no direct match between the number of code lines and the number of generated code bytes. 

It also seems plausible that the amount of byte coverage is lower than the amount of line 

coverage as there is a remarkable amount of automatically generated code in every executable. 
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𝑏𝑦𝑡𝑒 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝑁𝑢𝑚 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑐𝑜𝑑𝑒 𝑏𝑦𝑡𝑒𝑠

 𝑠𝑖𝑧𝑒𝑠 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 

coverage analysis by the fuzzer 

SAT solver time num tests byte coverage line coverage 

picosat 15 min 411 59.71 67.46 

picosat 60 min 943 59.76 67.46 

precosat 15 min 347 66.74 81.42 

precosat 60 min 959 67.16 81.52 
Table 8: Byte coverage determined by the fuzzing application 

2.7 Mutation of already performed tests 

The next sections describe mutation-based strategies implemented in the fuzzing application in 

order to slightly change existing inputs to generate new ones. During the following sections 

only mutators that create valid formulas are used. That way it is possible to compare the results 

with the cnfuzz tool which solely creates valid formulas too. Later in this thesis additional 

mutators are described which generate invalid formulas or operate on the arguments to the 

SAT solver under test to further increase coverage. 

2.7.1 Coverage achieved by using mutators only 

To get information about the behavior of mutators a special test setup was implemented which 

starts with an initial random input and generates all further inputs by mutation of existing 

inputs only. For each group of mutators a number of tests were carried out to get suitable 

configurations for each mutator experimentally. Although it might be possible to get these 

values during the fuzzing of the target application it was not implemented in this thesis. Besides 

the high complexity, the main reason is that it would dramatically increase the number of 

parameters in the whole system and therefore the overall number of tests required to achieve 

high code coverage would be further increased. The following sections give information about 

the implemented mutators and the tests carried out to experimentally find suitable values for 

their parameters. As already mentioned all tests use the same formula as starting point. This 

formula consists of 58 variables and 781 clauses and is satisfiable. The gcov tool reported that 

this input covered 42.16% of the executable bytes and 53.40% of the code lines of picosat. 

2.7.2 RandomNew 

This mutator creates a completely new formula as described in Sec. 2.1. In the tests described 

in this section it is used solely to create the initial input. In the final version of the fuzzing 

application this mutator will be used randomly according to the state of the fuzzer. 

2.7.3 AddClause / DeleteClause 

The mutators AddClause and DeleteClause are used to modify clauses. If clauses are added they 

will be created with the same method that was used to generate random input formulas as 
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described in Sec. 2.1. If clauses are deleted they will be chosen randomly among existing 

clauses. The mutators expect the number of add or delete operations as parameters which are 

chosen randomly from an exponential distribution. A few tests showed that it is relevant 

whether the number of different variables in the clause is adapted based on the number of 

clauses the formula will contain after the mutation operation. If the number of different 

variables is adapted the mutated formula tends to have the same satisfiability as the randomly 

generated formula. The reason may be that creating bigger formulas with equal density does 

not impact the satisfiability of the formula very much. Not updating the number of variables 

makes a formula more satisfiable if clauses are removed and less satisfiable if clauses are 

added. The drawback is that all formulas will have the same number of variables which is equal 

to the number of variables in the initially randomly generated formula. This will omit many 

possible configurations of formulas. Therefore a flag which decides whether the number of 

variables should be adapted is required as additional parameter by the mutators. Table 9 and 

Table 10 list some tests which were carried out in order to get suitable values for parameters 

experimentally. 

Solver Picosat 

Time 5 min 

Mutators AddClause + DeleteClause 

Tests 

Add Mean Del Mean Total Sat Unsat TimeOut byte coverage line coverage 

1000 1000 223 41 182 0 54.82 64.36139762 

500 500 230 99 131 0 51.59 62.0231011 

2000 2000 193 12 180 1 51.34 62.0231011 

1500 1500 225 35 190 0 54.91 64.36139762 

1250 1250 222 43 179 0 54.23 64.01437128 
Table 9: Optimize AddClause/DeleteClause - picosat 

Solver precosat 

Time 5 min 

Mutators AddClause + DeleteClause 

Tests 

Add Mean Del Mean Total Sat Unsat TimeOut byte coverage line coverage 

1000 1000 202 118 84 0 57.1 65.16286321 

500 500 218 170 48 0 54.19 63.97305862 

1500 1500 196 155 41 0 56.8 64.95629992 

750 750 205 161 44 0 57.28 65.4190017 

Table 10: Optimize AddClause/DeleteClause - precosat 

2.7.4 SwapSign 

The SwapSign mutator randomly selects variables in a formula and swaps their sign. The 

mutator takes the number of variables to be swapped as a parameter which is chosen 
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exponentially distributed. Table 11 shows some tests that were carried out in order to get a 

suitable value for this parameter experimentally. The tests also show that this mutator does not 

have great impact on the line coverage of the target application. In the tests depicted it was not 

even possible to transform the initially satisfiable formula into an unsatisfiable one. 

Solver picosat 

Time 5 min 

Mutators SwapSign 

Tests 

Exp Mean Total Sat Unsat TimeOut byte coverage line coverage 

1000 227 227 0 0 48.88 60.45 

2000 226 226 0 0 48.87 60.20 

500 228 228 0 0 49.15 60.50 

250 229 229 0 0 49.06 60.24 

400 224 224 0 0 49.03 60.50 

750 225 225 0 0 49.08 60.50 

Table 11: Optimize SwapSign 

2.7.5 SwapVar 

This mutator changes variables in a formula. Again the number of operations is chosen from an 

exponential distribution which is given as parameter to the mutator. The new value for a 

variable is chosen from a Gaussian distribution with the old value of the variable as mean. The 

deviation of the Gaussian distribution is additionally required as parameter by the mutator. 

Table 12 shows a number of tests that were carried out in order to find suitable values for the 

parameters to the mutator experimentally. Similar to the SwapSign operator the tests showed 

that the amount of covered code lines could not be increased very much by this mutator. 
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Solver picosat 

Time 5 min 

Mutators SwapVar 

Tests 

Exp Mean Deviation Total Sat Unsat TimeOut byte coverage line coverage 

1000 200 231 231 0 0 47.12 56.11654206 

100 10 233 233 0 0 46.78 56.11654206 

500 10 234 234 0 0 48.83 59.76858114 

1000 10 220 220 0 0 46.6 55.18287596 

750 10 230 230 0 0 47.15 56.11654206 

300 10 231 231 0 0 46.77 56.0752294 

500 100 226 226 0 0 49.67 60.57830926 

500 200 228 228 0 0 49.57 60.32217077 

500 150 228 228 0 0 49.56 60.32217077 

500 75 230 230 0 0 46.8 56.0752294 

Table 12: Optimize SwapVar 

2.7.6 AddLiteral / DeleteLiteral 

These mutators change individual clauses of formulas by adding or removing a literal. The 

mutator expects the number of clauses that should be changed as parameter which is chosen 

from an exponential distribution. The particular clauses that are modified are selected equally 

distributed among all clauses in the formula. If literals are added their value and sign will be 

chosen uniquely distributed among the possible values. It is again possible to adapt the number 

of different variables of the clause which is specified as additional argument to the mutator. 

This has an effect if e.g. all occurrences of the highest variable of the formula are deleted. Table 

13 lists some tests carried out in order to get suitable values for the parameters experimentally. 

Solver picosat 

Time 5 min 

Mutators AddLiteral + DeleteLiteral 

Tests 

Add Mean Del Mean Total Sat Unsat TimeOut byte coverage line coverage 

100 100 232 155 77 0 51.53 62.10572642 

500 500 245 126 119 0 51.93 62.23792693 

1000 1000 257 83 174 0 50.09 60.83329652 

750 750 262 88 174 0 51.36 61.72564996 

300 300 252 116 136 0 51.78 62.26271453 

500 300 255 114 141 0 51.17 61.17206032 

Table 13: Optimize AddLiteral/DeleteLiteral 
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2.7.7 Conclusion of the mutator tests 

To compare the benefit of different strategies tested in this thesis with the strategy of not using 

any feedback as implemented by the cnfuzz tool these mutators are the only one used by now. 

Additional mutators that will modify the generated input stream and the arguments passed to 

the target application will be introduced later in Sec. 2.17. The tests carried out in the previous 

sections show that the overall coverage can be influenced by these mutators and that every 

group of mutators has its own capabilities. Changing the available literals or clauses in the 

formula made it possible to cover a significant amount of new code and to generate 

unsatisfiable formulas from the initially satisfiable one. SwapVar and SwapSign changed the 

characteristics of the initial input only slightly which implies that they highly depend on the 

initial input. This behavior may be useful in cases where it is necessary to change a suitable 

input formula only minimal to cover a certain area in the application code. It is also important 

to note that the tests are used solely to get initial values for the parameters of the mutators. As 

there may be high correlations between the parameters of the mutators it will be necessary to 

further optimize them when they are used all at once in the final fuzzing application which will 

partly be done in Sec. 2.14. 

2.7.8 Coverage with these mutators 

At this time a special test is carried out which randomly chooses any of the above mutators and 

uses the parameters found experimentally by the tests in the previous sections. Table 14 and 

Table 15 give some details about the tests using picosat and precosat as SAT solving 

applications and running them for 15 minutes each. Until now no feedback of the tested 

application is used. Therefore the results in the table can be used to check the benefit of using 

feedback to select a certain mutation strategy. At this point it is no surprise that using a 

randomly chosen mutator that operates on a completely randomly selected input does not 

increase the amount of covered code compared to the attempt of using the random creation 

model solely. The advantage of using mutators to create further inputs will be given when 

suitable inputs and mutators are selected by certain strategies that use feedback from 

application runs. 

Solver Picosat 

Time 15 min 

Mutators All randomly 

Test 

num tests byte coverage line coverage 

679 57.16 66.57 
Table 14: All mutators randomly - picosat 
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Solver Precosat 

Time 15 min 

Mutators All randomly 

Test 

num tests byte coverage line coverage 

575 64.1 79.86 
Table 15: All mutators randomly - precosat  

2.8 Using feedback from test runs 

Basically there are two positions in the fuzzing process where feedback can be used. The first 

one is when the mutator is selected and the second one is when the input that the mutator will 

use is selected. The next sections describe several strategies that were implemented and tested 

to use feedback at these two positions. 

2.8.1 Using feedback to choose mutators 

The process of selecting a mutator based on feedback from application runs used in this thesis 

is rather simple and therefore it is considered first. The fuzzer tracks statistics about each 

available mutator in the application state whereas a special fitness value field is included. Every 

time a mutator is used successfully the fitness value will be increased by a certain amount. 

Every time a mutator is selected to modify some input the fitness value will be. The mutator to 

be used next will be selected based on the current fitness values of all the mutators. Details 

about this selection process will be given in the next sections. 

2.8.2 Details of the mutator selection process 

To get information about the suitability of mutators statistics about them are collected during 

tests. These statistics include how often a certain mutator, including its parameters, is used and 

how often the mutator succeeded in generating a suitable new input. A new input is considered 

suitable if it executes code which has not been executed by previous runs or if basic blocks are 

newly recognized by the pin tool, even if these basic blocks have not been executed by this 

input. The main purpose of this statistics is to check the quality of the selection process, e.g. 

how many times was a certain mutator chosen and how many times did it yield a successful 

mutation. As already mentioned a special fitness value is additionally stored for each mutator 

which reflects the current suitability of the mutator. This value is incremented every time the 

mutator was used successfully by a certain value which can be specified in a configuration file 

used by the fuzzing application. Suitable values for the SAT solvers picosat and precosat will be 

optimized experimentally throughout this and the following sections. Every time the mutator is 

chosen via the selection algorithm the fitness value is decremented whereas the value is 

prevented to get smaller than one. Mutators are chosen according to their fitness value 

whereas two different selection algorithms will be tested in the following sections which are 

proportionate selection and tournament selection (Bäck, 1996). 
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2.8.3 Proportionate selection 

In this scenario mutators will be selected proportional to their fitness value. Therefore the 

probability of a certain mutator of being selected can be given by the formula depicted below. 

The selection process is implemented by choosing a random number out of the sum of all the 

fitness values. The mutator selected is the one whose fitness range surrounds the value chosen 

if the fitness values of the mutators are arranged as depicted in Figure 14.  

𝑝𝑚 𝑖
=

𝑓𝑚 𝑖

 𝑓𝑚 𝑗𝑗
 

fm1 fm2 fm3 fm4 fm5

Total fitness

x
 

Figure 14: Proportionate selection 

2.8.4 Tests with mutator fitness using proportionate selection 

The following tables show some tests that were carried out in order to find suitable values for 

the parameters to calculating the mutator fitness when proportionate selection is used. Table 

16 gives details of using the picosat solver and Table 17 gives details of using the precosat 

solver. 

