

An Expansion-based QBF Solver
For Negation Normal Form

MAGISTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Magisterstudium

INFORMATIK

Eingereicht von:
Florian Lonsing, 0255959

Angefertigt am:
Institut für Formale Modelle und Verifikation

Betreuung:
Univ.-Prof. Dr. Armin Biere

Linz, Dezember 2007

ii

Abstract

The topic of this master thesis is Nenofex, a solver for quantified boolean formu-
lae (QBF) in negation normal form (NNF), which relies on expansion as the core
technique for eliminating variables. In contrast to eliminating existentially quan-
tified variables by resolution on CNF, which causes the formula size to increase
quadratically in the worst case, expansion on NNF is involved with only a linear
increase of the formula size. This property motivates the use of NNF instead of
CNF combined with expansion. In Nenofex, a formula in NNF is represented as
a tree with structural restrictions in order to keep its size small and distances
from nodes to the root short. Expansions of variables are scheduled based on
estimated expansion costs. The variable with the smallest estimated costs is ex-
panded first. In order to remove redundancy from the formula, limited versions
of two approaches from the domain of circuit optimization have been integrated.
Experimental results show that Nenofex indeed exceeds a given memory limit less
frequently than a resolution-based QBF solver for CNF, but also that there is still
room for runtime improvements.

Kurzfassung

In dieser Arbeit wird Nenofex, die Implementierung eines Entscheidungsverfahrens
für Quantifizierte Boolesche Formeln (QBF) in Negationsnormalform (NNF), be-
schrieben. In Nenofex werden Variablen sukzessive mittels Expansion aus der
Formel eliminiert. Die Elimination von existentiell quantifizierten Variablen durch
Resolution ist für Formeln in Konjunktiver Normalform (KNF) im ungünstigsten
Fall mit einer quadratischen Zunahme der Formelgröße verbunden. Im Gegensatz
dazu führt die Elimination solcher Variablen durch Expansion auf NNF höchstens
zu einem linearen Größenwachstum. Diese Eigenschaft dient als Motivation für
den Einsatz von Expansion auf NNF. Eine Formel in NNF ist in Nenofex als Baum
repräsentiert, dessen Struktur bestimmten Einschränkungen unterliegt. Diese
haben den Zweck, die Größe des Baumes sowie die Abstände zwischen den Knoten
und der Wurzel gering zu halten. Die Reihenfolge der Expansionen wird nach
Schätzung der Expansionskosten festgelegt. Jene Variable mit den geringsten
Kosten wird zuerst expandiert. Um Redundanz aus der Formel zu entfernen,
wurden vereinfachte Varianten zweier Ansätze aus dem Gebiet der Schaltkreisop-
timierung integriert. In Testläufen zeigt sich, dass Nenofex im direkten Vergleich
mit einem Verfahren, welches Resolution auf KNF anwendet, zwar weniger häufig
ein vorgegebenes Speicherlimit überschreitet, aber hinsichtlich Laufzeit noch Raum
für Verbesserungen lässt.

iii

iv

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Example: Resolution vs. Expansion 4
1.3 Goals . 5
1.4 Outline . 5

2 Preliminaries 7
2.1 Propositional Logic . 7

2.1.1 Syntax . 7
2.1.2 Semantics . 8
2.1.3 Normal Forms . 8
2.1.4 Associativity and Arity of Operators 9
2.1.5 Subformulae . 10

2.2 Quantified Boolean Formulae . 10
2.2.1 Syntax . 11
2.2.2 Semantics . 12
2.2.3 Optimizations . 12
2.2.4 Expansion . 13

3 Formula Representation 15
3.1 Graph Terminology . 15
3.2 Representing a Formula in NNF . 17

3.2.1 Tree vs. DAG . 20
3.3 Structural Restrictions . 20

3.3.1 Arity of Operators . 21
3.3.2 Alternating Types Over Levels 22
3.3.3 One-level Simplification . 23

3.4 Implementation . 24
3.4.1 Prefix . 25
3.4.2 Formula . 26
3.4.3 Low-level Pointers: A Comprehensive Example 28

v

vi CONTENTS

3.4.4 Basic Graph Operations . 30
3.4.5 Parent Merging . 32
3.4.6 One-level Simplification . 33
3.4.7 Assigning Variables . 35
3.4.8 Eliminating Units . 36
3.4.9 Eliminating Unates . 36

4 Expansion 37
4.1 Full Expansion and Postprocessing 37
4.2 Local Expansion . 39

4.2.1 Innermost Expansion . 39
4.2.2 Non-innermost Expansion 40

4.3 Implementation . 41
4.3.1 The Role of Least Common Ancestors 42
4.3.2 Computing Expansion-relevant LCAs 43
4.3.3 Innermost Expansion . 50
4.3.4 Non-innermost Expansion 58
4.3.5 A Special Case: Non-increasing Expansions 59

5 Variable Scores 61
5.1 Definition . 62
5.2 Score Computation . 63

5.2.1 Increase Score . 63
5.2.2 Decrease Score . 64

5.3 Updating Scores . 66
5.4 Marking Variables for Update . 67

5.4.1 Marking for LCA Update 68
5.4.2 Marking for Increase Score Update 68
5.4.3 Marking for Decrease Score Update 72
5.4.4 Efficiency Concerns: New Data Structures 74

5.5 Future Work . 75
5.5.1 Maintaining LCAs . 75
5.5.2 Maintaining Scores . 76

6 Redundancy Removal 77
6.1 Preliminaries . 77

6.1.1 ATPG-based Redundancy Removal 78
6.1.2 Global Flow . 80

6.2 Redundancy Removal: Implementation 81
6.2.1 Data Structures . 82
6.2.2 Collecting Fault Nodes . 85

CONTENTS vii

6.2.3 Testing Fault Nodes . 87
6.2.4 Fault Sensitization . 88
6.2.5 Lazy Path Sensitization . 89
6.2.6 Propagation . 90
6.2.7 Watchers . 95
6.2.8 Marking Variables for Update 96

6.3 Global Flow: Implementation . 97
6.3.1 Finding Implications . 98
6.3.2 Applying Transformations 102
6.3.3 Marking Variables for Update 105

7 Putting It All Together 107
7.1 System Description . 107

7.1.1 Parsing and Initialization . 108
7.1.2 Elimination of Units and Unates 109
7.1.3 Global Flow and Redundancy Removal 109
7.1.4 Expansion . 110
7.1.5 SAT Solving . 111

7.2 Experimental Results . 112

8 Summary 121

A Figures and Algorithms 125

viii CONTENTS

Chapter 1

Introduction

QBF is the decision problem of quantified boolean formulae. It is a generalization
of SAT, the satisfiability problem of propositional logic, where, for a given formula
φ, it has to be decided if there exists a variable assignment such that φ is satisfied.
Although quantification is not part of the logic, variables in the context of SAT
can be regarded to be existentially quantified. This is reflected in the question
whether there exists a satisfying truth assignment.

Concerning QBF, variables are either existentially or universally quantified. In
contrast to SAT, the question is no longer if a formula can be satisfied, but if it is
the case that it is satisfied with respect to the set of quantified variables.

QBF is the canonical problem in PSPACE, the class of decision problems which
are deterministically solvable in polynomial space. Apart from classical results in
complexity theory (see [GJ79] for a comprehensive discourse), QBF has found
growing attention in the domain of model checking and verification. In the fol-
lowing, some popular approaches are briefly introduced in order to point out the
relevance of QBF in this respect.

In explicit model checking [CE81], the implementation of a system which is
modelled as a finite state machine is checked for compliance with its specification
by explicit state checking. In order to cope with the huge number of possible system
states, state spaces can be represented symbolically [BCM+92], which tradition-
ally had been achieved using Binary Decision Diagrams (BDDs) [Bry86]. BDDs
in the context of symbolic model checking may suffer considerable size increase.
The next step was to apply SAT techniques instead of BDDs: bounded model
checking (BMC) [BCCZ99] relies on discovering length-bounded counterexamples
for a certain property of the system to be checked. A propositional formula is
constructed which is satisfiable if, and only if, such a counterexample exists. This
restricted approach of generating counterexamples in combination with SAT makes
bounded model checking incomplete: it can not be shown that the systems fulfills
the property, but only the converse.

1

2 CHAPTER 1. INTRODUCTION

This is the point where QBF comes into consideration. Encoding BMC prob-
lems in QBF rather than in SAT yields a more natural representation because
symbolic model checking itself is PSPACE complete [JB07][SC85]. Furthermore,
BMC becomes complete when using QBF for encoding [BCCZ99].

The quest for efficient decision procedures for QBF has brought up a variety of
solvers and benchmark collections [GNT01b]. QBF solvers differ in their strategy
how the problem is tackled. Top-down solvers ([CGS98] or [ZM02a] for exam-
ple) are related to the classical DPLL algorithm [DLL62] for SAT. In fact, many
successful techniques from SAT solving such as elimination of units and pure liter-
als [CGS98], non-chronological backtracking [GNT01a] and learning [ZM02a] have
been adapted to QBF. Among solvers based on skolemization, we mention sKizzo
[Ben05b] and squolem [JBS+07]. Bottom-up solvers eliminate variables succes-
sively at the cost of formula size. For example, Quantor [Bie04] expands universal
variables and resolves existential ones (concerning classical resolution, we refer to
[Rob65] and [DP60], and for resolution on QBF to [BKF95] and [BL94]).

Most QBF solvers work on formulae in conjunctive normal form (CNF) where
quantifiers are grouped in an ordered prefix. An advantage of CNF is that it has,
together with related data structures and algorithms, already been widely used in
SAT checking.