Solver picosat 

Time  15 min 

Mutator selection  Proportionate selection 

Tests 

Bonus Total Sat Unsat TimeOut byte coverage line coverage 

3 676 417 259 0 59.28 66.98888275 

10 661 483 178 0 59.02 67.03019541 

50 665 552 113 0 58.23 67.03019541 

5 676 334 336 6 58.76 66.98888275 

15 654 505 149 0 59.69 67.6746729 

20 663 553 110 0 59.11 67.03019541 

Table 16: Optimizing proportionate selection - picosat 
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Solver  precosat 

Time  15 min 

Mutator selection  Proportionate selection 

Tests 

Bonus Total Sat Unsat TimeOut byte coverage line coverage 

15 530 452 78 0 65.85 80.84395147 

10 545 415 130 0 66.39 81.24264035 

20 541 463 78 0 65.87 80.38459254 

Table 17: Optimizing proportionate selection - precosat 

2.8.5 Tournament selection 

In this scenario a number of n mutators are chosen randomly to participate in a tournament. 

The mutator which will be selected is the winner of the tournament which is the one with the 

highest fitness value. The selection strategy is also depicted in Figure 15. The advantage of this 

selection method is that the size of the tournament can be used to easily adjust the selection 

pressure. If the tournament size equals one the selection strategy is equal to random selection. 

The greater the size of the tournament the more likely the mutator with the overall highest 

fitness value will be chosen. A tournament selection with n participants can be implemented 

very easily by randomly choosing a mutator n times and remembering the most suited 

encountered mutator. The implementation does not prevent selecting the same mutator 

multiple times. This has the benefit that also any of the worst n-1 mutators can win the 

tournament if worse mutators are chosen more than once. This is not possible if multiple 

occurrences of the same mutator in the tournament are not allowed. The following section 

gives detail of a number of tests that were carried out in order to get suitable values for the 

fitness increment as well as the tournament size when tournament selection is used. 

Random

Best
TournamentSize

 

Figure 15: Tournament selection 

2.8.6 Tests with mutator fitness and tournament selection 

Table 18 describes tests that were carried out in order to find suitable values for the 

parameters to calculating the mutator fitness and the optimal size of the tournament when 

tournament selection is used to select a mutator. As the tests yielded worse results for the tests 

of the picosat solver the tests of the precosat solver are omitted. Although it may be possible to 
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further adjust the parameters to have equal results as with proportionate selection the final 

version of the fuzzing application will use proportionate selection due to reasons explained in 

the next section. 

Solver Picosat 

Time 15 min 

Mutator selection Tournament selection 

Tests 

Bonus TournamentSize Total Sat Unsat TimeOut byte coverage line coverage 

15 3 672 458 214 0 58.71 66.94757009 

15 10 619 232 385 2 57.2 66.56749363 

10 5 672 334 338 0 58.59 66.94757009 

10 3 670 441 229 0 58.71 66.98888275 

Table 18: Optimizing tournament selection 

2.8.7 Conclusion of using feedback to select mutators 

The tests in the previous sections showed that the overall line coverage could be increased to 

67.67% when the picosat solver was tested and mutators were chosen based on their fitness 

value. Compared to the tests in Sec. 2.7.8, the line coverage could be increased by 1.10 

percentage points which corresponds to 26 code lines. The tests using the precosat solver 

showed that the line coverage could be increased to 81.24%, which is equal to 38 lines of 

additionally executed code. The gain in coverage is also depicted in Figure 16. To get these 

values the increment of the fitness value was chosen differently for each of the tested solving 

applications. This means that no universal suitable value is available to get optimal results 

although the coverage achieved with precosat is only slightly lower if the same increment value 

of the optimal test of picosat is used. Therefore it can be expected that the same amount of 

covered lines with the values used when testing picosat will be achieved if more time is given to 

the fuzzing process. The tests also showed that using tournament selection yielded no 

improvements and therefore the final version of the fuzzing application will use proportionate 

selection based on the assumptions of Occam’s razor which says that “All things being equal, 

the simplest solution tends to be the best one” (Blumer, Ehrenfeucht, Haussler, & Warmuth, 

1990). The next sections describe how similar methods are implemented to select a suitable 

input to be used by mutators. 



[38] 
 

 

Figure 16: Gain of using fitness based mutator selection 

2.9 Choosing the input to be mutated 

This is the second position where feedback is used to direct the fuzzing process. Three different 

strategies will be tested throughout this and the following sections to estimate the benefit of 

using feedback to select inputs which are mutated. The most intuitive way of choosing an input 

is to calculate a certain fitness value for each processed input and choose one with a high 

fitness value. As it is the case when mutators are chosen based on their fitness value it is again 

possible to use proportionate selection or tournament based selection to perform this step. 

Because the amount of available inputs may get very large at later phases in the fuzzing 

progress and the costs of proportionate selection depend on the amount of available objects 

the primarily used strategy in the following sections will be tournament selection. Additionally 

tournament selection has the advantage that the size of the tournament can be used to easily 

adjust the selection pressure which is a valuable instrument when choosing from a fair quantity 

of objects. Details about the tournament selection strategy were already given in Sec. 2.8.5 

when mutators were chosen based on this strategy. The following sections describe several 

strategies tested to find a suitable method to calculate the fitness of inputs. 

2.9.1 Calculating the fitness of the input 

Tournament selection requires calculating the fitness value of the available inputs in order to 

choose promising ones. Two different strategies will be examined throughout the following 
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sections to calculate this value. The first one is very similar to the method used to calculate the 

fitness value of mutators. The second one uses more complex strategy and considers different 

aspects of the input like the number of newly executed basic blocks. Another strategy will be 

tested which uses a completely different approach and chooses primarily suitable basic blocks 

to get an input. 

2.9.2 Calculate the fitness of inputs based on fitness increments 

This method is very similar to the way the fitness value was calculated to estimate the fitness of 

mutators. Basically two inputs are involved in the selection and mutation process. The first one 

is the input which is used by the mutator and will be referred to as base input. This input has 

already been used as input of the application. The second input is the one which is generated 

from the base input by mutation. Several statistics such as the number of times an input is 

chosen as base input and the number of times an input has been used successfully are stored 

per input. They are considered as successful if they execute code that has not been executed 

before or if pin succeeded in detecting new basic blocks with an input. If this is the case the 

number of successes of both, the currently used input and the base input, are incremented. 

These two statistical values are primarily used during the development phase to check whether 

a certain strategy leads to useful results, e.g. inputs which are chosen often should yield more 

successful inputs than others. Additionally a fitness value is stored per input and this is the 

value that is crucial in the selection process. Every time an input has been used successfully the 

corresponding fitness value is incremented whereas again both fitness values, the value of the 

currently used input and the value of the base input are updated. The actual value of the 

increment is tested independently for both inputs. An additional parameter will be used and 

tested which specifies the maximum fitness value that can be reached by a single input. This is 

necessary to prevent the generation of so called super individuals. These are inputs whose 

fitness value is drastically higher than the value of other inputs and causes them to be selected 

over and over again although they yield no profit. This happens at the initial phases of the 

fuzzing progress as the first inputs are very likely to be successful and will get a high fitness 

value if they are selected several times. Every time an input is selected as base input the fitness 

value of the input is decremented whereas the value is prevented by the algorithm to fall below 

zero. The following section lists some tests that were carried out in order to get suitable values 

for the tournament size and the increment of the fitness values experimentally. 

2.9.3 Testing the fitness based input selection method 

Table 19 and Table 20 show some tests which were carried out in order to find suitable values 

for the input selection strategy as explained in the previous section. The mutator for the tests 

was chosen completely random to compare the experimental values with the values found in 

Table 14 and Table 15. The tests show that selecting a suitable input raises the amount of 

covered lines to 67.29% compared to 66.57% without this strategy when the picosat solver is 
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tested. The additional amount of 0.72 percentage points corresponds to 17 additional code 

lines that were executed throughout the tests. The tests with the precosat solver showed that 

81.31% of the available code lines were executed. The additional amount of 1.45 percentage 

points corresponds to 40 additional lines of code. This is also depicted in Figure 17. 

Solver picosat 

Time 15 min 

Mutator selection randomly 

Input selection Tournament with fitness increment 

Tests 

TournamentSize BaseInputBonus InputBonus Total Sat Unsat TimeOut Undef byte coverage line coverage 

15 5 5 613 363 250 0 0 58.65 66.94757009 

15 10 5 619 336 283 0 0 58.69 66.94757009 

15 5 10 604 343 261 0 0 58.95 67.28566695 

20 5 5 486 284 202 0 0 58.88 66.9882158 

Table 19: Fitness based input selection - picosat 

Solver precosat 

Time 15 min 

Mutator selection randomly 

Input selection Tournament with fitness increment 

Tests 

TournamentSize BaseInputBonus InputBonus Total Sat Unsat TimeOut Undef byte coverage line coverage 

15 5 10 434 256 168 10 0 64.77 79.78655922 

20 5 10 461 297 161 0 3 66.63 81.31197754 

30 5 10 547 325 222 0 0 63.92 79.68255342 

20 10 10 550 345 205 0 0 65.88 80.38459254 

Table 20: Fitness based input selection - precosat 
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Figure 17: Gain of using tournament selection of inputs with fitness increments 

2.9.4 More complex strategy to estimate the fitness value 

The strategy to calculate the fitness value described in this section uses data which is more 

specialized to the problem of maximizing code coverage. The basic idea is that inputs which 

discover more basic blocks should get a higher fitness value. Inputs which discover new basic 

blocks at a later phase in the fuzzing process should have a higher fitness value too. Therefore 

fitness is calculated depending on the number of discovered basic blocks and the test number 

when these basic blocks where discovered. The exact calculation method is depicted in the 

formulas below whereas 𝑏𝑏𝑙𝑠 indicates the number of newly covered basic blocks and 

𝑔𝑒𝑛 indicates the current number of tests carried out. 𝑓𝑏𝑏𝑙  and 𝑓𝑔𝑒𝑛  are factors used to bias 

these values. The maximal fitness is defined by an additional parameter to prevent super 

individuals. Every time an input is chosen the fitness is decremented by a constant value 𝑑𝑒𝑐.  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑏𝑏𝑙𝑠 𝑥 𝑓𝑏𝑏𝑙 + 𝑔𝑒𝑛 𝑥 𝑓𝑔𝑒𝑛  𝑥 min(𝑏𝑏𝑙𝑠, 1) 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑛𝑒𝑤 = max(0, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑜𝑙𝑑 − 𝑑𝑒𝑐) 

A promising input is chosen again by a tournament selection with a configurable number of 

participants. The following section gives some details about tests carried out in order to find 

suitable values for the parameters.  

2.9.5 Testing the selection method 

The fitness values in this section are calculated as described in the previous section. Initial tests 

showed that specifying factors does not increase the results significantly and therefore they are 

0

10

20

30

40

50

60

70

80

90

picosat precosat

Li
n

e
 c

o
ve

ra
ge

 r
e

p
o

rt
e

d
 b

y 
gc

o
v 

[%
]

Gain of using tournament selection 
of inputs with fitness increments

random input

tournament with fitness 
increment



[42] 
 

assumed as one. The decrement value is redundant as for every decrement value the other 

parameters can be specified accordingly to lead to the same results. Therefore this value is 

predefined as one too. Calculating the fitness as described has the effect that the tests 

generated at the beginning tend to have a very high value compared to the other tests and 

must be prevented from becoming super individuals. Therefore it is again necessary to limit the 

maximum possible fitness value. As done in previous tests the mutation operation is chosen 

completely random to compare the values of these tests with the values of Table 14 and Table 

15. Table 21 and Table 22 give details of some of the tests carried out in order to get suitable 

values for the parameters. The tests show that this selection strategy raises the amount of 

covered lines to 67.46% compared to the 66.57% without this strategy when the picosat solver 

is tested. The additional amount of 0.89 percentage points corresponds to 21 additional code 

lines that were executed throughout the tests. The tests with the precosat solver showed that 

81.24% of the available code lines were executed. The additional amount of 1.38 percentage 

points corresponds to 38 additional lines of code. In the case of precosat it will be possible to 

increase the amount of covered lines by further optimizing parameters. But as there are some 

drawbacks with this selection strategy as described in the following section this selection 

strategy was not pursued any further. 

Solver Picosat 

Time 15 min 

Mutator Selection Randomly 

Input selection Tournament with fitness based on gain in coverage 

Tests 

TournamentSize MaxInputFitness Total Sat Unsat TimeOut byte coverage line coverage 

15 10 648 321 327 0 58.91 67.24502124 

20 10 665 401 264 0 57.38 66.82363212 

10 10 657 368 289 0 58.95 67.16239592 

12 10 687 359 328 0 59.02 66.98888275 

13 10 640 332 308 0 57.16 66.56749363 

12 5 630 321 309 0 56.93 66.52618097 

12 15 623 307 316 0 58.4 66.86494477 

12 12 605 328 277 0 57.24 66.52618097 

12 8 656 301 355 0 57.12 66.60880629 

14 10 667 322 345 0 59.33 67.03019541 

16 10 428 229 174 25 59.76 67.45984707 

18 10 684 393 291 0 59.13 67.37722175 

Table 21: Coverage gain based input selection - picosat 
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Solver Precosat 

Time 15 min 

Mutator Selection randomly 

Input selection Tournament with fitness based on gain in coverage 

Tests 

TournamentSize MaxInputFitness Total Sat Unsat TimeOut byte coverage line coverage 

16 10 484 268 215 1 66.37 81.24264035 

18 10 434 236 186 12 64.77 79.71722202 

Table 22: Coverage gain based input selection - precosat 

2.9.6 Problems of selection from the input cache 

Selecting from the input cache as described and tested in the previous sections has some 

serious drawbacks. First of all it is difficult to find a really good fitness function which handles all 

the aspects of the tested environment. Inputs which are generated at the beginning of the 

fuzzing process tend to have a high amount of newly discovered code locations and therefore a 

high fitness value. Inputs which discover a new input at a later state of the fuzzing process 

should have a high value because they discovered something that was not discovered before 

and may be of high interest. Hence the use of the test number as another factor sounded 

reasonable. The problem is that inputs at a very late state become super individuals 

immediately if the maximum fitness value is chosen to high. If the maximum fitness value is 

chosen lower the selection pressure is not as high as expected during the first phases of the 

fuzzing progress. Although this can be handled by providing a more complex fitness function, 

e.g. variables of higher order, the overall method does not sound very promising. Adding 

parameters of higher order will make the selection model even more complicated and it will get 

unlikely to find suitable and robust values for the parameters which yield the desired effect. 

Additionally the two strategies defined in the past sections have another problem which is 

detailed in the following section. 

2.9.7 Memory consumption as the general problem of selecting from the input 

cache 

The two selection methods described in the previous sections have a serious problem in 

common. They depend on saving all inputs which were carried out in order to use them for the 

mutation step. As detailed in Figure 13 the memory consumption will grow linear with the 

number of processed inputs. Although this can be handled by limiting the size of the input 

cache and removing the worst inputs when this limit is exceed the whole selection process 

becomes very complicated. Additionally it would be hard to define which inputs are the worst 

because there may not be enough data available for a huge part of the available inputs. If an 

input which would be very suitable for generating new inputs failed to do so in the first attempt 

it will be considered as worse input. Therefore it will not be selected in future attempts and has 

no possibility to increase the fitness value which would make it a candidate for removal from 
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the input cache. Based on all the problems that were encountered in the previous sections a 

completely new selection method will be defined and tested in the following sections. 

2.9.8 Using basic blocks to select inputs 

This selection strategy uses a completely different approach to find a suitable input to be used 

by the mutators. The idea is based on a work by (Sparks, Embleton, Cunningham, & Zou, 2007) 

that suggests that code paths in an application which are executed less often should be 

considered as more interesting. Applied to the information stored in the state of the fuzzing 

application basic blocks which are tested less often contain code which may be of higher 

interest. As described in Sec. 2.6.2 every executed basic block stores references to the 

corresponding inputs. Basic blocks which have a smaller number of referenced inputs can be 

considered more interesting than others as they demand on certain structure which is unique in 

the referenced inputs. The technique described in theses sections is implemented by selecting a 

suitable basic block at first in order to choose an input that covers the selected basic block. A 

basic block is considered as interesting if little inputs are available which cover the basic block. 

Again, the selection algorithm uses tournament selection to find basic blocks with little inputs. 

The tournament size can be specified as argument and gives control over the selection 

pressure. As depicted in Figure 11 basic blocks may overlap. Additionally basic blocks may have 

very different lengths which results from the way pin detects and generates them. Therefore 

basic blocks will not be selected randomly from the available basic blocks but from an address 

they cover. Therefore prior to selecting a basic block an address is determined whereas all 

addresses have the same probability to be chosen. Then a basic block which covers this address 

is used. As addresses are stored in sections which are of different sizes too. Therefore a section 

is chosen by proportionate selection. The whole selection process is depicted in Figure 18. 

There are two additional parameters tested which control certain exceptions that may arise if 

addresses are chosen that have not been executed. As the monitor tool also reports basic 

blocks and therefore addresses which are detected as part of a trace but have not been 

executed one parameter specifies whether these basic blacks are allowed to participate in the 

tournament. If there is no input available at all for a randomly selected address the algorithm 

searches for nearby addresses which are suitable. This conforms to the assumption that 

applications are designed according to the locality principle and code at a specific address will 

be executed more likely if code at surrounding addresses is executed. This strategy implies that 

addresses which are located near undetected addresses are chosen more often. To limit the 

advantage of these addresses the search width can be limited by another parameter to the 

algorithm. If no valid address is found within this limit the algorithm restarts with a new 

randomly selected address. If the limit is chosen as zero no searches for nearby addresses takes 

place at all. If a suitable address is found a basic block that contains this address and conforms 

to the requirements, e.g. the covered address is executed, is chosen randomly. To calculate the 

fitness of the participants in the tournament the number of available inputs acts as primary 
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compare operator. If the difference of available inputs is within a certain range, which can be 

specified in the application configuration, they are considered as equal and the generation 

when the basic block was executed the first time is used to compare the basic blocks.  

The idea is that basic blocks which were detected later in the testing phase may be of more 

interest. If both basic blocks were executed at the same Generation, or none of the two has 

been executed at all which is more likely, the Generation when the basic block was discovered 

by pin is used to compare them. Finally an input that executes or recognizes this basic block is 

chosen via a tournament selection strategy. In this tournament inputs that execute the basic 

block more often are preferred to others. The idea behind this strategy is that executing a basic 

block more often will execute the surrounding loop more often and therefore the whole 

strategy targets towards the limits of loops. 
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Figure 18: Selecting inputs via basic blocks 
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2.9.9 The idea behind selecting from basic blocks 

This section describes a hypothetical example which highlights the idea behind the selection 

strategy described in the previous section. Figure 19 shows the layout of an assumed 

application with 5 basic blocks. 

BBL 0

BBL 2 BBL 1

BBL 3 BBL 4

 

Figure 19: BBL selection static basic blocks 

Figure 20 shows the application state assuming two inputs were generated and processed 

which executed only the basic blocks BBL 0 and BBL 1. Therefore the number of available inputs 

at these basic blocks is two. 

Input 1
BBL 0

BBL 2 BBL 1

BBL 3 BBL 4

Input 0

 

Figure 20: BBL selection after two inputs 

Figure 21 shows the application state after processing a further input that is assumed to 

execute the basic blocks BBL 0, BBL 2 and BBL 3. The available inputs at these basic blocks are 

now one and lower than the number of available inputs at other basic blocks which were 

executed. Therefore these two basic blocks are preferred by the basic block selection process. If 

any of the two basic blocks will be selected the input which is used by the mutation step will be 

Input 3. Now the chances are high that the input will be modified by the used mutator to 

execute BBL 4, e.g. by executing BBL 0, BBL 2 and BBL 4 as shown in Figure 22. In this case BBL 3 

and BBL 4 will be preferred in further basic block selection operations as they have the least 

number of available inputs. If BBL 4 were not executed by Input 4, Input 3 would still have a 
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higher probability to be selected as the number of available inputs at BBL 2 and BBL 3 would be 

lower than the amount of available inputs at other basic blocks and chances are again high that 

BBL 4 will be executed by further inputs. 

Input 3

Input 1
BBL 0

BBL 2 BBL 1

BBL 3 BBL 4

Input 0

 

Figure 21: BBL selection after three inputs 

Input 4

Input 3

Input 1
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BBL 2 BBL 1

BBL 3 BBL 4

Input 0

 

Figure 22: BBL selection after four inputs 

2.9.10 Testing the strategy of choosing inputs from suitable basic blocks 

Table 23 and Table 24 show details about a number of tests that were carried out in order to 

get suitable values experimentally for the parameters of the input selection strategy described 

in the previous sections. Initial tests uncovered that allowing basic blocks to participate in the 

tournament, which have not been executed yields better results. Therefore all the tests listed in 

the tables allowed them to participate. Using this selection strategy raised the amount of 

covered lines to 67.67% compared to 66.57% when inputs were chosen randomly in case the 

picosat solver was tested. The additional amount of 1.10 percentage points corresponds to 26 

additional code lines that were executed throughout the tests. The tests with the precosat 

solver showed that 81.31% of the available code lines were executed. The additional amount of 
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1.45 percentage points corresponds to 40 additional lines of code which were executed during 

the tests.  

Solver Picosat 

Time 15 min 

Mutator selection Randomly 

Input selection Based on suitable basic blocks 

Tests 

TournamentSize Input Tournament SearchOffset MinInputsDiff Total Sat Unsat TimeOut byte coverage line coverage 

9 5 10 1 509 299 202 8 59.77 67.4598471 

9 10 10 1 555 308 247 0 59.52 67.4598471 

9 8 10 1 611 360 251 0 59.34 67.2450212 

9 20 10 1 512 301 210 1 59.88 67.6746729 

9 30 10 1 585 335 250 0 58.65 67.0301954 

9 15 10 1 606 386 220 0 58.89 67.0301954 

9 20 50 1 584 397 183 4 59.67 67.4598471 

9 20 20 1 575 389 185 1 59.54 67.4598471 

9 20 5 1 533 292 237 4 59.69 67.4598471 

15 20 10 1 590 350 240 0 59.2 67.0301954 

9 20 10 2 411 248 161 2 59.61 67.4598471 

Table 23: Basic block based input selection - picosat 

Solver Precosat 

Time 15 min 

Mutator selection Randomly 

Input selection Based on suitable basic blocks 

Tests 

TournamentSize Input Tournament SearchOffset MinInputsDiff Total Sat Unsat TimeOut byte coverage line coverage 

9 20 10 1 408 223 183 2 65.4 80.7919486 

13 20 10 1 463 255 208 0 66.06 80.7919486 

9 20 20 1 474 278 196 0 64.88 80.4019268 

9 30 10 1 430 238 191 1 65.03 79.9685694 

9 20 10 2 497 296 200 1 66.36 81.3119775 

14 20 10 3 470 278 192 0 64.58 79.717222 

14 20 10 2 357 192 151 14 66.36 81.1993046 

Table 24: Basic block based input selection - precosat 

2.9.11 Problem if cached input is not processed 

As described in Sec. 2.6.3 an input cache is used to prevent the generation of traces for the 

same input multiple times. Besides the problems described in Sec. 2.6.2 there may be an 

additional problem if caching of inputs is enabled which is unique to the selection strategy 

described in these sections. It is possible that inputs with a particular characteristic exist which 
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execute a certain basic block and it is not possible to create different inputs with the same 

behavior. For instance there is only one possible input which contains no variables. If this input 

executes basic blocks which were not covered by other inputs they will become super 

individuals and will be chosen over and over again. As the input is unique it is not possible to 

generate further inputs that execute these basic blocks. The problem gets even worse when 

more and more inputs will be available at other basic blocks during the fuzzing progress as 

therefore the fitness of the basic blocks that refer to the unique inputs increases indirectly. 

There are two possibilities to overcome with this problem. The first and easiest one is to disable 

the execution cache altogether. This has the drawback that equal tests may be run several 

times which causes performance penalties. The alternative strategy is to include the trace 

information of a test run into the input cache. With this information it is possible to update all 

the data in the execution cache as if the actual test was run. The drawback is that the 

consumption of memory will rise accordingly as traces tend to be very large. Sec. 2.12 describes 

the benefits and drawbacks of using the input cache in general and as it comes to realize that 

the overall advantage of using the input cache is very limited the final version of the fuzzing 

application does not have one. 

2.9.12 Conclusion of the input selection methods 

Table 25 and Figure 23 give details about all the tested input selection strategies. The amount 

of covered code lines is very similar for each of the three tested strategies. Selection from the 

input cache using fitness increments may be preferred to selection from the input cache based 

on the gain in coverage as it leads to very similar results but is simpler and more robust. 