Our approach is different: the topic of this report is Nenofex, a bottom-up
solver for QBF which uses negation normal form (NNF) as the underlying formula
representation. Nenofex has been implemented in C. The solver is closely related
to Quantor with respect to the solving strategy. The crucial difference is, that,
instead of resolution and expansion as in Quantor, expansion is the only method
for eliminating a variable in Nenofex. This restriction stems from the decision of
using NNF rather than CNF: expanding an existential variable on NNF causes the
formula to increase less than if that variable had been eliminated by resolution on
CNF. Similar to Quantor, Nenofex calls a SAT solver if a QBF contains either only
existential or only universal variables. For this purpose, a CNF is generated from
the NNF in a linear-time transformation. This way, QBF solvers may also profit
from improvements made in SAT solvers. In the following sections, we substantiate
our argument for using NNF instead of CNF.

1.1 Motivation

Given a quantified boolean formula F ≡ R ∧ X0 ∧ X1 in CNF. The clause sets
X0 = {c1, c2, . . . , cn} with |X0| = n and X1 = {cn+1, cn+2, . . . , cn+p} with |X1| = p
contain all clauses with negative and positive literals of variable x, respectively.
Variable x occurs in n + p clauses. R is the set of clauses which do not contain a
literal of x (the notation of clause sets has been adopted from [DP60]). We assume

1.1. MOTIVATION 3

that all variables are existentially quantified.
Variable x may be expanded by the following transformation of formula F :

F ≡ F [x/0] ∨ F [x/1] (1.1)

where the expression F [x/v] denotes the formula obtained from F by substituting
value v for every occurrence of x. This yields

F ≡ (R ∧X0 ∧X1)[x/0] ∨ (R ∧X0 ∧X1)[x/1] (1.2)

F ≡ (R ∧X ′1) ∨ (R ∧X ′0) (1.3)

F ≡ R ∧ (X ′0 ∨X ′1) (1.4)

In the clause set X ′0 (X ′1) all negative (positive) occurrences of variable x have
been deleted. Clauses in R have not been affected during expansion, hence this
set can be factored out as shown in formula 1.4. Note that the resulting formula
is not in CNF any more but in NNF.

Returning to the original formula, x is now eliminated by resolution. The set
of resolvents Xr is generated as follows

Xr = {ci,j | i = 1, . . . , n, j = n+ 1, . . . , n+ p, ci,j = (ci ∪ cj) \ {x,¬x}}

where Xr contains n · p resolvents (when keeping trivial clauses). After discarding
the original clause sets X0 and X1 and adding set Xr, formula F now has the form

F ≡ R ∧Xr (1.5)

The resulting formula is in CNF.
Observe that formula 1.5 can be obtained from formula 1.4 by applying dis-

tributivity of disjunction over conjunction in (X ′0 ∨ X ′1) which yields exactly the
same set of clauses as Xr. Thus resolution of some variable x has the same effect
as expansion if the resulting formula is transformed back to CNF. In both cases,
the cost of elimination is the same: n · p clauses will be added to the formula.

If only expansion is carried out, then there is no need to transform formula 1.4
back to CNF, it can be left in NNF. For any arbitrary formula in NNF, expansion
of a variable will always yield a formula which is in NNF again, since negation
is never applied. It follows from the rule for expansion in equation 1.1 that the
size of the formula can at most double, whereas resolution can lead to a quadratic
increase in the worst case.

It is exactly this observation which motivates the use of NNF as the underlying
formula representation in an expansion-based QBF solver as Nenofex. We expect
less size increase when eliminating existential variables by expansion on NNF than
by resolution on CNF. When expanding universal variables, there is no advantage

4 CHAPTER 1. INTRODUCTION

of expansion on NNF compared to CNF. In the prior example, if variable x was
universally quantified (details of universal expansion will be given in chapter 2),
the result of expanding x would be

F ≡ (R ∧X0 ∧X1)[x/0] ∧ (R ∧X0 ∧X1)[x/1] (1.6)

F ≡ (R ∧X ′1) ∧ (R ∧X ′0) (1.7)

F ≡ R ∧ (X ′0 ∧X ′1) (1.8)

where formula 1.8, in contrast to formula 1.4, is in CNF.
In the following section, a concrete example is provided in order to point out

the difference in formula sizes between expansion on NNF and resolution on CNF.

1.2 Example: Resolution vs. Expansion

Let F be a formula of the form R ∧X0 ∧X1, where all variables are existentially
quantified. The sets R, X0 and X1, where |X0| = 3 and |X1| = 3, contain the
following clauses:

R :
(a ∨ b)

X0 :
c1 : (¬x ∨ c ∨ ¬d)
c2 : (¬x ∨ d ∨ ¬e)
c3 : (¬x ∨ e ∨ ¬c)

X1 :
c4 : (x ∨ f ∨ ¬g)
c5 : (x ∨ g ∨ ¬h)
c6 : (x ∨ h ∨ ¬f)

Resolving variable x generates the set of resolvents Xr, where |Xr| = 3 × 3 = 9.
Xr contains the following clauses:

c1,4 : (c ∨ ¬d ∨ f ∨ ¬g)
c1,5 : (c ∨ ¬d ∨ g ∨ ¬h)
c1,6 : (c ∨ ¬d ∨ h ∨ ¬f)

c2,4 : (d ∨ ¬e ∨ f ∨ ¬g)
c2,5 : (d ∨ ¬e ∨ g ∨ ¬h)
c2,6 : (d ∨ ¬e ∨ h ∨ ¬f)

c3,4 : (e ∨ ¬c ∨ f ∨ ¬g)
c3,5 : (e ∨ ¬c ∨ g ∨ ¬h)
c3,6 : (e ∨ ¬c ∨ h ∨ ¬f)

Eliminating x by resolution yields

(a ∨ b) ∧
(c ∨ ¬d ∨ f ∨ ¬g) ∧ (c ∨ ¬d ∨ g ∨ ¬h) ∧ (c ∨ ¬d ∨ h ∨ ¬f) ∧
(d ∨ ¬e ∨ f ∨ ¬g) ∧ (d ∨ ¬e ∨ g ∨ ¬h) ∧ (d ∨ ¬e ∨ h ∨ ¬f) ∧
(e ∨ ¬c ∨ f ∨ ¬g) ∧ (e ∨ ¬c ∨ g ∨ ¬h) ∧ (e ∨ ¬c ∨ h ∨ ¬f)

Eliminating x by expansion according to formulae 1.1 to 1.4 yields

(a ∨ b) ∧ (((c ∨ ¬d) ∧ (d ∨ ¬e) ∧ (e ∨ ¬c))︸ ︷︷ ︸
X′

0

∨ ((f ∨ ¬g) ∧ (g ∨ ¬h) ∧ (h ∨ ¬f))︸ ︷︷ ︸
X′

1

)

which is much smaller than the formula obtained by resolution.

1.3. GOALS 5

1.3 Goals

In order to implement our approach in a new QBF solver, the following problems
have to be considered:

• formula representation: how can a formula in NNF be compactly rep-
resented and what algorithms and data structures are needed for variable
expansions and maintenance of the representation?

• expansion: how exactly must expansion be performed in order to be able
to profit from the property of less size increase which is inherent in NNF?

• variable scoring: what are the costs of expanding a variable on NNF and
how can they be computed?

• redundancy removal: what methods can be applied to remove redundancy
produced during expansions?

• solving strategy: how can the aforementioned points be integrated in a
QBF solver and what heuristics can be applied in order to choose a variable
for expansion?

1.4 Outline

The goals listed above could act as milestones in a bottom-up approach for im-
plementing a QBF solver. It has been chosen to take this scheme and use it as a
basis for the description of Nenofex. The view on the implementation will be kept
abstract in general, but details will be given whenever it is appropriate. In each
chapter, only those aspects of the implementation will be considered which are of
interest within the respective topic.

This text is organized as follows: in chapter 2, quantified boolean formulae and
related concepts are introduced formally. Chapter 3 presents the basic data struc-
tures and maintenance algorithms for representing a formula in NNF. A formula
is represented as a tree, the structure of which is restricted in order to keep its
size small and the distance between nodes and the root short. The focus is put
on explaining and justifying design decisions that have been made as they have
influence on other functional parts of the solver. A first, abstracted view on the
implementation is given.

The central operation of expansion on NNF is the topic of chapter 4. Based on
the data structures from the previous chapter, an algorithm is presented in order
to identify the parts of the formula which are relevant for expanding a particular
variable. Copying unnecessary parts should be avoided.

6 CHAPTER 1. INTRODUCTION

In chapter 5, a scoring policy is defined in order to rank variables accoring to
their predicted expansion costs. Both score computation and a strategy for up-
dating scores is introduced. In Nenofex, generally variables with lowest predicted
costs are expanded first in order to keep the formula small.

Chapter 6 deals with the problem of redundancy removal on NNF. Limited
versions of two approaches from the domain of circuit optimization and automatic
test pattern generation (ATPG) have been integrated in Nenofex. Implementation-
related details are mentioned as well.

Finally, in chapter 7 an integrated view of Nenofex is provided. After an
explanation of the system and core algorithm, experimental results are considered
where Nenofex is compared against Quantor, a CNF-based solver which applies
resolution. Chapter 8 summarizes all aspects related to Nenofex and its functional
parts.

Chapter 2

Preliminaries

The purpose of this chapter is to formally introduce quantified boolean formulae.
Apart from syntax and semantics, related concepts such as subformulae, normal
forms or optimizations like unit literals or pure literals are defined.

2.1 Propositional Logic

Definitions have been selected from [HS04], [BL94] and [HR04].

2.1.1 Syntax

Let V ar = {xi | i ∈ N} be a set of propositional variables , C = {true, false}
be the set of truth constants and O = {∨,∧,¬} be the set of boolean operators
disjunction (“or”), conjunction (“and”) and negation (“not”). Negation is a unary
operator, disjunction and conjunction are binary operators. The alphabet A of
propositional logic is defined as A = V ar ∪ C ∪O ∪ {(,)}.