Time 15 min 

Mutator selection randomly 

  picosat precosat 

input selection method line coverage Num tests Line coverage Num tests 

inputcache with fitenss increment 67.29 604 81.31 461 

inputcache based on coverage gain 67.45 428 81.24 484 

basic block selection 67.67 512 81.31 497 
Table 25: Conclusions of the input selection methods 
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Figure 23: Summary of input selection methods 

2.9.13 Selecting the input selection method 

This section describes a final modification to the input selection method. Some kind of meta-

selection method is implemented to select between two input selection strategies which are 

the selection from the input cache using fitness increments and selection of inputs from 

suitable basic blocks. This is implemented by using a fitness value for each selection method. 

The fitness value is increased if the selected input yields a successful result. The value is 

decremented every time the corresponding selection method is used whereas the value will not 

be decremented below one. Proportionate selection is used to choose the selection method. 

This method does not yield any additional covered code but it was possible to discover an 

interesting phenomenon. In the initial phases of the fuzzing process inputs from the input cache 

were preferred. That way the fuzzing algorithm succeeded in covering a great amount of code 

within a short time. In later phases of the fuzzing progress the method of selecting inputs from 

suitable basic blocks was preferred. Based on this observation it is concluded that selecting an 

input from interesting basic blocks will execute code which requires special input more likely.  

2.9.14 Check which BBLs and or Inputs are chosen 

To get information about basic blocks and inputs which were chosen during the fuzzing 

progress some information about the most used and the most successful used basic blocks and 

inputs are reported by the fuzzing application. Some of them are listed in the following tables. 

Table 26 shows that inputs which were used often also yielded successful results. Table 27 

shows that this is not the case generally when basic blocks are selected. The reason for this is 
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that due to the huge number of basic blocks only one of them was chosen a second time. 

Therefore the testing time, which was 15 minutes, was far too short to give useful results. This 

issue will be addresses when the fuzzing application is modified to support testing for larger 

durations which is not the case currently due to the linear growing of memory consumption. 

Solver  picosat 

Time 15 min 

Mutation selection randomly 

Input selection meta-based selection 

Inputs sorted by #Used 

Input #Used #Succ 

p cnf 126 2197    8 2 

p cnf 53 218      8 3 

p cnf 212 2524    7 1 

p cnf 61 674      7 2 

p cnf 18 225      7 3 

p cnf 131 2455    6 1 

p cnf 136 2524    6 1 

p cnf 61 674      4 1 

p cnf 101 1860    4 1 

p cnf 120 1680    4 2 
Table 26: Input statistics 

Solver  picosat 

Time 15 min 

Mutation selection randomly 

Input selection meta-based selection 

Addresses sorted by #Used 

Address #Used #Succ #Inputs 

66529 2 1 455 

101585 1 0 13 

98163 1 0 11 

98007 1 1 40 

97752 1 0 62 

96373 1 0 56 

95873 1 0 4 

95604 1 0 8 

95296 1 0 54 

95248 1 0 8 
Table 27: Basic block statistics 
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2.9.15 Conclusion of using feedback to select input 

Details of the amount of covered code lines are given in Table 28 and Figure 24 whereas line 

coverage with the current version of the fuzzing tool is compared to using the cnfuzz tool. With 

the strategies described in the previous sections it was possible to nearly reach the amount of 

covered code lines when fuzzing the picosat solver. When the precosat solver was fuzzed the 

line coverage could be increased by 3.2 percentage points which corresponds to 88 additional 

code lines which were executed during the test which is a notable amount. A reason why the 

coverage of the picosat solver could not be increased significantly is that the code reachable 

through the given input vector has been covered already very well by the cnfuzz tool. The entire 

tests carried out in this and the previous sections are of little validity as a testing time of 15 

minutes is far too short to give valid results as already mentioned. Before longer durations can 

be tested another problem must be addressed in the following sections. The problem with the 

current implementation is that memory consumption still grows linear with the amount of tests 

carried out which causes the performance of the fuzzing application to drastically drop after 

about one hour of testing time.  

Time 15 min 

  picosat precosat 

fuzzer line coverage #tests line coverage  #tests 

cnfuzz 67.72 9033 78.11 7830 

fuzz with input selection 67.67 512 81.31 497 
Table 28: Coverage with input selection 

 

Figure 24: Gain in coverage of using input selection 
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2.10 Effect of checking for duplicates 

The main reason for using an input cache was to prevent the algorithm from generating traces 

for equal inputs multiple times. This is based on the fact that the generation of the application 

trace is by far the most time consuming step in the fuzzing progress as described in Sec. 2.5. 

The drawback of using an input cache is that the consumed memory grows linearly with the 

number of tests carried out. As described in more detail in Sec. 2.9.11 another problem which is 

unique to selecting suitable basic blocks to choose an input occurs if certain inputs are omitted 

as the statistics about the basic blocks are not updated. As already mentioned there are two 

possible solutions to solve the memory problem. The first one is to limit the size of the input 

cache and to remove inputs from the cache if the limit is exceeded. The second one is to 

completely remove the input cache and accept the additional calculation time which is used to 

calculate inputs otherwise found in the cache. The following section gives some details about 

the benefit of the input cache and as the result is that the input cache is of little use it will be 

removed in the final version of the fuzzing application. 

2.11 Checking the effects of using an input cache 

This section estimates the benefit of using the input cache by running the fuzzing application 

with the SAT solver picosat for certain amounts of times as shown in Table 29. For each test the 

number of inputs tested and the number of inputs omitted by the input cache is given. These 

tests make it clear that the amount of inputs found in the cache is far too low to make its use 

beneficial. The table also shows that the number of tests performed within the given amount of 

time decreases as the time for searching the input cache grows and the overall system load 

increases. If the last test is considered in detail only 3.9% of the inputs were found in the cache. 

If the cache is omitted it would have taken an estimated amount of 2 minutes to also test these 

62 inputs. 

testing the input cache 

solver Picosat 

Tests 

time #tests #found in cache 

10 435 5 

30 902 43 

60 1606 62 
Table 29: Effect of using the input cache 

2.12 Conclusions of testing the benefit of the input cache 

As described in the previous section the input cache is of little use and is removed in the final 

version of the fuzzing application. This implies that several input selection methods as 

described in Sec. 2.9 become impossible and the method of selecting inputs from suitable basic 
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blocks remains the only available selection method. Therefore the final version of the fuzzing 

application will use this input selection method. 

2.13 Resolving the memory problem 

Removing the input cache from the fuzzing application, as described in the previous sections 

does not resolve the problem of consumed memory as every executed basic blocks still stores a 

reference to the inputs that cover it. Tests carried out in Sec. 2.9.10 show that the input 

selection strategy gives better results if the selection pressure to choose a suitable input from a 

selected basic block is high. Therefore some of the information stored in the fuzzing application 

described in Sec. 2.6.2 will be removed and basic blocks will solely store a reference to the most 

suited basic block. This limits the amount of overall stored inputs as the amount of statically 

available basic blocks is limited by the target application size. Additionally the size of inputs 

stored at these basic blocks is limited by the amount of calculation time given to the target 

application. Figure 25 shows the amount of consumed virtual memory after the fuzzing 

application has been updated to solely store the most suited input. As the diagram shows the 

amount of consumed memory is far below the amount of memory necessary when previous 

methods were implemented. The amount still rises as more and more basic blocks are executed 

during the fuzzing process and will be stored in the application state. Additionally the inputs 

stored at the basic blocks tend to get larger as the fuzzing application tries executing basic 

blocks most often which is usually given by larger inputs. Nevertheless there will be an upper 

limit for the total amount of memory consumed as described previously in this section. 

 

Figure 25: Memory consumption without storing all inputs 
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2.13.1 Adapting the basic block selection method to the solved memory problem 

After the input cache has been removed from the fuzzing application and basic blocks store the 

most suited input solely it is necessary to adjust certain behaviors of the way suitable mutators 

and basic blocks are selected. To start with the tournament selection step to get a suitable 

input from a selected basic block has become obsolete as only the most suited input is stored. 

As this input can be updated several times during the fuzzing process an additional piece of 

information is available, which is the latest time that happened. This information is used to 

additionally update the fitness of mutators if they succeeded in generating an input that caused 

an update. Updates of the most suited inputs are performed every time an input is found which 

executes the basic block more often or a shorter input is found which executes the basic block 

equally often. Finally checking if a basic block is more suited than others is adapted to consider 

the time when basic blocks were last updated in case the difference of the number of available 

inputs is within a specified range as described in Sec. 2.9.8. Table 30 gives some details about 

tests carried out with the updated version of the fuzzing application in order to get suitable 

values for the parameters to increase the fitness in case basic blocks were updated 

experimentally. 

Solver picosat 

Time 15 min 

Mutator selection Proportionate selection 

Tests 

Bonus UpdateBBLBonus Total Sat Unsat TimeOut byte coverage line coverage 

15 1 613 387 226 0 59.75 67.7182073 

10 1 612 405 207 0 59.75 67.7182073 

10 2 557 475 81 1 59.85 67.4598471 

5 1 602 353 217 0 59.7 67.157689 

8 1 602 312 290 0 59.49 67.2450212 

Table 30: Optimizing basic block update bonus 

2.14 Final adaption of parameters 

As already mentioned there are correlations between the used parameters and techniques. 

Therefore a final test was carried out to optimize some of the untested parameters using the 

picosat solver and a testing time of 30 minutes. Some of the values are given in Table 31 and 

the values with the highest amount of covered code lines are used in the final version of the 

fuzzing application. 
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Solver picosat 

Time 30 min 

Mutators All 

Tests 

Total Sat Unsat TimeOut Undef byte coverage line coverage BBLTournamentSize UseBBLFitness BBLFitnessBonus SelBBLMaxSearchOffset SelBBLMinNumInputsDiff 

1086 683 389 8 0 60.1 67.8457009 15 False 3 20 1 

1056 651 404 1 0 59.95 67.7159856 30 False 3 20 1 

1252 720 532 0 0 59.8 67.2450212 20 False 3 20 1 

1140 700 439 1 0 59.75 67.5033815 30 True 3 20 1 

1145 703 441 1 0 59.75 67.5033815 30 True 5 20 1 

1240 698 542 0 0 59.69 67.0797706 30 False 3 30 1 

1197 750 447 0 0 59.57 67.2863339 30 False 3 10 1 

1168 603 563 2 0 59.94 67.6746729 30 False 3 20 2 

Table 31: Further optimization of parameters 

2.15 Final results of the tests with valid inputs 

Table 32 shows some information of running the solvers picosat and precosat with the current 

version of the fuzzing application and the specified configuration for one hour. The inputs 

generated by this test are all valid as it is the case when cnfuzz was used and therefore the 

amount of covered code lines can be compared between the two fuzzers. This is done in the 

next section. 

time  60 min 

Tests 

solver #tests #sat #unsat #timeout #undefined byte coverage linecoverage 

picosat 1913 1116 753 36 0 60.46 67.93 

precosat 1806 1042 687 36 41 67.56 82.40 
Table 32: Testing the solver applications for one hour with valid formulas 

2.16 Comparison of the current strategy with cnfuzz 

In this section the results of using the current implementation of the fuzzing application are 

compared with the results of the cnfuzz tool. Table 33 shows a summary of the amount of 

covered code lines and Figure 26 depicts the results. As the table shows the amount of covered 

lines could be increased by an amount of 1.29 percentage points if the precosat solver was 

fuzzed. However the amount of covered code lines when fuzzing the picosat solver is slightly 

lower than the amount covered by the cnfuzz tool. Therefore some detailed analyses of the 

differences in the code coverage concerning the picosat solver are given in the next section. 

Nevertheless from the information in the tables it can be seen that the test inputs generated 

are of a very high quality. It was only necessary to carry out about 1/20th of the tests to achieve 

or top the amount of code lines covered by the cnfuzz tool. 
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time 60 min       

  cnfuzz fuzz valid formulas only 

solver #tests line coverage #tests line coverage 

picosat 43138 67.97 1913 67.93 

precosat 36412 81.11 1806 82.40 
Table 33: Results of fuzzing valid formulas 

 

Figure 26: Results of fuzzing valid formulas 

2.16.1 Analyses of the differences in code coverage 

In this section the reasons for not covering certain code lines when fuzzing the picosat solver 

are analyzed by comparing information gained by the gcov utility. Table 34 shows the number 

of uniquely hit code lines for each fuzzer and the corresponding source files. Table 35 gives 

details of the code lines which were executed during the tests with cnfuzz but not with the 

fuzzing application. As can be seen in the table the six code lines which were not executed by 

the fuzzing application are within two code blocks. The condition guarding the first code block 

was executed 222 times by cnfuzz but the corresponding else path was executed only one time. 

It is also worth to note that a total number of 43138 tests were necessary to execute that block 

one time. It is reasonable that the code was not executed by the fuzz application as the 

condition which guards the else block was only executed four times which limits the probability 

to enter the else path. The second block of code considered was executed two times by the 

cnfuzz application whereas it was necessary to execute the guarding condition 36008 times. 

The fuzzing application executed the guarding condition 1992 times but did not succeed in 

entering the block. If the number of executions of the condition is considered closer it can be 

assumed that a mean number of 18004 tests are required to enter the code block one time. The 

cnfuzz application carried out 22.55 times more tests than the fuzz application. If this factor is 
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multiplied by the number of times the condition was executed by the fuzz application a 

hypothetical result of 44919 executions could be expected. This means that the selection 

algorithm implemented by the fuzzing application preferred this address which shows the 

benefits of the selection and mutation steps. This reasoning is not true for the first code block 

which can be explained by the fact that the overall number of executions of the guarding 

condition is very low for both fuzzers. Probably the fuzzing application succeeded very late in 

the fuzzing progress to cover the guarding condition and had not enough tests left until the 

additional pressure on the condition got effective. 

SourceFile Solely hit by fuzz valid formulas only Solely hit by cnfuzz 

main.c 0 0 

app.c 4 0 

picosat.c 1 6 

Total 5 6 
Table 34: Uniquely hit code lines 
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cnfuzz fuzz valid formulas only 

Location Code Location Code 

      222: 5130:   if (conflict)         4: 5130:   if (conflict) 

        -: 5131:     {         -: 5131:     { 

      221: 5132:       backtrack ();         4: 5132:       backtrack (); 

        -: 5133:       assert (!level);         -: 5133:       assert (!level); 

        -: 5134:     }         -: 5134:     } 

        -: 5135:   else         -: 5135:   else 

        -: 5136:     {         -: 5136:     { 

        1: 5137:       assign_decision (NOTLIT (pivot));     #####: 5137:       assign_decision (NOTLIT (pivot)); 

        -: 5138:       flbcp ();         -: 5138:       flbcp (); 

        1: 5139:       backtrack ();     #####: 5139:       backtrack (); 

        -: 5140:           -: 5140:   

        1: 5141:       if (level)     #####: 5141:       if (level) 

        -: 5142:      {         -: 5142:      { 

        -: 5143:        assert (level == 1);         -: 5143:        assert (level == 1); 

        -: 5144:        flbcp ();         -: 5144:        flbcp (); 

        -: 5145:           -: 5145:   

        1: 5146:        if (!conflict)     #####: 5146:        if (!conflict) 

    -: 5147:           -: 5147:   

    -: 5148: #ifdef STATS         -: 5148: #ifdef STATS 

    -: 5149:       floopsed++;         -: 5149:       floopsed++; 

    -: 5150: #endif         -: 5150: #endif 

#####: 5151:       undo (0);     #####: 5151:       undo (0); 

    -: 5152:       continue;         -: 5152:       continue; 

    -: 5153:     }         -: 5153:     } 

    -: 5154:           -: 5154:   

1: 5155:   backtrack ();         #####: 5155:   backtrack (); 

    -: 5156: }         -: 5156: } 

    36008: 5259:   if (delta > 2000000)      1992: 5259:   if (delta > 2000000) 

        2: 5260:     delta = 2000000;       #####: 5260:     delta = 2000000;   

Table 35: Analysis of code that was not hit by fuzz 

2.17 Further increasing the coverage 

As already mentioned in Sec. 1.6.1 there are two main reasons for not covering a great amount 

of code during the fuzzing process which are invalid inputs and arguments to the solving 

application. These two issues will be addresses in the following sections. 

2.17.1 Generate invalid input 

Many parts of the SAT solver’s code will be executed only if invalid input is provided. All the 

tests described in the past sections generated valid inputs in terms of the DIMACS format to 

compare the results with the results of running the cnfuzz tool. The following sections address 
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the issues of generating invalid inputs by adding some additional mutators which operate on 

the stream that is sent to the targeted SAT solving application on a character basis. 

2.17.2 The baseline test 

To test the influence of fuzzing the input stream another baseline test is carried out which runs 

the SAT solver picosat for 15 minutes. In this test all mutators that operate on the model of 

formulas are used and details of the test run are given in Table 36. 

solver picosat 

time 15 min 

Mutators CNF Model only 

Test 

Total Sat Unsat TimeOut Undef byte coverage line coverage 

497 260 231 6 0 59.97 67.45984707 
Table 36: Generation of valid formulas with the fuzzing application 

2.17.3 ModifyChar 

This mutator changes the characters of the stream sent to the solving application. The number 

of characters which are modified is chosen from an exponential distribution which is given as a 

parameter to the mutator. The characters which are modified are chosen equally distributed 

from all the characters in the stream. The new value of a character is chosen from a Gaussian 

distribution with the old value of the character as mean. The deviation of the Gaussian 

distribution is specified by another parameter to the mutator. Table 37 shows some tests that 

were carried out in order to find suitable values for the parameters to the mutator 

experimentally. 

Solver picosat 

Time 15 min 

Mutators CNF Model + ModifyChar 

  

ModifyChar Mean Modify Char Deviation Total Sat Unsat TimeOut Undef byte coverage line coverage 

20 5 631 309 263 0 8 59.32 67.33475786 

5 3 627 346 242 0 8 59.12 66.82181393 

100 3 663 410 182 0 8 58.92 67.28518267 

50 3 360 165 136 32 10 59.81 67.71483432 

50 5 612 345 209 0 2 59.57 67.71483432 

Table 37: Optimize ModifyChar 

2.17.4 DuplicateChar / DeleteChar 

These mutators duplicate or delete characters in the input stream sent to the solving 

application. The number of characters which are added or deleted is again chosen from an 

exponential distribution which is given as a parameter to the mutator. The position where 
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characters are added or deleted is chosen equally distributed from all the available positions in 

the stream. Table 38 shows some tests that were carried out in order to find suitable values for 

the parameters. 

Solver picosat 

Time 15 min 

Mutators CNF Model + DuplicateChar + DeleteChar 

  

DuplicateChar mean DeleteChar mean Total Sat Unsat TimeOut Undef byte coverage line coverage 

5 5 680 291 285 0 7 59.51 67.37069669 

20 20 644 319 217 0 11 59.46 67.84232795 

50 50 620 315 183 0 24 60.05 67.80034834 

35 35 698 323 254 0 25 59.2 67.62750212 

Table 38: Optimizing DuplicatChar and DeleteChar 

2.17.5 AddWellKnownPhrase 

This mutator is specialized on the DIMACS format used to serialize problems in CNF. The 

mutator adds phrases at uniquely distributed positions in the stream. The number of add 

operations is chosen exponentially distributed. The phrases which are added are chosen 

uniquely distributed from a set of strings which are known to occur in formulas serialized in 

DIMACS format. Table 39 shows the phrases which are used in the implementation of the 

fuzzing application and Table 40 shows some tests that were carried out in order to find 

suitable values for the parameters. 

c 

p 

cnf 

0 

1 

- 

-0 

-1 
Table 39: Well known phrases 

Solver picosat 

Time 15 min 

Mutators CNF Model + AddWellKnownPhrase 

Tests 

Mean Total Sat Unsat TimeOut Undef byte coverage line coverage 

5 649 339 247 0 1 59.57 67.62750212 

20 619 309 249 0 0 59.68 67.4126763 

10 414 210 131 26 4 60.13 67.80034834 

Table 40: Optimizing AddWellKnownPhrase 
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2.17.6 Test with all stream mutators enabled 

This section shows the amount of code that was covered if all the mutators described in the 

previous sections were enabled. Details are given in Table 41 and Figure 27. As can be seen in 

the diagram the overall amount of covered code is slightly below the amount of coverage if 

only valid formulas were generated. More detailed analysis showed that additional code which 

parses the formulas was covered hence fewer tests were carried out which targeted the other 

parts of the solving application. The fact that the amount of code which parses the input is 

rather small explains why the overall amount of coverage decreased. 

time  60 min 

Tests 

solver #tests #sat #unsat #timeout #undefined byte coverage linecoverage 

Picosat 2545 1296 691 1 0 60.87 67.93 

precosat 2132 1253 569 3 0 67.09 81.93 
Table 41: fuzz with stream mutators 

 

Figure 27: fuzz with stream mutators 

2.17.7 Fuzz arguments 

These sections describe several methods that were implemented in order to fuzz arguments to 

the target application. A list of available arguments can be provided to the fuzzing application 

as a file containing a line feed separated list of them. Figure 28 shows exemplarily the 

arguments file used to fuzz the picosat solver. This file is processed by the fuzzing application in 

order to generate a list of predefined arguments which helps the fuzzer to create valid 

arguments more easily. If no arguments are specified the fuzzer tries to generate random 

strings which is very unlikely to form valid arguments. 
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-h 
--version 
--config 
-v 
-f 
-n 
-p 
-a 
-a 0 
-a 1 
-a -1 
-l 100 
-i 0 
-i 1 
-s 123 
-o out.file 
-t trace.file 
-T Trace.file 
-r rev.file 
-R rup.file 
-c core.file 
-V Core.file 
-U coreU.file 
- 
test.gz 

Figure 28: Arguments file of picosat 

2.17.8 AddWellKnownArgument 

This mutator chooses one of the available arguments as listed in Figure 28 and adds it to the list 

of used arguments stored for every input whereas the argument to be added is selected 

uniquely distributed. There are no additional parameters required for this mutator. Table 42 

gives details of a test carried out in order to check the amount of additionally covered code 

lines if this operator is used. As can be seen in the table the amount of executed lines could be 

raised by 15.51 percentage points up to 82.97%. This corresponds to 365 lines of code that 

were additionally executed. This test also shows that fuzzing arguments which are passed to 

the solver application is very important in order to maximize overall coverage. 

Solver picosat 

Time 15 min 

Mutators CNF Model + AddWellKnownArgument 

Tests 

Total Sat Unsat TimeOut Undef byte coverage line coverage 

725 347 150 0 68 74.26 82.9674894 
Table 42: AddWellKnownArgument 

2.17.9 Search for inputs that require arguments 

Before additional mutators which operate on the arguments passed to the solver application 

are introduced in the next sections another issue specific to working with arguments needs to 

be addressed. All of the mutators described in the next sections require inputs which have 
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arguments e.g. removal of an argument makes no sense if no argument is available. To search 

for inputs with arguments the input selection strategy, described in Sec. 2.9.8, can be instructed 

to accept only inputs that contain arguments. This is implemented by restarting the basic block 

selection process if the basic block selected contains no input with arguments. To prevent the 

search algorithm to continue searching forever in case no input with arguments is available the 

search process abandons if no inputs are found within a certain amount of tests. If this is the 

case the mutator used will be set to AddWellKnownArgument and new arguments will be 

added to the inputs in the application state. The following sections describe mutators that are 

used if a suitable input with arguments has been found. 

2.17.10 DeleteArgument 

This mutator removes any of the available arguments of a selected input. The number of 

arguments which will be removed by the mutator is chosen from an exponential distribution. 

This mutator is not primarily expected to uncover new code but is necessary as the fuzzing 

application will continuously add arguments otherwise. As already mentioned in Sec. 2.13.1 the 

application state stores a reference to the most suited input for each basic block. The 

determination of the most suited input has been updated to prefer the simpler input in case 

there are two inputs that executed the basic block equally often. This means that inputs with 

fewer arguments are preferred in order to limit the amount of arguments passed to the target 

application. Table 43 gives some details of tests carried out in order to find a suitable value for 

the number of arguments that should be removed by the mutator experimentally. 

Solver Picosat 

Time 15 min 

Mutators CNF Model + AddWellKnownPhrase + DeleteArgument 

Tests 

DeleteArgumentMean Total Sat Unsat TimeOut Undef byte coverage line coverage 

1 685 352 171 0 42 74.91 82.7533305 

2 674 298 208 0 44 74.67 82.54321155 

0.5 711 335 196 0 59 73.58 82.27966015 

Table 43: Optimizing DeleteArgument 

2.17.11 DeleteArgumentChar 

This mutator removes characters from the arguments stream. The number of characters to 

delete is chosen from an exponential distribution and is given as parameter to the mutator. The 

main purpose of this mutator is to generate invalid arguments. Table 44 gives some details of 

tests carried out in order to get a suitable value for the number of characters which should be 

deleted experimentally. 
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Solver Picosat 

Time 15 min 

Mutators CNF Model + AddWellKnownPhrase + DeleteArgumentChar 

Tests 

DeleteCharMean Total Sat Unsat TimeOut Undef byte coverage line coverage 

1 427 126 75 30 56 76.23 83.8104503 

2 443 163 86 15 28 75.87 83.68517842 

0.5 458 174 84 24   22 83.26156754 
Table 44: Optimizing DeleteArgumentChar 

2.17.12 DuplicateArgumentChar / ModifyArgumentChar 

This mutator DuplicateChar duplicates a randomly chosen character in the arguments stream. 