The set of (well-formed) propositional formulae is defined inductively as follows:

• the truth constants true and false are propositional formulae

• every propositional variable is a propositional formula

• if φ is a propositional formula then ¬φ is also a propositional formula

• if φ1 and φ2 are propositional formulae then (φ1 ∨ φ2) and (φ1 ∧ φ2) are also
propositional formulae

Any other string over alphabet A is not a propositional formula.
A literal is either a propositional variable x (positive literal) or its negation ¬x

(negative literal). An occurrence of a variable x is a literal of x. Two literals are

7

8 CHAPTER 2. PRELIMINARIES

complementary if they belong to the same variable and one is positive, the other
one negative. Given a propositional formula φ, V (φ) is the set of all variables
which have occurrences in φ.

2.1.2 Semantics

A variable assignment I of a formula φ is a mapping I : V (φ) → {true, false}
from the set of variables appearing in φ to truth values. The value of a formula φ
under a variable assignment I, written as Val(φ, I), is defined with respect to the
syntactic structure of φ as follows:

• Val(true, I) := true

• Val(false, I) := false

• Val(xi, I) := I(xi) where xi is a variable

• Val(¬(φ), I) := true if Val(φ, I) = false and false otherwise

• Val((φ1 ∨ φ2), I) := true if Val(φ1, I) = true or Val(φ2, I) = true
and false otherwise

• Val((φ1 ∧ φ2), I) := true if Val(φ1, I) = true and Val(φ2, I) = true
and false otherwise

A formula φ is satisfiable if, and only if, there exists a variable assignment I
such that Val(φ, I) = true, otherwise φ is unsatisfiable. Formula φ is a tautology
if, and only if, for all possible variable assignment I, Val(φ, I) = true, or put
another way, φ is a tautology if, and only if ¬φ is unsatisfiable. The decision
problem, whether a given formula φ is satisfiable or not is called SAT [GJ79].

2.1.3 Normal Forms

Normal forms define a set of structurally restricted formulae. In the following,
two normal forms are defined, where the second is used as the underlying formula
representation in Nenofex.

CNF

A propositional formula φ is in conjunctive normal form (CNF) if, and only if, it
has the form φ = C1 ∧ C2 ∧ . . . ∧ Cn where each Ci = (li1 ∨ li2 ∨ . . . ∨ lim). A
disjunction Ci is a clause and all lij are literals. Hence a formula in CNF is a
conjunction over disjunctions of literals. A clause which consists of just one single
literal is a unit clause. In order to check whether a formula in CNF is satisfiable,
it suffices to check whether every clause is satisfiable.

2.1. PROPOSITIONAL LOGIC 9

NNF

A propositional formula φ is in negation normal form (NNF) if, and only if the
negation operator is applied to literals only and if it is not applied more than once
at a time (for example, ¬¬x). Every formula which is in CNF is also in NNF (but
not vice versa).

An Example

The propositional formula

(¬¬a ∧ ¬(b ∧ (c ∨ d)))

is not in NNF because the negation operator is applied to a conjunction, namely
¬(b ∧ (c ∨ d)). Applying DeMorgan’s law twice yields

(¬¬a ∧ (¬b ∨ (¬c ∧ ¬d)))

which is a formula still not in NNF. Eliminating double negation at literal a finally
yields

(a ∧ (¬b ∨ (¬c ∧ ¬d)))

which is a formula in NNF but not in CNF. Any arbitrary formula may be trans-
formed into NNF by successive application of DeMorgan’s law and elimination of
multiple negation. Continuing the example, the formula is transformed into CNF
by applying distributivity of disjunction, which finally yields

(a ∧ ((¬b ∨ ¬c) ∧ (¬b ∨ ¬d)))

We refer to either [HR04] or [BL94] for an algorithmic description of the transfor-
mation of arbitrary formulae into NNF and CNF.

A closer look on the result of the last transformation reveals a slight “inaccu-
racy”: the formula is actually not in CNF when strictly interpreting the structural
definition of CNF. While a is a clause, expression ((¬b ∨ ¬c) ∧ (¬b ∨ ¬d)) is not.
Enclosing parentheses around this expression had to be eliminated in order to
fulfill the properties of CNF.

2.1.4 Associativity and Arity of Operators

The syntactic definition of propositional formulae requires that the boolean oper-
ators disjunction and conjunction are applied to exactly two operands. Hence it
is syntactically incorrect to write (a∨ b∨ c) instead of (a∨ (b∨ c)) or ((a∨ b)∨ c).

10 CHAPTER 2. PRELIMINARIES

However, the last three formulae are equivalent by associativity of disjunction and
conjunction. Formulae like

(a ∧ ((¬b ∨ ¬c) ∧ (¬b ∨ ¬d)))

from the last example may be “flattened” to

(a ∧ (¬b ∨ ¬c) ∧ (¬b ∨ ¬d))

which finally is in CNF, and thus clarifying the “inaccurracy” mentioned above.
Applying associativity corresponds to extending the arity of the binary operators
to an arbitrary number of operands which yields n-ary operators.

2.1.5 Subformulae

For a given formula φ, the set of subformulae of φ, written as subf (φ), is defined
recursively as follows:

• if φ is of the form true then subf (φ) := {true}

• if φ is of the form false then subf (φ) := {false}

• if φ is of the form xi then subf (φ) := {xi}

• if φ is of the form ¬φ1 then subf (φ) := {φ} ∪ subf (φ1)

• if φ is of the form (φ1 ⊗ . . .⊗ φn) where n ≥ 2 and ⊗ ∈ {∨,∧}, then

subf (φ) := {φ}∪
n⋃

i=1
subf (φi)∪

⋃{(φi1⊗. . .⊗φin)|where 1 ≤ i1 < . . . < in ≤ n}

Note that subf (φ) contains at least one element. Formula φ is broken up into its
constituent parts, all of which are well-formed formulae. For n-ary conjunctions
(disjunctions) over formulae φi, all possible conjunctions (disjunctions) which can
be formed from formulae φi are subformulae.

For example, for formula φ

φ ≡ (a ∨ ¬(b ∧ c ∧ d))

the set subf (φ) = {(a ∨ ¬(b ∧ c ∧ d)), a,¬(b ∧ c ∧ d), (b ∧ c ∧ d), b, c, d, (b ∧ c),
(b ∧ d), (c ∧ d}.

2.2 Quantified Boolean Formulae

QBF is a generalization of SAT. This section introduces syntax, semantics and
related notions on top of the definitions from the previous section. Our definitions
are closely related to [BL94].

2.2. QUANTIFIED BOOLEAN FORMULAE 11

2.2.1 Syntax

Alphabet A of propositional logic (section 2.1.1) is extended by adding two new
symbols ∃ and ∀, where the former denotes existential, the latter universal quan-
tification. Hence A := A ∪ Q where Q := {∃,∀} is the set of quantifier symbols
(or quantifiers). Based on the given syntactic definition of propositional formulae,
the set of quantified boolean formulae (QBF) is defined as follows:

• every propositional formula is a QBF

• for a QBF φ and propositional variables x and y, both ∃xφ and ∀yφ are QBF

• no other formula is a QBF

Adding quantified variables like ∃x to a QBF φ makes sense only if variable x
appears in φ. The building rules allow QBFs of the form S1S2 . . . Snφ only where
each Si stands for either ∃xi or ∀xi and where φ is free of quantifiers. A formula
of this particular syntactic structure is in prenex normal form. The sequence
S1S2 . . . Sn is the quantifier prefix which is put into concrete terms in the following.
The definitions have been taken from [Bie04].

Let S1S2 . . . Snφ be a QBF. The set of variables in φ is partitioned into n sets
Si which are called scopes : V (φ) = S1 ∪S2 ∪ . . .∪Sn and Si ∩Sj =60 for i 6= j and
i, j ≤ n. A scope Si is existential (universal) if it is associated with an existential
(universal) quantifier, written as type(Si) = ∃ (type(Si) = ∀). By convention,
two adjacent scopes Si and Si+1, where i < n, must not be both existential or
both universal. From this follows that scopes may contain more than one variable.
A variable x ∈ V (φ) is quantified existentially (universally) if it belongs to an
existential (universal) scope. Depending on the type of the scope, a variable is
either classified as existential or universal. The scope of x is denoted by scope(x).
Variables must not appear in the formula without being quantified (so-called free
variables) nor be quantified more than once. A sequence of scopes is a linearly
ordered set S1 < S2 < . . . < Sn which follows from the order of appearance of the
scopes in the quantifier prefix. Scope S1 is the outermost, scope Sn the innermost
scope. Variables x and y are ordered with respect to the scope order. In case that
scope(x) = scope(y), an arbitary order between x and y may be chosen.

The QDIMACS format [QDI05] has become the standard format for QBF
instances given in CNF. It extends the DIMACS format for SAT [DIM93] by a
section that lists the quantifier prefix. Therefore, all QBF solvers which read
problem files in QDIMACS format also accept SAT problems in DIMACS format.

12 CHAPTER 2. PRELIMINARIES

2.2.2 Semantics

Let Val be a valuation function which maps a given QBF φ to either true or false,
where Val is defined according to the syntactic structure of φ as follows [BL94]:

• φ = true : Val(φ) = true

• φ = false : Val(φ) = false

• φ = ¬ψ : Val(φ) = true if Val(ψ) = false and false otherwise

• φ = φ1 ∨ φ2 : Val(φ) = true if Val(φ1) = true or Val(φ2) = true
and false otherwise

• φ = φ1 ∧ φ2 : Val(φ) = true if Val(φ1) = true and Val(φ2) = true
and false otherwise

• φ = ∃x ψ : Val(φ) = true if Val(ψ[x/0]) = true or Val(ψ[x/1]) = true
and false otherwise

• φ = ∀x ψ : Val(φ) = true if Val(ψ[x/0]) = true and Val(ψ[x/1]) = true
and false otherwise

The expression φ[x/v] represents the formula obtained from φ by substituting value
v for every occurrence of variable x in φ. For example, formula

∀x∃y ((x ∨ ¬y) ∧ (¬x ∨ y))

is true, whereas
∃y∀x ((x ∨ ¬y) ∧ (¬x ∨ y))

is false (the scope order has been reversed).