The number of characters which should be duplicated is chosen from an exponential 

distribution. The purpose of this mutator is to generate additional characters in the arguments 

stream which could be used by the mutator ModifyChar. This mutator uses a number of 

randomly chosen characters in the arguments stream and modifies their value. The number of 

characters is chosen from an exponential distribution. The new value of the character is chosen 

from a Gaussian distribution with the old value of the character as mean. The deviation of the 

Gaussian distribution is passed as argument to the mutator. The purpose of these mutators is 

to generate arguments which are not specified in the arguments file. As already mentioned in 

the introduction the fuzzing application uses black block techniques solely. The arguments file 

can be generated by getting available arguments from the usage information or the 

documentation of the target application. Nevertheless often not all possible arguments are 

described in these documents, as it was the case with the tested SAT solvers. By using these 

two mutators it will also be possible to generate any undocumented arguments randomly. A 

number of tests in order to find a suitable value for the arguments to the mutators are detailed 

in Table 45.  

Solver picosat 

Time 15 min 

Mutators CNF Model + AddWellKnownPhrase + DuplicateArgumentchar + ModifyArgumentChar 

Tests 

DuplicateCharMean ModifyCharMean ModifyCharDeviation Total Sat Unsat TimeOut Undef byte coverage line coverage 

1 1 3 747 326 131 0 56 72.92 82.45183942 

1 2 5 712 252 138 0 74 74.76 83.09383178 

1 3 5 676 330 109 0 72 75.84 83.3511215 

1 6 5 749 247 159 0 92 73.62 82.79771453 

1 3 10 717 313 122 0 78 75.44 82.98890399 

3 3 5 732 329 132 0 84 75.34 83.07441801 

Table 45: Optimizing DuplicateArgumentChar and ModifyArgumentChar 
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2.17.13 Tests with all argument mutators 

In this test all mutators which were described in this thesis were enabled. Again both SAT 

solvers were fuzzed for one hour. Details about the amount of coverage are given in Table 46 

and Figure 29. These tests showed that the overall line coverage could be increased to 84.71% 

when the picosat solver was tested and to 87.72% when the precosat solver was tested. 

Compared to the tests in Sec. 1.6, the line coverage could be increased by 16.74 percentage 

points which corresponds to 393 code lines in the case of picosat. The tests using the precosat 

solver showed that the line coverage could be increased by 6.61 percentage points, which is 

equal to 182 lines of additionally executed code. 

time  60 min 

Tests 

solver #tests #sat #unsat #timeout #undefined byte coverage linecoverage 

picosat 2816 972 278 0 339 76.41 84.71 

precosat 1693 772 587 4 0 73.67 87.72 
Table 46: fuzz with all mutators 

 

Figure 29: fuzz with all mutators 

2.17.14 Conclusion of extending mutators 

After adding mutators to further increase the coverage a fair quantity of additional code was 

covered by the fuzzing application. Table 47 gives some details of the amount of covered code 

comparing the cnfuzz tool, a version of the fuzzing application which generates solely valid 

formulas and the final version of the fuzzing application. Figure 30 compares the amount of 

covered code lines graphically. 
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time 60 min 

  cnfuzz fuzz valid formulas only fuzz 

solver #tests coverage #tests coverage #tests coverage 

picosat 43138 67.97 1913 67.93 2816 84.71 

precosat 36412 81.11 1806 82.40 1693 87.72 
Table 47: Overview of tested fuzzers 

 

Figure 30: Overview of tested fuzzers 

2.18 Final tests 

This section gives details about a final test carried out to check if the amount of coverage will 

be further increased if the fuzzing application is used for a time of three hours. Details of the 

test run are given in Table 48. The amount of the gain in coverage is also depicted in Figure 31. 

As can be seen in the diagram the amount of coverage could be further increased by an amount 

of 1.06 percentage points in the case of picosat and 0.84 percentage points in the case of 

precosat. Another purpose of this test was to generate a representative test suite as described 

in the next section. 

time  180 min 

Tests 

solver #tests #sat #unsat #timeout #undefined byte coverage linecoverage 

picosat 8282 2891 658 125 919 77.91 85.77 

precosat 6045 2540 1672 221 8 74.54 88.56 
Table 48: Testing for 180 minutes 
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Figure 31: Testing for 180 minutes 

2.19 Generation of the test suite 

As described in Sec. 2.5 the final fuzzing application is capable of providing a test suite that 

covers all code locations that were executed during the fuzzing process in an output directory 

which can be specified by an argument to the fuzzing application. Basically this suite is 

generated by traversing all available basic blocks and serializing the most suitable input for each 

basic block to a file. To keep the test suite small duplicate inputs are omitted during the 

traversal. Additionally a script file is generated which contains all commands to execute these 

inputs with the necessary arguments. The script file is custom to the used operating system and 

details about the layout of a script file are given in Sec. 6.9. Besides these inputs, inputs that 

yielded anomalous behavior are stored in the output directory too. These are inputs that 

caused the target application to return an unspecified value, inputs that caused an exception as 

described in Sec. 2.5.4 and inputs that timed out. Finally the latest version of the coverage 

bitmap, as described in Sec. 2.5.6 is also saved in the output directory. 

2.19.1 Usages of the test suite 

The generated inputs in the test suite can be used in many ways to perform additional tests. 

First of all the inputs which caused an assertion, in case some are available, should be 

considered in detail. In the case of testing the picosat solver as described in Sec. 2.18 18 inputs 

that raised a FATALSIG were generated whereas all of them uncovered the same issue in the 

solver which was caused by calling abort. In the case of precosat no inputs were generated that 

raised a signal. All inputs that returned an unexpected value should be considered in more 

detail too. If the targeted solving application is designed to return a certain value in case of an 

exceptional behavior these values could be used to identify issues. Additionally certain methods 

of the runtime library, such as abort or assert, are designed to return special values to the caller 
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in case they are executed which should be considered in more detail too. However applications 

are often designed to not call such functions in case they are compiled highly optimized. 

Nevertheless a simple attempt is to replace the solving application by a version which has check 

code and debugging information enabled. Now all inputs which target the code in the 

optimized version of the solver can be processed again by the debug version of the solver by 

calling the generated script files. Using this attempt is was possible to identify four issues when 

the precosat solver was tested. Additionally tools such as gdb or valgrind could be used to 

observe the solving application. (Zeller, 2006) gives some detailed information on available 

tools and their usage regarding this task. Tools such as gcov could be used to identify code 

which was not executed by the test suite. This information may be of interest in order to 

identify unreachable code. If the targeted fuzzing application is available on different platforms 

the generated test suite could be cross checked on them. Test suites generated on a Linux 

based system using the highly optimized versions of the targeted solving applications were used 

to execute debug versions of the SAT solvers on a Windows based system. With this attempt 

one issue could be identified which concerns both solvers. Finally another interesting test, 

especially targeting the performance of SAT solvers, is to use all inputs that timed out, which 

are available in the test suite, and compare the times of different SAT solvers processing these 

inputs. With this test it was possible to identify an input that can be solved fast by the precosat 

solver but caused a timeout if it was processed by the picosat solver. Sec. 3.1 gives further 

details about the individual bugs found in each of the tested solving applications. 

 

  



[70] 
 

3 Final thoughts 

This and the following sections contain some final thoughts about the developed and tested 

fuzzing application. The first finding of this thesis is that it is technically possible to fuzz a highly 

specialized application in an automated way whereas feedback is used to generate tests of high 

quality. Nevertheless the amount of covered code lines when only valid formulas were 

generated could not be increased as much as thought at the beginning of this thesis, compared 

to using the cnfuzz tool. This may draw the conclusion that quality cannot compensate quantity 

in the case of fuzzing SAT solving applications. However the final amount of covered code after 

adding mutators that operate on the input stream and the arguments is very promising. Besides 

the amount of automatically covered code a number of issues in the tested SAT solvers were 

detected which are described in more detail in the following sections. The bugs were reported 

and are fixed in the current versions of the solvers. Therefore this thesis succeeded in 

improving the quality of the tested SAT solving applications which is a great success. 

3.1 Found Bugs 

The following sections describe some of the issues that were found during the development 

and testing of the fuzzing application. 

3.1.1 Bugs found by porting the solvers 

Besides bugs found by the fuzzing application some issues were detected during the porting of 

the targeted solving applications. As already mentioned the fuzzing application was developed 

using Microsoft’s .Net Framework. In order to test the fuzzer also on Windows based operating 

systems porting of the solvers was necessary. During this attempt two issues were identified 

which are related to using different compilers and runtime environments. One issue was caused 

by using the sizeof operator with an array containing no elements. The behavior of this 

operation is not clearly defined in the C standard and the used compilers reported different 

results of this operation. Another issue has been detected when values were passed to certain 

functions of the C runtime library as the runtime library primarily used to make the solvers did 

not exactly check the validity of the arguments. The issue was uncovered in the ported version 

of the solver if unsigned character values higher than or equal to 128 were passed to functions 

expecting positive signed character values.  

3.1.2 Bugs found by analyzing the solvers 

During the tests of mutators which operate on arguments minor incompatibilities between 

arguments reported by the usage information of the picosat solver and the arguments actually 

used were detected.  

3.1.3 Bugs found in the picosat solver with the fuzzing application 

Further issues which are specific to the picosat solver were detected by the fuzzing application 

and reported as assertions in the test suite. In case the picosat solver is instructed to generate a 
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proof of the satisfiability of a given problem and verbose output is enabled the solver aborts in 

case the given problem is unsatisfiable. As this raises a FATALSIG it was detected by the fuzzing 

application and a whole number of inputs that causes this signal were created in the test suite. 

Additionally the fuzzing application generated a certain test in the test suite that could not be 

solved within the given amount of time by the picosat solver but could be solved quickly by the 

precosat solver.  

3.1.4 Bugs found in the precosat solver with the fuzzing application 

During the tests of the precosat solver a number of issues which were detected by the 

execution runtime as assertions were found. One of the issues was expected to be found as an 

early version of precosat that contained a well known bug was tested in order to check if the 

fuzzing application is capable of detecting it. Besides this expected issue three additional issues 

were found in a current version of the precosat solver which could be fixed. Nevertheless one 

bug was still found in the fixed version of the precosat solver that will be fixed in future 

versions. 

3.2 Given enough time 

Given enough time the fuzzing strategy implemented in the fuzzing application should be at 

least as successful regarding code coverage as the strategy of generating random inputs solely. 

This is based on the fact that generating completely random inputs is part of the available 

mutators and will be used randomly. Nevertheless some parts of the picosat solver were not 

executed during the tests given an equal amount of time as described in Sec. 2.16.1. Therefore 

there is definitely space for further improvements like creating mutators that are more 

specialized on the problem of formulas in CNF. The drawback of using more specialized 

mutators is that the overall flexibility is reduced and more optimizations concerning the target 

application are necessary. Another drawback is that mutators which give good results quickly 

often fail to further improve the results if more time is given which is known as premature 

convergence (Wikipedia, 2009) in the field of genetic algorithms. The following sections give 

some information on other ways to further improve the developed fuzzing application. 

3.2.1 Improve the search strategy 

Although many tests were carried out in order to find optimal parameters for the fuzzing 

application only a small amount of all possible configurations were examined throughout this 

thesis. As there are strong correlations between the many parameters to the various steps in 

the fuzzing progress a lot of further testing would be required to really optimize the whole 

parameter set. Additionally there are correlations between parameters and the targeted 

application. Therefore it would be necessary to optimize the parameter set for each tested 

target application independently. Further improvements are possible during the monitoring 

step. It would be possible to not only check which basic blocks were executed but to 
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additionally get information about the way the final control instruction at the end of a basic 

block determines the next basic block. For instance, if the control instruction decides based on 

the outcome of a compare operation the amount of the difference of the compared variables 

could be used as information to check whether the search for inputs is directed into the desired 

direction. The big problem with this approach is that there is no direct correlation between 

compare and jump instructions in the case of x86 binary code. Therefore it would be necessary 

to manage information about every instruction that can change the state of the flags of the CPU 

which would make the monitoring step very expensive. 

3.2.2 Speed up the fuzzing process 

This section discusses some thoughts about speeding up the fuzzing process to carry out more 

tests within the given amount of time. By far the most of the time is consumed in the 

monitoring step which is caused by a limitation of this thesis to not depend on source code of 

applications. If the source code of applications is available it would be possible to instrument 

the code during compilation and use tools such as gcov to get the trace information of 

application runs. The big advantage of gcov is the very low impact on the runtime of the target 

application. It has been used throughout this thesis to check the validity of generated data and 

it exposed that the running time of applications instrumented to be used by gcov is about 20 

times faster than the same application instrumented with pin. Another possibility to speed up 

the monitoring step would be to distribute the load to multiple machines which is described in 

the next section. 

3.2.3 Distribute the load of monitoring to multiple machines 

Another possibility to speed up the fuzzing process in its current form would be to distribute 

the load of monitoring to several machines as depicted in Figure 32. As shown in the figure one 

way to do this would be to have the fuzzing logic on one machine and the generation of the 

trace information through the monitoring tool on multiple machines. The communication could 

be implemented based on the producer consumer paradigm in a way that the fuzzing logic 

generates inputs based on the current application state and every input is sent to one of many 

clients. The clients run the target application with the supplied input using pin to generate the 

trace which is sent back to the fuzzing logic where it is further processed. 
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Fuzzing application pin

Monitoring trace

pinpin

Execution input

 

Figure 32: Distribute monitoring 

3.3 Porting the fuzzer to other applications 

Finally this section shows steps that would be necessary to use the developed fuzzing 

application to test arbitrary applications. As the fuzzing application pursues a pure black box 

fuzzing strategy any application, that takes some kind of mutable input and or uses arguments, 

could be fuzzed in principal. The whole monitoring step and the selection of inputs and 

mutators can be used without modification. The only thing that requires application dependant 

implementations are the actual mutators including the mutator to generate initial inputs. If it is 

necessary to port the fuzzer to target other applications a clearly defined interface between the 

classes responsible for mutation and the rest of the application could be defined. This would 

make it possible to implement the mutator interface e.g. by loading a third party library and all 

there is left to do for a third party user of the fuzzing application to test custom applications 

would be to provide an implementation of the mutator interface.  

4 Conclusion 

The main topic of this thesis was to check if it is possible to find issues in SAT solvers if the 

amount of code covered during the fuzzing progress is maximized. The thesis showed that it 

was indeed possible to find problems in the solvers although they were used and tested for 

quite some time. Therefore the attempt to increase code coverage during fuzzing proved to be 

a valuable strategy in order to find bugs in software.  

Additionally the fuzzing application clearly succeeded in generating inputs of high quality which 

is given by the fact that only about 1/20th of the number of test inputs were generated to cover 

equally many or even more parts of the tested SAT solving applications compared to using 

purely random inputs. This is concluded by comparing the amount of covered code lines of the 

tests generated by the fuzzing application with the amount of code lines covered by tests 

created with the cnfuzz tool which proved to be very well suited for generating random 

formulas. This may be a reason why the absolute amount of additionally covered code lines was 
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rather small. The detailed analysis of code that was not covered by the fuzzing application, as 

described in Sec. 2.16.1, showed that sometimes very large inputs would be necessary to enter 

several paths in the tested applications. In the tests carried out to compare the results with the 

cnfuzz tool such large inputs were prohibited as the time to process a single input was limited in 

order to increase the overall number of tests carried out by the fuzzer.  

Nevertheless the amount of covered code could not be increased as much as expected at the 

beginning of this thesis. As already mentioned the main issue of the technique examined 

throughout this work is the additional time that it takes to get coverage information which 

nearly compensates the advantage of generating inputs of high quality. This is especially caused 

by monitoring the execution of the target application. Sec. 3.2 shows some possibilities to 

overcome this problem, e.g. if methods were used to instrument code during compilation the 

penalty of getting coverage information could be decreased a lot. But as this work pursued a 

black box fuzzing strategy a tool such as pin was necessary to get coverage information and 

although getting the required information with pin is many times faster than with other tested 

technologies it is mainly responsible for the additional time required to process inputs. 

Possibilities to get the desired information faster can be expected as faster virtualization and 

execution methods may be available in the future. Another problem is that only a small set of 

the huge number of possible configurations, especially of the mutators, were tested. They were 

mainly optimized to generate suitable inputs within a small number of uses. As observed many 

times in the field of evolutionary algorithms mutators which quickly give good results often fail 

to further improve results if more time is given. But as the time to fuzz the SAT solvers, and 

therefore the number of test inputs that were generated by the fuzzer, was limited it was 

necessary to configure the mutators to give valuable results quickly.  

Generally, the constraint to limit the testing time was chosen mainly to compare several fuzzing 

strategies. As shown in Sec. 2.18 the fuzzing application developed throughout this thesis is 

capable to further increase the amount of covered code parts if more time is given to the 

fuzzing progress which is also true if the timeout specified per input would be increased. On the 

other hand if the attempt of creating completely random input is pursued for a longer time, 

chances that further parts of the tested application are covered are rather low.  

Another important finding of this thesis is that it is important to not only test valid inputs but to 

also fuzz arguments which are passed to the SAT solving applications and to implement 

methods to generate invalid inputs. These two facts were not considered in previous attempts 

to fuzz the tested solvers and by implementing them not only the amount of code coverage 

could be increased significantly but also some issues were found in the fuzzed applications. This 

helped to improve the quality of the tested software and can be seen as an unexpected, but 

great success.  
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If the developed fuzzer is modified to universally test applications, which is basically possible for 

all kinds of software that take some kind of mutable input and or use arguments, a handy tool 

to automatically generate test inputs is provided. As described in Sec. 2.19.1 a great number of 

options are available to use these inputs in order to improve the quality of software. Therefore 

besides proving that it is technically possible to implement a fuzzing application which tries to 

maximize code coverage using black box fuzzing a set of valuable methods to improve fuzzing in 

general were introduced throughout this thesis. And if methods are available to get coverage 

information faster the process of testing the quality of software can be improved significantly. 
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6 Appendix 

6.1 Configuring the fuzz application 

Basically there are two possibilities to influence the way the fuzzing application operates. The 

first one is given by passing arguments to the fuzzing application. Table 49 shows a list of 

available arguments and a short description of each. The second option is to modify values in 

the application configuration file. This file is named fuzz.exe.config and resides in the same 

directory as the fuzzing application. It contains a list of configuration settings in XML format. 

Complete information of the available settings as well as a short description of each is given in 

Table 50. 

Argument Default value Description 

<application>   The target application to be fuzzed 

-h   Show the usage screen 

-m   Total fuzzing time 

-t 5 sec Timeout for target application in seconds 

-a   Arguments file 

-o out Output directory 

-s 0 Seed value for random generator 
Table 49: Arguments to the fuzzing application 

Setting 
Default 
Value Description 

VisDisplayForm True Display the visualization form 

VisOutputColoring True Use different colors in the output 

VisPrintBBLStatistics True Display statistics about basic blocks in the output 

VisPrintMutatorStatistics True Display statistics about mutators in the output 

RetValSat 10 Return value of satisfiable instances 

RetValUnsat 20 Return value of unsatisfiable instances 

RetValAccepted 0 Additional return values which should be accapted by the fuzzing application 

RandNewNumVariablesMean 50 Mean amount of variables in a random formula 

RandNewNumVariablesDeviation 40 Deviation of variables in a random formula 

RandNewNumClausesFactorMean 13.5 
Mean ratio between the number of clauses and the number of variables in a random 
formula 

RandNewNumClausesFactorDeviation 3 
Deviation of the mean ratio between the number of clauses and the number of variables in 
a new formula 

RandNewNumLiteralsMin 3 Minimal number of literals in clauses of a random formula 

RandNewNumLiteralsExpMean 4 Exponential mean of the number of additional literals in a clause of a random formula  

RandNewTargetVariableDeviation 18 Deviation of variables in a clause of a random formula 

MutatorAddClausesMean 750 Exponential mean number of clauses that are added by the mutator AddClause 

MutatorDeleteClausesMean 750 Exponential mean number of clauses that are deleted by the mutator DeleteClause 

MutatorAddLiteralMean 500 Exponential mean number of literals that are added by the mutator AddLiteral 

MutatorDeleteLiteralMean 500 Exponential mean number of literals that are deleted by the mutator DeleteLiteral 

MutatorSwapSignMean 500 Exponential mean number of signs that are swapped by the mutator SwapSign 
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MutatorSwapVarMean 500 Exponential mean number of variables that are swapped by the mutator SwapVar 

MutatorSwapVarDeviation 100 Deviation of the value of new variables that are modified by the mutator SwapVar 

MutatorFitnessBonusUpdateBBL 1 Amount of fitness increment in case a mutator succeeded in updating a basic block 

MutatorFitnessBonus 10 
Amount of fitness increment in case a mutator succeeded in detecting or executing new 
basic blocks 

BblTournamentSize 15 The size of the tournament used to select basic blocks 

BblUseBasicBlockFitness False 
Specifies if the fitness of basic blocks should be considered in case the difference of 
available inputs is too small 

BblFitnessBonus 3 Amount of fitness increment in case a basic block was used successfully 

SelBblMaxSearchOffset 20 Amount of nearby addresses that are searched for a suitable basic block 

SelBblMinNumInputsDiff 1 
Minimal difference of the number of available inputs of a basic block to be considered 
fitter 

ModifyCharMean 50 Exponential mean number of characters which are changed by the mutator ModifyChar  

ModifyCharDeviation 3 Deviation of the value of new characters which are modified by the mutator ModifyChar  

AddWellKnownPhraseMean 10 
Exponential mean amount of new phrases that are added by the mutator 
AddWellKnownPhrase 

DuplicateCharMean 20 Exponential mean number of characters that are duplicated by the mutator DuplicateChar  

DeleteCharMean 20 Exponential mean number of characters that are deleted by the mutator DeleteChar 

MaxSearchForInputWithArguments 100 
Number of times a search is restarted in case an input with arguments is required but not 
found 

DeleteArgumentMean 1 Exponential mean number of arguments that are deleted by the mutator DeleteArgument 

DeleteArgumentCharMean 1 
Exponential mean number of argument characters that are deleted by the mutator 
DeleteArgumentChar 

DuplicateArgumentCharMean 1 
Exponential mean number of argument characters that are duplicated by the mutator 
DuplicateArgumentChar 

ModifyArgumentCharMean 3 
Exponential mean number of argument characters that are modified by the mutator 
ModifyArgumentChar 

ModifyArgumentCharDeviation 5 
Deviation of the value of new argument characters which are modified by the mutator 
ModifyArgumentChar 

Table 50: Settings in the configuration file 

6.1.1 Notes on the seed value 

Although a seed value can be specified in the command arguments to the fuzzing application 

the whole fuzzing progress is not deterministic. This is caused by several additional 

circumstances, such as the speed of the testing machine, that influences whether processing of 

an input times out. As it is not defined which inputs actually raise a timeout but the fuzzing 

process depends on them the whole process becomes nondeterministic. The main purpose of 

the seed value is to provide the possibility to start the fuzzing process with different initial 

values if it is run on several machines. That way the diversity of the overall tested inputs will be 

increased if the fuzzing application is run on multiple machines in parallel with different seed 

values. 

6.2 Installation on Linux based systems 

This guide gives some instructions on how to install the fuzzing application on Linux based 

systems. In the test installation Ubuntu Linux in the version 9.10 was used.  
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6.2.1 Installation of pin 

The files required to install the pin tool are available at (Intel Coporation, 2009) and need to be 

extracted to a local folder, e.g. ~/pin. To run the pin tool it is necessary to export the path to 

the pin script to the PATH environment variable, e.g. ‘export PATH=$PATH:~/pin’. To check if 

the pin tool is working it can be run from the command prompt by launching ‘pin’.  

6.2.2 Making the sat solver 

To make the satisfiability solvers used throughout this thesis it is necessary to download the 

source files, available at (Biere, Software, 2009), to a local directory. They can be build by 

running ‘./configure’ and ‘make’. In the case of picosat it is advisable to remove the ‘-static’ 

option. Otherwise the C runtime library is linked statically with the picosat solver and the 

fuzzing application would additionally try to fuzz the C runtime which would drop the fuzzing 

performance dramatically. If coverage information should be provided in the application the 

compiler flags ‘-fprofile-arcs’ and ‘-ftest-coverage’ need to be added in the corresponding 

makefiles. If they are present line coverage information could be determined by running the 

gcov utility (GNU Free Software Fundation, 2008). 