2.2.3 Optimizations

Elimination of unit literals or pure literals plays an important in role in efficient
SAT solvers. These techniques have been adapted to QBF [CGS98] as explained
in the following.

Unit Elimination

A clause which contains only one single literal is called unit clause and the literal
a unit literal. In order to satisfy a unit clause, the literal must be set to true by
assigning the respective variable accordingly. For universal unit literals, unsatisfi-
ability can be concluded immediately since the variable had to be assigned both
truth values.

2.2. QUANTIFIED BOOLEAN FORMULAE 13

Pure Literals

If a variable either has only positive or only negative literals then these literals
are called pure literals, unates or monotone literals [CGS98]. Existential (univer-
sal) pure literals can be set to true (false) by assigning the respective variable
accordingly.

Forall-reduction

Forall-reduction [BKF95] [Bie04] is an operation which removes universal literals
from certain clauses. From a given clause, a universal literal can be removed if
there is no existential literal in that clause whose variable belongs to a scope which
is larger than the scope of the universal literal’s variable.

This operation is defined to work on CNF and, to our knowledge, it is not clear
whether and how it can be applied to formulae in NNF.

2.2.4 Expansion

Given a QBF S1S2 . . . Sn−1Sn φ in NNF, expansion is defined for existential vari-
ables from scope Sn if type(Sn) = ∃, and for universal variables either (1) from
scope Sn if type(Sn) = ∀ and type(Sn−1) = ∃, or (2) from Sn−1 if type(Sn−1) = ∀
and type(Sn) = ∃.

Note that case (1) need not be applied on formulae in CNF since forall-
reduction could remove all occurrences of universal variables in Sn instead. Fur-
thermore, applying expansion as defined in a general way below will almost double
the size of the formula, which is not desireable. In chapter 4 this problem is in-
vestigated in the context of NNF. For expansion on CNF, we refer to [Bie04] or
[BB07]. An approach for expanding universal variables from arbitrary scopes is
presented in the latter. Our definitions are related to the ones given in [Bie04] and
[BB07].

Existential Expansion

Given a QBF

S1S2 . . . Sn−1Sn φ

where type(Sn) = ∃, the result of expanding variable x from scope Sn is

S1S2 . . . Sn−1(Sn \ {x}) (φ[x/0] ∨ φ[x/1])

14 CHAPTER 2. PRELIMINARIES

Universal Expansion

The two cases described above are defined as follows:

1. Given a QBF
S1S2 . . . Sn−1Sn φ

where type(Sn) = ∀, the result of expanding variable x from scope Sn is

S1S2 . . . Sn−1(Sn \ {x}) (φ[x/0] ∧ φ[x/1])

2. Given a QBF
S1S2 . . . Sn−1Sn φ

where type(Sn−1) = ∀ and type(Sn) = ∃, the result of expanding variable x
from scope Sn−1 is

S1S2 . . . (Sn−1 \ {x})(Sn ∪ S ′n) (φ[x/0] ∧ φ′[x/1])

where set S ′n contains duplicated variables v′ for each variable v ∈ Sn and φ′

is obtained from φ by substituting v′ for all occurrences of v ∈ Sn.

Duplicating existential variables as defined in case (2) is conservative but pes-
simistic. In chapter 4 an algorithm is presented for restricting the set of duplicated
variables with respect to expansion on NNF. Concerning formulae in CNF, such
methods have been proposed in [Bie04], [BB07] or [Ben05b], for example.

Chapter 3

Formula Representation

This chapter introduces NNF-trees, a data structure for representing formulae
in NNF in Nenofex. An NNF-tree consists of operator- and literal nodes and
fulfills certain structural restrictions in order to keep its size small and the distance
between nodes and the root short. These two properties, a small tree and and
short distances, are particularly important with respect to (still to be introduced)
algorithms which operate on the NNF-tree. Furthermore, it is guaranteed that a
formula in CNF, which is the standard format for QBF instances [QDI05], has a
flat representation as an NNF-tree.

The first section introduces fundamental definitions of graph properties and
trees which have been taken from [OW02]. In section 3.2, the structure of NNF-
trees is defined which is based on ordinary trees. The basic structure is sufficient
for representing formulae in NNF, but neither guarantees small tree sizes nor short
distances. For this purpose, three kinds of structural restrictions are introduced
in section 3.3, which an NNF-tree must fulfill. Finally, the implementation of
NNF-trees and related maintenance algorithms is described in section 3.4.

3.1 Graph Terminology

A directed graph G = (N,E) is defined by a set of nodes N and a set of directed
edges E ⊆ N × N . There is an edge from a node n1 to another node n2 if
(n1, n2) ∈ E. If there is an edge from n1 to n2 then the two nodes are adjacent.
A node n2 is a successor of another node n1 if there exists a sequence of nodes
p1, p2, . . . , pn such that n1 = p1 and n2 = pn and (pi, pi+1) ∈ E for all i where
1 ≤ i < n. In this case n2 is reachable from n1. The sequence of nodes p1, p2, . . . , pn
is a path from n1 to n2 with length n−1. In case that n = 1, the path is trivial and
has length zero. If node n2 is a successor of node n1 then node n1 is a predecessor
of node n2. Concerning trivial paths, every node n is a successor and predecessor

15

16 CHAPTER 3. FORMULA REPRESENTATION

of itself (a trivial successor or predecessor). Node n1 is an immediate predecessor
of node n2 if the path from n1 to n2 has length one. A subgraph SG of graph G
is defined by a set of nodes N ′ ⊆ N and a set of edges E ′ = E ∩ (N ′ × N ′). A
directed acyclic graph (DAG) is a directed graph which does not contain cycles. A
cycle is a path p1, p2, . . . , pn such that p1 = pn.

A (directed) tree is a DAG where each node has exactly one immediate prede-
cessor, except one unique node called root which has no predecessor. If there
is an edge from node n1 to node n2 then n1 is the parent of n2, written as
parent(n2) = n1, and n2 is a child of n1. All nodes in the tree are reachable
from the root via a unique path and have exactly one parent, except the root
which has no parent. From this property it follows that for each node there exists
a unique path to the root if edges are inverted. Each node n has (or is at) a
level, written as level(n), which is the length of the path from the root to n. The
root of a tree has level 0 and an arbitrary node n has level level(parent(n)) + 1.
Nodes which have no children are external nodes or leaf nodes. All other nodes
are internal nodes. Two nodes are siblings if they have the same parent.

A common ancestor of a pair of nodes (n1, n2) in a tree is a node which is
a predecessor of both n1 and n2. The least common ancestor (LCA) of a pair
of nodes, written as lca(n1, n2) where lca : N × N → N is a mapping, is their
common ancestor with maximum level, that is, which is farthest away from the
root of the tree. Hence there is no child of lca(n1, n2) which is a common ancestor
of (n1, n2). When regarding lca as an operator, it can be observed that it has the
following properties:

• commutativity: lca(n1, n2) = lca(n2, n1)

• associativity: lca(n1, lca(n2, n3)) = lca(lca(n1, n2), n3)

Applying these properties, the definition of lca is extended from pairs to sets of
nodes in the following way:

lca(n1, n2, . . . , nk) =

lca(lca(n1, n2), n3, . . . , nk) if k ≥ 3

least common ancestor of n1 and n2 if k = 2
n1 if k = 1

For the tree example in figure 3.1:

• the set of internal nodes is {1, 2, 3, 4, 7}

• the set of leaf nodes is {5, 6, 8, 9, 10, 11, 12, 13}

• node 6 is child of node 3

• node 3 is parent of node 6, 7, 8 and 9

3.2. REPRESENTING A FORMULA IN NNF 17

1

2 3 4

5 6 7 8 9 10 11

12 13

Figure 3.1: A basic tree example

• the set of successors of node 3 is {3, 6, 7, 8, 9, 12, 13}

• the set of predecessors of node 12 is {12, 7, 3, 1}

• the sequence (1, 4, 10) forms a path of length 2 from node 1 to node 10

• node 1 is the root of the tree and the only node which has level 0

• nodes 5, 6, 7, 8, 9, 10 and 11 all have level 2

• from node 2, nodes 2 and 5 are reachable

• nodes 4 and 1 are all common ancestors of nodes 10 and 11

• lca(12, 13) is 7, lca(5, 6) is 1, lca(1, 12) is 1 and lca(6, 8, 13) is 3

• nodes N ′ = {4, 10, 11} and edges E ′ = {(4, 10), (4, 11)} form a subtree

3.2 Representing a Formula in NNF

A formula φ in NNF is represented as a tree T = (N,E), referred to as NNF-tree.
The set of nodes N is partitioned into operator nodes NO and literal nodes NL,
that is N = NO ∪NL and NO ∩NL =6 0. A node n ∈ N belongs to exactly one of
the sets NO and NL. The set NO (NL) comprises exactly the set of internal nodes
(leaf nodes) of the tree.

The set NO is further partitioned into the sets N∨ and N∧, that is NO = N∨∪N∧
and N∨∩N∧ =6 0. A node from the set N∨ (N∧) is called OR-node (AND-node) and
denotes the logical disjunction (conjunction) over its children. Hence an operator
node denotes an n-ary boolean function where n is the number of its children. A
node n ∈ NO belongs to exactly one of the sets N∨ and N∧.

18 CHAPTER 3. FORMULA REPRESENTATION

A node n ∈ NL denotes one single occurrence of some variable x ∈ V . It either
represents a positive or a negative literal of x. Conversely, an occurrence of some
variable x is represented by exactly one node n ∈ NL. Analogously to the notion
of (positive or negative) literals of a variable, there is the notion of (positive or
negative) literal nodes of a variable. The least common ancestor (LCA) of a
variable x ∈ V , written as lca(x), is the LCA over all of its occurrences. The
membership of a node n in either NL or N∨ or N∧ is regarded as the type of n,
written as type(n) = t where t ∈ {literal node, OR-node, AND-node}.

Each node n ∈ N denotes a subformula (see section 2.1.5 on page 10) of φ.
The subformula of a literal node nl is the single literal represented by nl. The
subformula of an OR-node (AND-node) is the logical disjunction (conjunction)
over the subformulae of all of its children. The subformula of node n corresponds
to the subgraph (subtree) with root n. Every subtree denotes a subformula of φ and
vice versa. Note that, while every node corresponds to a subformula, the converse
is not true (for example, for a subformula (φi1 ∨ . . . ∨ φin) which is formed from a
subset of φi in an n-ary disjunction (φi ∨ . . . ∨ φn),where 1 ≤ i1 < . . . < in < n).

Truth constants do not have an explicit representation as nodes because they
can always be eliminated from a given formula by applying one of the following
equivalences as appropriate:

(a ∧ true) = a

(a ∨ true) = true

(a ∧ false) = false

(a ∨ false) = a

Hence the presence of truth constants in a formula indicates redundancies which
are not represented in the graph of the formula.

The tree in figure 3.2 shows a representation for the formula

a ∧ (¬b ∨ (c ∧ d)) ∧ (¬a ∨ (b ∧ d ∧ ¬e) ∨ (a ∧ ¬d))

and at the same time introduces the basic graphical notation that is used through-
out illustrations of formula trees: an AND-node (OR-node) is represented as a
triangle 4 (inverted triangle 5) resembling the symbol for logical conjunction ∧
(disjunction ∨), and a literal node as a box 2. Diamond-shape nodes in two styles

and as in figure 3.9 (page 32) both may either stand for an AND-node
or an OR-node, yet two adjacent diamond-shape nodes have different types and
styles. A circle ◦ at the end of an edge to a literal node denotes the negation
operator. The leftmost (rightmost) child in the set of children of an operator node
is considered as the first child (last child) of that node. Nodes in the graph may

3.2. REPRESENTING A FORMULA IN NNF 19

1

2 3a

4

c d

5

b d e

6

a d

b a

Figure 3.2: Graph of formula a ∧ (¬b ∨ (c ∧ d)) ∧ (¬a ∨ (b ∧ d ∧ ¬e) ∨ (a ∧ ¬d))

be labelled arbitrarily except literal nodes which always carry the label of their
variable (a, b, c, . . .). A bigger triangle with double peripheral lines like in figure
3.5 (page 24) denotes an arbitrary subgraph.

For the tree in figure 3.2

• the sets of operator nodes are NO = {1, 2, 3, 4, 5, 6}, N∨ = {2, 3} and N∧ =
{1, 4, 5, 6} and NO is at the same time the set of internal nodes

• the types of nodes 1 and 2 are AND-node and OR-node, respectively

• variable b has a negative occurrence at node 2 and a positive one node 5

• the subformula of the single literal at node 3 is ¬a

• the subformula of node 5 is (b∧d∧¬e), the corresponding subgraph (N ′, E ′)
is defined by N ′ = {5, b, d,¬e} and E ′ = {(5, b), (5, d), (5,¬e)}

• the subformula of node 6 is (a ∧ ¬d)

• the subformula of node 3 is (¬a∨(b∧d∧¬e)∨(a∧¬d)) which is a disjunction
over the subformulae of its children ¬a, 5 and 6

• the arity of the boolean function denoted by node 3 is 3, which corresponds
to the number of its children

• the LCA of variable d is node 1

20 CHAPTER 3. FORMULA REPRESENTATION

3.2.1 Tree vs. DAG

DAGs would have been an alternative approach for representing a formula in NNF.
In a DAG, nodes might have more than one parent. Such nodes are considered
to be structurally shared among their parents. A well-known, DAG-related for-
mula representation are And-Inverter Graphs (AIGs) [KPKG02] where the set of
boolean operators used in the representation is restricted to binary conjunction
and negation. Methods for identifying possible structural sharing in AIGs have
been studied in [BB06], [BB04].

To our knowledge, structural sharing in combination with n-ary operators has
not been studied at a large extent, but obviously there is much more complexity
involved with this respect.

Furthermore, trees as proposed in the previous section allow a CNF to be
represented in a natural way: each literal node in the tree corresponds to exactly
one literal in the CNF, each OR-node to exactly one clause and the single AND-
node at the root to the conjunction over the clauses.

If DAGs had been used, then the set of parents of each node needs to be stored
and maintained under a sequence of graph modifications. This is another source of
complexity. Furthermore, in a DAG a node may be child of more than one parent,
which complicates the implementation of child sets.

Finally, at a later stage of development it turned out that the structurally
inherent tree property of nodes to have exactly one parent has a positive influence
on the complexity of algorithms related to redundancy removal (see chapter 5).

3.3 Structural Restrictions

In addition to the aforementioned basic properties of a tree which represents a
formula in NNF, restrictions are imposed on the structure of the graph of the
following kind:

• arity of operators: the number of children of an operator node determines
the arity of the boolean function denoted by that operator node

• alternating types over levels: the type of the children of a node is restricted
with respect to the parent’s type

• one-level-simplification: the set of literal nodes which may occur in the set
of children of a node is restricted

The tree representation that has been defined above in section 3.2 is sufficient in
order to represent an arbitrary formula. However, one source of motivation for
restricting the structure of the tree stems from expected positive effects on the

3.3. STRUCTURAL RESTRICTIONS 21

1

2 C1

3 C2

C3 C4

1

2 3

C1 C2 C3 C4

1

C1 C2 C3 C4

Figure 3.3: Three representations of one and the same formula in CNF

runtime of particular maintenance algorithms: whenever the tree is modified, for
example by inserting or deleting subgraphs, then certain properties have to be kept
up to date for each node. The drawback comes with an increased implementation
complexity because every transformation of the graph has to be carried out in
accordance with the restrictions. This requirement affects all functional parts of
the solver. Another positive effect is that the restricted structure guarantees a flat
representation for CNFs.

3.3.1 Arity of Operators

An operator node may have an arbitrary number of children, yet must have at
least two. A literal node has no children. The number of children of an operator
node no ∈ NO corresponds to the arity of the logical function denoted by no.

The effect of this restriction on the structure of the tree is twofold. First,
the number of required operator nodes is reduced and the distance between literal
nodes and the root, the level, is kept small. Second, operator nodes may have large
sets of children. While the first effect can be regarded as entirely positive, because
the tree becomes compact, the second is problematic in an implementation-related
sense. If only a small subset of children needs to be accessed, then fully inspecting
a large set of children is inefficient. A solution to this problem is presented in
sections 3.4.4 (page 30) and 3.4.6 (page 33).

Figure 3.3 shows three different trees of one and the same (arbitrary) formula
in CNF with four clauses as they could look like with different arities of operators.
OR-nodes are labelled C1, C2, . . . in order to indicate that they represent whole
clauses (for reasons of brevity, literal nodes have been omitted). The figures show
the formula in its original form, that is before any modifications have been carried
out.
In the leftmost tree, operator nodes are binary. All literal nodes in clauses C3 and

22 CHAPTER 3. FORMULA REPRESENTATION

1

2a

b c

1

a b c

Figure 3.4: Enforcing alternating node types

C4 are at level four. The maximum node level in a tree of almost linear shape like
this will be the higher the more clauses are present.

In the second tree, operators are still binary but the tree has been balanced by
interchanging nodes C1 and 3 to keep levels small. Thus the maximum level has
been decreased to three.

Finally, in the third tree, the arity of operators is arbitrary which yields a tree
where, for a formula in CNF, all literals have a level of two, except unit literals
which have a level of one. This situation can never be achieved when the arity
is fixed, not even with balancing (provided a sufficiently large number of clauses
compared to the arity). Note that, like in the third picture, the tree for a given
CNF with n clauses will have exactly one AND-node (root) and exactly n OR-
nodes (clauses).

Hence when allowing operators to have arbitrary arity, the effect of reduced
node levels comes from the structural property itself and does not require explicit,
and possibly complicated, balancing.

Regarding the requirement of a minimum arity of two, the only time when
the tree sructure has to be repaired is when an operator node has only one child
left. This problem is called parent merging and is the topic of section 3.4.5 (page
32). The following restriction additionally affects node levels and the number of
required operator nodes positively.

3.3.2 Alternating Types Over Levels

An operator node no ∈ N∨ (na ∈ N∧) may only have literal nodes or AND-nodes
(OR-nodes) as children. Hence for the path p1, p2, . . . , pn from root = p1 to a literal
node n2 = pn the following property holds: type(pi) 6= type(pi+1) for 1 ≤ i < n. In
other words, any operator node in the tree may only have children of a different
type. This rule can be regarded as applying associativity whenever possible. For

3.3. STRUCTURAL RESTRICTIONS 23

example, in the representation of formula (a∧(b∧c)) = (a∧b∧c) in figure 3.4 in the
left tree, the violation of this restriction can be rectified by applying associativity
of conjunction, yielding the situation as shown on the right.