6.2.3 Making the Monitor tool 

To make the monitor library it is necessary to change to the directory of the MonitorTool and 

launch the build process, e.g. ‘make PIN_HOME=~/pin’. Making the tool requires the g++ 

compiler which is available via, e.g. ‘apt-get install g++’. Assuming picosat is used as sat solver 

the Monitor tool can by tested by running ‘pin –t Monitor.so -- ./picosat –h’. If everything 

worked fine the file trace.xml is generated and contains information about the application run 

as described in Sec. 2.3. 

6.2.4 Installation of the .net runtime 

As the fuzzing application is written using the .Net framework a .Net runtime is required. In the 

case of Ubuntu the mono runtime can be installed, e.g. by running ‘apt-get install mono-

runtime’. The fuzzing application additionally requires win forms to display coverage 

information. By default this library is not installed but can be added e.g. by running ‘apt-get 

install libmono-winforms2.0-cil’. 

6.2.5 Installation of the fuzz tool 

The fuzzing application is installed simply by copying the required files to a local directory. To 

check if the fuzzer is working it can be tested by running ‘mono fuzz.exe’. If everything works 

the usage information of the fuzzing application will be prompted. 

6.3 Detailed description and code excerpts of the monitor tool 

This section gives some details about the implementation of the monitor library. As it is the 

case with ordinary applications written in the C language the executions starts with the main 
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method which is depicted in Figure 33. In contrast to ordinary applications the code in this 

function is not executed directly by the CPU but is already run in a virtual machine provided by 

the pin tool. After some general initialization the method sets up callback functions which are 

called when certain events occurred, such as loading of an image or unveiling a new trace. 

Finally the execution of the target program is initiated by calling PIN_StartProgram. All 

instrumentation functions are implemented in a very similar way and therefore only the 

implementation of the TraceCallback function is described as an example in more detail in the 

following section. 

int main(int argc, char * argv[]) 

{ 

  // Initialize pin 

  if (PIN_Init(argc, argv)) 

  { 

    return Usage(); 

  } 

 

  // instrument image load 

  IMG_AddInstrumentFunction(ImageLoad, 0); 

 

  // instrument trace 

  TRACE_AddInstrumentFunction(TraceCallback, 0); 

 

  // instrument context change (DebugEvents caused by exceptions, ...) 

  PIN_AddContextChangeFunction(OnException, 0); 

 

  // exit handler 

  PIN_AddFiniFunction(Fini, 0); 

 

  // start the program 

  PIN_StartProgram(); 

   

  return 0; 

} 

Figure 33: main method of the monitor library 

6.3.1 Implemention of the TraceCallback function 

This function is provided by the monitor library and called every time a new trace is detected by 

the pin tool. Figure 34 shows the main parts of the implementation of this function. Basically all 

static basic blocks in the trace are traversed and some general information is stored in a list. 

Additionally a callback function is added to each basic block which will be executed every time 

the basic block is executed. The callback function takes the address of the execution counter of 

the static basic block in the list as argument. Some implementation details of the BBLCallback 

function are given in the next section. 
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VOID TraceCallback(TRACE trace, VOID *v) 

{ 

 

  // foreach BBL 

  for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl)) 

  { 

    ADDRINT address=BBL_Address(bbl); 

    if (address>=imageLowAddress && address<=imageHighAddress) 

    { 

 BBLCountEntry *pBBLCountEntry=new BBLCountEntry; 

 pBBLCountEntry->addr=address; 

 pBBLCountEntry->unSize=BBL_Size(bbl); 

 pBBLCountEntry->ulCount=0; 

 BBLCounter.push_back(pBBLCountEntry); 

 

 BBL_InsertCall(bbl, IPOINT_ANYWHERE, AFUNPTR(BBLCallback), IARG_FAST_ANALYSIS_CALL, 

                      IARG_PTR, &(pBBLCountEntry->ulCount), IARG_END);  

    } 

  } 

} 

Figure 34: Implemetation of the TraceCallback function by the monitor library 

6.3.2 Implementation of the BBLCallback function 

This function is called every time the specified basic block is executed. As already mentioned in 

the previous section it takes the address of the execution counter of the static basic block as 

argument. All it does is to dereference the pointer and increment the value of the pointer by 

one as shown in Figure 35. 

VOID PIN_FAST_ANALYSIS_CALL BBLCallback(void* pArg) 

{ 

  UINT64* pCounter=(UINT64*)pArg; 

  ++(*pCounter); 

} 

Figure 35: Implemention of the BBLCallback function 

6.4 Killing an application 

If the tested application does not quit within a specified amount of time it will be terminated by 

the fuzzer. In a first attempt the application will be killed softly by raising the SIGTERM signal if 

the application is run on Linux based systems or by sending CRTL-C if the system is run on 

Windows based systems. If the application still doesn’t quit within a certain amount of time the 

corresponding process is terminated by killing it via the System.Diagnostics.Process API.  

6.5  Creating non-uniform distributed random numbers 

In many programming languages only methods to generate uniquely distributed random values 

are available. To generate values that are non-uniformly distributed some additional methods 

needed to be implemented. In the case of Gaussian distributed random numbers used 

throughout this thesis an algorithm known as Box-Muller transform (Box & Muller, 1958) was 

used. Exponentially distributed random numbers were generated based on inverse transform 

sampling (Devroye, 1986).  
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6.6 Monitoring performance analysis 

The following sections highlight some issues that were encountered during the development of 

the monitor library.  

6.6.1 Problem that the processor’s single step is too slow 

To test the performance of monitoring a simple test application that solves the Tower of Hanoi 

problem (Wikipedia, 2009) was implemented. The reason for using such a test application was 

that it is a very short application which easily allows long processing times as the problem 

grows exponentially with the number of disks. The diagram depicted in Figure 36 shows that it 

is possible to solve problems with up to 20 disks within one second if the application was 

started natively. Figure 37 shows that solving the problem with 15 disks took more than 500 

seconds if the Single Step mode of the CPU was used. The ratio between the time it takes when 

using the Single Step mode and native execution is between 7000 and 20000 which makes using 

the Single Step mode far too slow for using it to monitor the fuzzing progress.  

 

Figure 36: Tower of Hanoi 
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Figure 37: Tower of Hanoi - Single Step 

6.6.2 Performance of generating the exact application trace with pin 

This test uses pin and a version of the monitor library that generates an exact trace of the 

application run. As the results, depicted in Figure 38, show it is possible to solve problems with 

up to 20 disks. The ratio between the times it takes when using the pin tool and normal 

execution is about 36 at the beginning and decreases as the problem gets harder as depicted in 

Figure 39. This is explained by the fact that the number of statically available basic blocks of the 

tested application is very small and pin caches and reuses information gained about basic 

blocks. 

 

Figure 38: Tower of Hanoi – pin 
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Figure 39: Tower of Hanoi Performance ratio - pin 

6.6.3 Counting BBLs on picosat and precosat 

Using cnfuzz with seed 362 generates a rather hard formula which is made of 4053 clauses and 

552 variables. Running pin with inscount2.so, an example delivered with pin, shows that picosat 

needs 785662240 instructions (124053032 basic blocks) to solve it. Running the same input 

with precosat unveils that it takes even 1513912100 instructions (238697973 basic blocks) to 

solve the formula. Storing a minimal amount of 4 bytes per executed basic block would require 

about 911 MB of memory. 

6.6.4 Using the monitor tool with picosat 

Figure 40 gives details of a test that was carried out which used the pin tool with the monitor 

library and executed the precosat solver with a number of different inputs. The test showed 

that the average amount of time necessary to get trace information from the precosat solver is 

about 1.2 seconds.  

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t(
P

in
)/

t(
N

o
rm

al
Ex

e
cu

ti
o

n
)

Number of stones

Factor Pin



[86] 
 

 

Figure 40: Monitoring precosat with test formulas 

6.7 Bash script to run cnfuzz 

Figure 41 shows the bash script that was used to run cnfuzz for a certain amount of time and 

get coverage information after every run. The script takes two parameters. The first one 

specifies the amount of time the script is run in minutes and the second one specifies the SAT 

solver application to use. The script counts the number of tests executed and calls gcov after 

every test for each available source file. The collected gcov information is then appended to 

corresponding files which were used to generate the graphics in Sec. 1.6. 

#!/bin/bash 
START=$(date +%s) 
END=$START 
 
CNT=0 
while [ $[ $END - $START ] -lt $[ $1 * 60 ] ] 
do 
  CNT=$(expr $CNT + 1) 
  
  ./cnfuzz | $2 
 
  echo "test $CNT" 
 
  for srcfile in *.c 
  do 
    if [ -f $srcfile ] 
    then 
      echo "test $CNT" >> $srcfile.gcov.txt 
      test -f $srcfile && gcov $srcfile >> $srcfile.gcov.txt 
    fi 
  done 
 
  for srcfile in *.cc 
  do 
    if [ -f $srcfile ] 
    then 
      echo "test $CNT" >> $srcfile.gcov.txt 
      test -f $srcfile && gcov $srcfile >> $srcfile.gcov.txt 
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    fi 
  done 
 
  END=$(date +%s) 
done 
 
END=$(date +%s) 
DIFF=$(( $END - $START )) 
 
echo "$CNT tests in $DIFF seconds" 
echo "$CNT tests in $DIFF seconds" >> gcov.txt 

Figure 41: Bash script to test cnfuzz 

6.8 Description of the test environment 

The development of the fuzzing application was done on a system which is shown in Table 51. 

All tests that were carried out throughout this thesis were made on a Linux based operating 

system as this is the system which is primarily targeted by the tested SAT solving applications. 

This system ran inside a virtual machine provided by Virtual PC 2007 on the development 

machine. Table 52 gives some details about the test system. To test the installation routines in 

Sec. 6.2 an alternative hardware system was used that had Ubuntu Linux 9.10 installed natively 

on the machine. 

Processor Intel® Core™2 Duo CPU E6750 @ 2.66 GHz 

Memory 4 GB 

Operating System Windows 7 Ultimate 

.Net Framework Version 3.5 SP1 
Table 51: Development system 

Processor Virtualized by Virtual PC 2007 

Memory 512 MB 

Operating System OpenSUSE 11.1 

.Net Framework Mono 2.4.2.3 
Table 52: Test system 

6.9 Details about the generated test suite script file 

The fuzzing application generates a script file which executes all inputs that are generated as 

documented in Sec. 2.19. The file depends on the used operating system and is generated as 

batch file in the case of a Windows based operating system and as shell script in case of a Linux 

based operating system. Figure 42 and Figure 43 show some excerpts of each of the files 

generated. Basically two lines are added per test which dump information of the current test 

and run the solving application with the specified input and arguments. The generation of these 

files is necessary to support testing of inputs with arguments.  
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#!/bin/sh 
 
echo "./precosat < Coverage001.cnf" 
./precosat < Coverage001.cnf 
 
echo "./precosat < Coverage002.cnf" 
./precosat < Coverage002.cnf 

Figure 42: Generated script file – Linux 

@echo off 
 
echo "picosat.exe -n < Coverage005.cnf" 
picosat.exe -n < Coverage005.cnf 
 
echo "picosat.exe < Coverage006.cnf" 
picosat.exe < Coverage006.cnf 
 

Figure 43: Generated batch file - Windows 

6.10 Analysis of cnfuzz 

The algorithm basically creates formulas based on a model consisting of layers, clauses and 

literals as depicted in Figure 44. The number of layers is chosen from a discrete uniform 

distribution in the range of 1 to 20. 

𝑛~𝑈 1; 20  

Each layer has an equally distributed width wi between 10 and W which corresponds to the 

number of variables that belong to this layer. W is picked once for all layers in the range of 10 

to 70. 

𝑊~𝑈 10; 70  

𝑤𝑖~𝑈 10;  𝑊  
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Figure 44: Layers of cnfuzz 

 

After this setup each layer is processed one after each other and clauses are generated. The 

number of clauses c which is created for each layer is specified by 

𝑐~𝑈 3; 4.5 ∗ (𝑤𝑖 + 𝑤𝑖−1) 

The length l of each clause in a layer is distributed exponentially as 

𝑙~3 + exp(
1

3
) 

Finally the variables for the clauses are chosen from the current layer and its p previous layers. 

𝑝~exp(
1

2
) 

𝑣~𝑈(𝑤𝑖−𝑝 ; 𝑤𝑖) 

As depicted in Figure 45 the specified number of variables is chosen randomly from the 

specified layers (p=3 is used in the example picture), whereby duplicates in a clause are 

prevented. The sign of a variable is chosen equally distributed between true and false.  
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Figure 45: Selection of variables for layers in cnfuzz 
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