Note that n-ary operators are a requirement for this restriction in order to be
carried out but not vice versa. In other words, if the arity is fixed then situations
in which two operator nodes of same type are in a parent-child relationship can
in general not be avoided (see the second tree in figure 3.3, for example). On
the other hand, if operator nodes had arbitrary arity but alternating types were
not enforced, then there would be no guarantee that a CNF representation is flat
like the third tree in figure 3.3. In a straightforward way this flat tree can be
obtained by adding one clause after the other to the root. In contrast, a tree for
((C1∧C2∧ . . .∧Ck)∧(Ck+1∧Ck+2∧ . . . Cn)) where Ci are clauses is not guaranteed
to be flat when not requiring alternating types over levels even if operators have
arbitrary arity.

The two restrictions described so far ensure that a given QBF in CNF has, not
just can have, a compact representation in our NNF-oriented tree structure and
that operator nodes are saved whenever associativity can be applied. Furthermore,
node levels are kept low. The next structural restriction again aims at saving nodes
but this time by identifying logical redundancies within the set of children of an
operator node.

3.3.3 One-level Simplification

An operator node may have as a child at most one literal node which denotes an
occurrence of one and the same variable x ∈ V . Hence if an operator node has as
a child a literal node of some variable x then it must neither have another positive
literal node of x nor a negative literal node of x as a child. Multiple occurrences of
one and the same variable as children of the same operator node always indicate
the presence of redundant nodes in the graph. The set of possible redundancies
can be be expressed by the following equivalences:

(a ∨ a) = a

(a ∨ ¬a) = true

(a ∧ a) = a

(a ∧ ¬a) = false

Identical literals can be removed from the set of children. In case of complementary
literals, the boolean function denoted by their parent collapses to a constant value.
Constant parent nodes are deleted immediately after detection.

24 CHAPTER 3. FORMULA REPRESENTATION

1

2c 3

4

a a b

c

Figure 3.5: One-level redundancy

2

a b

1

a

Figure 3.6: Two-level redundancy

For example, figure 3.5 shows a situation where complementary literals of variable
a at node 4 induce redundancy (node 4 is false). If node 4 is deleted then its parent
(node 2) will only have one child left. This situation requires parent merging, which
is described in section 3.4.5 in detail.

The method for removing simple redundancies is called one-level-simplification
because it can be enforced by checking the children of an operator node only
which, by definition, all have the same level. It is not necessary to consider grand-
children, however further redundancies may be detected when checking successor
nodes over more levels. Figure 3.6 shows a simple two-level redundancy which
can not be detected by inspecting all children of a single operator node. In this
example, the given formula (a ∨ (a ∧ b)) is equivalent to a. Redundancy removal
on NNF is the topic of chapter 6.

All structural restrictions defined in this section can be maintained locally at
the regions of the NNF-tree where modifications have been performed. It is not
necessary to traverse the tree.

3.4 Implementation

This section introduces fundamental data structures for representing QBFs in
NNF. The low-level design and implementation follows the formal graph defini-
tions which were given in the previous section very closely. Apart from data
structures (sections 3.4.1 and 3.4.2), basic algorithms for maintaining a formula
representation under a set of basic operations such as deleting and inserting nodes
or assigning variables are presented (section 3.4.4).

3.4. IMPLEMENTATION 25

According to the definitions of propositional formulae, QBF and trees, a repre-
sentation of a QBF in NNF needs to store the prefix in terms of scopes and their
variables on the one hand, and the formula in terms of a tree consisting of operator
and literal nodes on the other hand.

3.4.1 Prefix

This section describes the data structures for representing the prefix of a QBF.

Scopes

The prefix is represented as an ordered list of n scope objects where n is the total
number of scopes in the prefix. Each scope object has a type (either existential
or universal) and a positive integer nesting which corresponds to the position of
the scope in the ordered scope list. Hence the outermost scope has nesting 1, the
innermost scope nesting n. Variables in a scope are represented as variable objects
which are stored in a variable list. The scope object has a pointer to this list.

Variables and Literals

Each variable object has a unique positive integer id, a positive and negative
literal object and a pointer back to the scope object it belongs to. A literal object
is embedded in a variable object and has a constant-value tag indicating whether
it is negated or not and a pointer back to the variable it belongs to. The purpose
of this pointer is to access the variable from within one of its two literal objects.
All positive (negative) literals of a particular variable are stored in an occurrence
list which is accessible from the respective positive (negative) literal object. An
occurrence list is implemented as a doubly linked list, which allows insertion and
deletion of entries in constant time. Links to the previous and next occurrence
are embedded in a literal node object (see next section). Hence a literal object
additionally has pointers to the first and last entries in the occurrence list and
a counter which corresponds to the current number of list entries. Whenever an
entry is added or removed from the list, the counter is updated accordingly.

Figure 3.7 illustrates the relations between scopes, variables and their literal
objects. The bar on top represents the list of scopes. In this example, the out-
ermost scope is existential, the values for type and nesting are set accordingly,
and the second scope is universal. A scope has n variables in a list (bar in the
middle) which is pointed to be the vars-pointer. The fields of a variable object are
shown in the bar at the bottom. The two columns labelled ‘pos lit’ and ‘neg lit’
represent the two embedded literal objects of a variable. The tags which indicate

26 CHAPTER 3. FORMULA REPRESENTATION

SCOPE nest.=1 type=E vars
 SCOPE nest.=2 type=A vars

 SCOPE ...

Var_1 Var_2 ... Var_n

Var_1

Var_1 Var_2 ... Var_n

neg_lit

scope id

negated=0
var=Var_1

occ_cnt
occ_first occ_last

negated=1
var=Var_1

occ_cnt
occ_first occ_last

pos_lit

Figure 3.7: Prefix representation

negation are set to constant values. The pointer from each literal object back to
the variable is not shown, but indicated by the entry var = Var 1 .

3.4.2 Formula

A formula is represented as a tree of node objects which is accessible via a pointer
to the root of the tree. Depending on its type, a node object stores different pieces
of information. First, a node object has, regardless of the node type, a unique
positive integer id, a non-negative integer level denoting the distance of the node
to the root, a type tag (literal node, OR-node, AND-node), a pointer to its parent
(which is set to null in the tree root), a non-negative integer subformula-size which
corresponds to the number of successors of that node (always one for literal nodes)
and pointers to the previous and next sibling which are used to link all children
of an operator node. The subformula size of a node corresponds to the number of
nodes in the subgraph rooted at that node. It is computed by summing up the
subformula sizes of the children and adding one for the node itself.

The children are stored in child lists which are, similar to occurrence lists,
implemented as doubly linked lists with a counter for storing the current length of
the list. Therefore an operator node object additionally has pointers to its first and
last child. Together with the embedded sibling-pointers (also called “level links”)

3.4. IMPLEMENTATION 27

Field Relevance

id O,L
level O,L
type O,L

parent O,L
level links O,L
child list O
occ.links L

lit L
child count O

subformula size O,L

Table 3.1: Relevant node fields with respect to node type

in an operator node’s children, these pointers form the child list of an operator
node. Note that this design of child lists is not possible if DAGs are used, since
embedded sibling pointers require a node to occur in exactly one child list. In
DAGs, this is generally not the case.

Finally, a literal node object has additional pointers to the previous and next
occurrence in the occurrence list (also called “occurrence links”) and a pointer to
the corresponding (positive or negative) literal object of the variable they belong
to, which is called literal pointer. A literal node object denotes a negative (positive)
occurrence of a variable if the literal pointer points to the negative (positive) literal
object of the variable.

Table 3.1 provides a summary of the pieces of information that are stored in
nodes. In the second column, “O” (“L”) means that the respective field is relevant
for operator nodes (literals nodes). In our implementation in C, there is only
one single coarse-grain structure representing a node object. Operator and literal
nodes are distinguished solely by dereferencing their type tag. Unused fields like
“lit” for an operator node are set to null. Optimizing this design for memory has
not been considered so far.

Node Marks and Node IDs

In the given implementation-related description of a prefix and a formula, the
possibility of marking objects has been neglected. In fact, it is often necessary
to mark nodes or variables within (still to be described) maintenance algorithms
after the graph of the formula has been modified. In order to keep the view on the
implementation abstract, the presence of certain object marks is taken for granted
whenever marking is needed. Marks, their names and meanings are introduced

28 CHAPTER 3. FORMULA REPRESENTATION

on demand. In a description of an algorithm it is assumed that, unless otherwise
stated, all marks of whatever name are cleared.

The ID of a node or a variable plays a minor role in Nenofex. IDs could always
be assigned arbitrarily on demand, provided that each variable and operator node
gets a unique ID and each positive (negative) literal node the same ID (negated ID)
as its variable. Hence a negative literal node of variable x would get −id(x). The
relation between a variable, its literals and the respective occurrences is entirely
expressed with pointers as described and does not rely on IDs.

3.4.3 Low-level Pointers: A Comprehensive Example

This section considers a comprehensive example illustrating the low-level pointer
organization. Figure 3.8 shows pointers between the nodes of the tree represen-
tation for formula (a ∧ ¬b ∧ (a ∨ c)). Different styles (solid or dashed) or labels
indicate different purposes of pointers. Pointers of a particular kind are labelled
once only in order to keep the picture clear. Furthermore, null pointers are not
indicated in the picture.

A node in the picture has five fields: type, id, level, number of children, and
subformula size. Node IDs are assigned arbitrarily except for literal nodes which
have as an ID the name of the variable they belong to. The number of children in
literal nodes (nodes with type “LIT”) is always zero, the subformula size always
one because of the trivial subformula which is the literal denoted by the literal
node itself. Node 1 is the root and has a subformula size of 6. All children of an
operator node (nodes 1 and 2) have the same level.

Dashed pointers are parent pointers (label “par”). Node 1 is the root and is
the only node in the tree which has no parent pointer.

Solid pointers which start in an operator node and which point to the first
and last child of that operator node are one part of the child list implementation
(labels “cfirst” and “clast”). Its second part is formed by horizontal solid pointers
which doubly link the children of an operator node (labels “cprev” and “cnext”).

The variable table in the picture is abstract and compactly summarizes the
illustrations from figure 3.7, so details with this respect are ignored in this example.
The table contains three variables, each of which has its positive (negative) literal
object on top (bottom) of the respective column.

Dotted pointers represent the implementation of occurrence lists. A literal
object in the abstract variable table has two fields which represent the pointers to
the first and last literal of its occurrence list (labels “ofirst” and “olast”, pointers
have a black dot at the tail). Similar to the implementation of child lists, these
pointers are one part of the occurrence list implementation. The second part is
formed by the dotted pointers from one occurrence of a variable to the next, like
for the two positive occurrences of variable a in the picture (labels “onext” and

3.4. IMPLEMENTATION 29

AND

1

level=0

#ch=3

size=6

LIT

a

level=1

#ch=0

size=1

cfirst

OR

2

level=1

#ch=2

size=3

clastpar

LIT

b

level=1

#ch=0

size=1

LIT

a

level=2

#ch=0

size=1

onext

pos_lits

VARS

neg_lits

'A'

'B'

'C'

lit

cnext

cprev

LIT

c

level=2

#ch=0

size=1

oprev

ofirst

olast

Figure 3.8: Low-level pointers in tree representation of formula (a ∧ ¬b ∧ (a ∨ c))

30 CHAPTER 3. FORMULA REPRESENTATION

“oprev”). Note that the positive literal of variable a is the only one which has more
than one occurrence, hence all other literal nodes (b, c) in the graph do not have
occurrence links. For example, the negative literal of variable b has no occurrence
links and it is the first and last entry in the occurrence list of the negative literal
object of variable b.

Solid pointers which start in a literal node and which point to the literal object
in the variable table are literal pointers. For negative literal nodes, these pointers
point to the negative literal object, like for the negative literal of variable b in the
example. By a sequence of pointer dereferences starting in a literal node, it is
possible first to access the literal object, further the variable object and finally the
scope object the variable belongs to.

3.4.4 Basic Graph Operations

This section introduces basic operations for maintaining an NNF-tree and its prop-
erties under certain modifications such as deleting and inserting nodes or assigning
variables. Corresponding to these operations, abstract functions will be defined.
Referring to child- or occurrence lists means the lists which are formed by pointers
as described in section 3.4.2 (pointers are not mentioned any more).

In the following explanations, it is assumed that a given NNF-tree fulfills all
structural restrictions from section 3.3. The tree may be accessed via a pointer to
the root, scopes and variables are stored as described above.

Creating Nodes

New nodes may be created by calling one of two functions new operator node(type)
or new literal node(var , negated). The former requires the parameter type to be
either OR-node or AND-node, the latter takes a pointer to the variable and a flag
whether the created literal node is to be negated or not. Both return a pointer to
a new and “clean” node object.

Node Insertion, Removal and Deletion

All operations for inserting and removing nodes which are defined in this section
can be carried out in constant time because both child lists and occurrence lists
are implemented as doubly linked lists with pointers to the first and last entry
(for doubly linked lists, see [OW02], for example). Concerning possible violations
of structural restrictions which may occur after one of these operations has been
carried out, there are special functions merge parent and one level simplify to
repair the tree structure locally (see below).

3.4. IMPLEMENTATION 31

Function add to child list(parent , new child) takes node new child and appends
it to the child list of parent in case that new child is an operator node. Else,
if new child is a literal node then it is prepended to the child list. This policy
guarantees that literal nodes always occur before any operator node in the child list
of a node. The importance of this convention will become apparent below in section
3.4.6 where one-level simplification is described. After a node has been added to
the child list, the child counter of the parent node is incremented by one and the
child’s parent pointer is set to the parent. Function unlink from child list(node)
reverses the effects of add to child list .

Function add to occ list(lit node) takes a literal node and appends it to the
occurrence list of the respective literal object. The counter in the literal object is
incremented by one. The reverse function is unlink from occ list(lit node).

Function delete subformula(del node) takes node del node, unlinks it from the
tree and releases all resources that were held by any of the successors of del node.
This function requires the subgraph of del node to be traversed and hence can
be carried out in linear time. Care must be taken that literal nodes are properly
unlinked from their occurrence list.

Adding or removing nodes requires maintenance of node levels and subformula
sizes in some situation. For the descriptions given in the following two sections, we
assume that in an NNF-tree these values were set correctly for every node before
any modification was made.

Maintaining Subformula Sizes

Whenever a node is inserted into or removed from the child list of its parent,
the subformula sizes of the parent and of all of its predecessors have to be up-
dated. This is achieved by function update subformula size(parent , size). If size
is the subformula size of some node n that has been added (removed), then value
size has to be added to (subtracted from) the subformula sizes of all nodes pi in
p1, p2, . . . , pm−1, pm where p1 = parent(n)andpm = root . The path from the parent
to the root is expected to be short because of structural restrictions. Maintenance
of subformula sizes is one task which profits from the design decisions that have
been made.

Maintaining Node Levels

Maintenance of node levels is necessary only if some node n is added to a child
list and only for all nodes in the subgraph of n. This requires a traversal of this
subgraph where the level of some node ni in the subgraph is set to level(parent(ni)).
Function update level(node) fulfills this task in a non-recursive, linear depth-first
search traversal.

32 CHAPTER 3. FORMULA REPRESENTATION

PP

P 3

SP D

5 6

PP

SP 3

5 6

PP

5 6 3

Figure 3.9: Parent merging

3.4.5 Parent Merging

It may happen that the tree violates the structural restriction of arity after a node
has been deleted. This situation occurs if a parent node has only one child left
after deletion of its last but one child. The leftmost tree in figure 3.9 illustrates the
problem by means of a generalized tree. P stands for “parent”, SP for “subparent”,
PP for “parent’s parent” and D for “deleted”. In the figure, diamond-shape
nodes and may represent either an AND-node or an OR-node under the
requirement of alternating types over levels. Hence if node PP is an AND-node
then so is node SP and the root of subgraph D. Figure 3.9 illustrates function
merge parent(parent) which takes an operator node parent with only one child
remaining and repairs the structure locally.

If subgraph D is deleted then node P will have only one child left. Since node
P is an operator node with a minimum arity of two, it can be deleted as well which
causes its remaining child (node SP) to be linked to node PP (second tree). In case
that SP is an operator node, this situation violates the requirement of alternating
types, provided that the tree had fulfilled the restriction before deletion (this is
assumed). Therefore, node SP , which has the same type as node PP , is discarded
too and its children are linked to node PP (third tree). One can think of lifting
node PP up into node SP and merging both nodes, hence the name “parent
merging”.

3.4. IMPLEMENTATION 33

In the other case, if node SP had been a literal node then it would have been
linked to PP without causing any violation of alternating types (but not necessarily
regarding one-level simplification – see below).

A special case in parent merging is the situation where the parent node which
has only one child left is the root of the tree. In this case, no child nodes have to
be moved but instead the one remaining child becomes the new root of the graph.
Additionally, node levels have to be updated.

Function merge parent is used to repair the structure after node deletions only,
and not after inserting nodes. The structural restriction of alternating types must
be preserved manually when inserting nodes by checking the types of the parent
and the new child, and if the types are equal, by inserting the children of the new
child rather than the new child itself.

Furthermore, any time literal nodes are inserted into a child list, it has to be
checked whether the parent node needs to be one-level simplified. Particularly, like
in figure 3.9, if SP was a literal node itself or had literal nodes as children, then
the children of PP might contain double or complementary literals after linking.
One-level simplification is the topic of the next section.

3.4.6 One-level Simplification

One-level simplification can remove simple redundancies in the tree by inspecting
the child list of an operator node. It is necessary to remove all such redundancies,
not only because operator nodes are saved but also because the implementation
of advanced approaches like variable scoring (chapter 4) or redundancy removal
(chapter 4) is made simpler.

When assuming that the NNF-tree is fully one-level simplified, then violations
of this restriction might occur any time a literal node is added to the child list of
some parent node. Thus after this operation, the parent node needs to be checked
for possible one-level simplifications.

Function one level simplify(parent) works as follows if implemented in a
straightforward way (a crucial refinement is presented below): the parent’s child
list is traversed. If a literal is encountered whose variable is not yet marked, then
that variable gets positively (negatively) marked if the literal is positive (neg-
ative). Else, if the variable is positively (negatively) marked and the literal is
positive (negative) then the literal may be deleted since it is redundant. In the
remaining case, if the variable is positively (negatively) marked and the literal is
negative (positive) then the parent is redundant and may be deleted because its
child list contains two complementary literals. Finally, all marked variables have
to be unmarked.

34 CHAPTER 3. FORMULA REPRESENTATION

1

2c 3

4

a a b

c

1

2c 3

c

1

c c 3

1

c 3

Figure 3.10: Recursive effects of one-level simplification and parent merging

The runtime of function one level simplify(parent) as presented is linear in the
number of children of the parent. Test runs on real-life industrial SAT benchmarks
(taken from SAT competition 2007 [SAT07]) made its drawbacks apparent: fully
traversing large child lists, in this case the child lists of the root of the CNF, is
too expensive. Furthermore, only literal nodes as children are relevant in one-level
simplification, operator nodes not at all.

Child Lists: Literals First

In order to cope with the runtime bottleneck of one-level simplification in its
straightforward implementation, a way has to be found to efficiently access the
literal nodes in a child list only. In section 3.4.4 where basic functions for adding
nodes to child lists have been described, an important convention with respect to
this problem has been introduced: literal nodes always occur before any operator
node in a child list.

This is a simple solution: in one-level simplification, it suffices to traverse
a child list until the first operator node is encountered. This way, no work is
wasted in searching for literal nodes any more. The runtime of function one -
level simplify(parent) in the revised implementation is now linear in the number
of literal nodes in the child list (compared to the number of children before).

Recursive Effects

One-level simplification combined with parent merging can cause redundancies
over multiple levels which are then removed recursively. Figure 3.10 shows an
example. In the leftmost tree, node 4 is redundant because it contains two com-

3.4. IMPLEMENTATION 35

plementary literals of variable a. After node 4 has been deleted (second tree), node
2 has only one child left, a situation which requires parent merging. The third pic-
ture shows the tree after the remaining child of node 2 has been moved up. Since
a literal node has been added to the child list of node 1, one-level simplification
has to be performed. The final result is the fully one-level simplified tree on the
right.

Recursive effects are not possible with one-level simplification alone because
of the restriction of alternating types. For example, an AND-node which is false
always has an OR-node as parent, hence it suffices to delete the AND-node. If the
path from the false node up to the root consisted of adjacent AND-nodes, then all
these nodes would collapse to false. Such situations can never occur.

Concerning the implementation of delete subformula, one level simplify and
merge parent, there is indeed the possibility of indirect recursive function calls
like in the previous example. Deletion could cause merging, which could cause
one-level simplification which again could cause deletion and so on. It seems to
be unlikely (although possible) to run into an overflow of the function call stack
within such a sequence of recursive calls. Each time parent merging is carried out,
the “focus” (the node which is concerned by one-level simplification) moves up
towards the root. Because of the structural restrictions, node levels are expected
to be small and so the number of possible recursive calls. In fact, this is the only
recursive part in the implementation of Nenofex.

3.4.7 Assigning Variables

The nature of variable assignments in Nenofex is different from that in a DPLL-
like search-based solver. In the latter, it must be possible to reverse the effects
that have been produced by assigning a decision variable during backtracking: in
order to be able to try out both values of a variable, the original formula must be
recovered.

This is different if variables in a formula in NNF are eliminated by expansion.
The two possible assignments of a variable and its effects are encoded in the formula
simultaneously at the cost of formula size. When a variable is expanded, then
subformulae which contain literals of that variable will either become reduced in
size or collapse to a constant truth value, depending on the value of the variable
and the polarity of the literal. Therefore, nodes which correspond to reduced parts
of such subformulae are immediately deleted from the tree.

Assigning variables and propagating the effects is realized in functions assign -
variable(var, value), propagate truth(literal) and propagate falsity(literal). Func-
tion assign variable(var, value) takes a variable and the value to be assigned. First,
the list of negative occurrences is traversed. If value is true (false) then function
propagate falsity(literal) (propagate truth(literal)) is called on every negative lit-

36 CHAPTER 3. FORMULA REPRESENTATION

eral, and vice versa for all positive occurrences. Function propagate truth(literal)
takes a literal and propagates the effects that are caused if the literal becomes
true. The effects depend on the parent node. If the parent is an OR-node, then it
is deleted since its boolean function is constant true. Else if it is an AND-node,
then the literal is deleted. Function propagate falsity(literal) works analogously.

Note that because of structural restrictions, the effects of propagating variable
assignments occur locally at the parent nodes of the respective literals. For exam-
ple, there are never two or more adjacent AND-nodes (OR-nodes) on the path from
a literal up to the root. Hence propagating truth values will affect the literal itself
or its parent, but never any node farther away from the literal in direction towards
the root. Only parent merging and one-level simplification may cause additional
deletions. Assigning variables as described is applied during the elimination of
units and unates.

3.4.8 Eliminating Units

The notion of units has been introduced for formulae in CNF in section 2.2.3 (page
12). In case of an NNF-tree, a literal is unit if its parent is an AND-node and is the
root of the tree. Units can be detected efficiently when relying on the convention
from section 3.4.4 that literal children occur before any operator children in a
child list. Unit elimination works the same way as on CNF as far as assigning the
variable which a literal belongs to is concerned. If the tree root is an AND-node,
function simplify eliminate units successively accesses the first child of the tree
root and assigns the respective variable if the child is a literal in order to eliminate
the unit. Further variables may become unit which happens whenever one of their
literals is moved up to the root during parent merging. Unit elimination will run
until saturation and ends if the first child of the root is an operator node or the
whole tree has been deleted.

3.4.9 Eliminating Unates

A variable becomes unate if it has either only positive literals or only negative lit-
erals left. Since a counter is maintained whenever literals are added to or removed
from occurrence lists of variables, it suffices to catch the situation when a counter
decreases from one down to zero in order to detect unates efficiently. Different
from unit elimination, where no auxiliary data structure is used for storing units,
unate variables are collected in a separate list. Function simplify eliminate unates
successively assigns variables from this list as described in section 3.4.7. Any vari-
able which becomes unate during elimination will be added to the list. As with
unit elimination, this process runs until saturation.

Chapter 4

Expansion

The topic of this chapter is expansion for NNF, the core function in Nenofex. In
two steps, an expansion method is developed which copies the relevant parts of a
formula only.

The first step (section 4.1) is an observation: applying expansion strictly ac-
cording to the formal definitions in section 2.2.4 (page 13) will likely yield an
expanded formula which contains parts that have been copied unnecessarily. It
is shown that the expanded formula can be postprocessed until all redundancies,
which correspond to unnecessarily copied parts (and only those), have been re-
moved. Redundancy which has been present before expansion or which has been
added by copying relevant parts of the formula is ignored in this chapter. Post-
processing is done by applying distributivity of conjunction and disjunction.

In the second step (section 4.2), the effects of postprocessing are anticipated in
a revised expansion method called local expansion which, for some variable to be
expanded, always yields a formula which is free of unnecessarily copied parts (but
not free of redundancy in general). We conjecture that the resulting, expanded
formula is minimal with respect to size increase. Our method is closely related to
the CNF-based approaches for universal expansion in [Bie04] and [BB07], and to
the technique of miniscoping [AB02].

Finally, in section 4.3 the implementation of local expansion is described, where
emphasis is put on algorithms for identifying relevant parts of a formula. A special
case of expansion is mentioned where the size of the formula does not increase.

4.1 Full Expansion and Postprocessing

Expansion of some variable x in formula F will almost double the size of the
formula if carried out in a straighforward way, called full expansion, as

F ≡ F [x/0] ∨ F [x/1] (4.1)

37

38 CHAPTER 4. EXPANSION

The size of the resulting formula may be reduced in a postprocessing step where
common subformulae, which have not been affected during expansion, are factored
out by applying distributivity. Certain (not all) subformulae which contain occur-
rences of x will be affected, since variable x is set to true and false in the respective
copies of the formula.

In the following example (omitting the prefix)

F ≡ A ∧ (B ∨ (C ∧X1 ∧X2)) (4.2)

formula F in NNF contains subformulae A, B and C which do not contain variable
x, and subformulae X1 and X2 which contain all occurrences of x. Assume that
all variables are existentially quantified. Variable x can be expanded as defined
above:

F ≡ (A ∧ (B ∨ (C ∧X1 ∧X2)))[x/0] ∨ (4.3)

(A ∧ (B ∨ (C ∧X1 ∧X2)))[x/1]

Subformulae A, B and C will not change when setting x to true or false. Thus
the scope of the restriction operators [x/0] and [x/1] may be reduced:

F ≡ (A ∧ (B ∨ (C ∧X1 ∧X2))[x/0]) ∨ (4.4)

(A ∧ (B ∨ (C ∧X1 ∧X2))[x/1])

F ≡ (A ∧ (B ∨ (C ∧X1 ∧X2)[x/0])) ∨ (4.5)

(A ∧ (B ∨ (C ∧X1 ∧X2)[x/1]))

F ≡ (A ∧ (B ∨ (C ∧ (X1 ∧X2)[x/0]))) ∨ (4.6)

(A ∧ (B ∨ (C ∧ (X1 ∧X2)[x/1])))

In formulae 4.3 to 4.6, expressions [x/0] and [x/1] have been successively moved
inside to subformula (X1 ∧X2), which contains all occurrences of x. A, B and C
have been copied unnecessarily and can be factored out:

F ≡ (A ∧ (B ∨ (C ∧ (X1 ∧X2)[x/0]))) ∨ (4.7)

(A ∧ (B ∨ (C ∧ (X1 ∧X2)[x/1])))

F ≡ A ∧ ((B ∨ (C ∧ (X1 ∧X2)[x/0])) ∨ (4.8)

(B ∨ (C ∧ (X1 ∧X2)[x/1])))

F ≡ A ∧ (B ∨ (C ∧ (X1 ∧X2)[x/0]) ∨ (4.9)

B ∨ (C ∧ (X1 ∧X2)[x/1]))

F ≡ A ∧ (B ∨ (C ∧ (X1 ∧X2)[x/0]) ∨ (C ∧ (X1 ∧X2)[x/1])) (4.10)

F ≡ A ∧ (B ∨ (C∧ ((X1 ∧X2)[x/0] ∨ (X1 ∧X2)[x/1]))) (4.11)

4.2. LOCAL EXPANSION 39

In 4.8, A has been factored out. The copy of B can be deleted in 4.9 which
was obtained from 4.8 by applying associativity of disjunction. Finally, C can
be factored out in 4.10, yielding 4.11 which is the minimal formula that can be
obtained by expanding x. Redundancy which is possibly added by copying affected
parts of the formula (like X1 and X2 in the example) is ignored with this respect.

Generally, for some formula and a variable to be expanded, the minimal ex-
panded formula is defined to be the expanded formula which is free of unnecessarily
copied parts.

Factoring out common unaffected subformulae in a fully expanded formula
like in equation 4.1 or 4.7 can reduce the size of the formula considerably. It is
possible to obtain the minimal expanded formula with respect to some variable x
by postprocessing as described.

However, if expansion was implemented this way, then this method would turn
out to be impractical in many cases. First, for a large formula, it may be problem-
atic that the fully expanded formula fits into memory. Second, during factoring,
common subformulae need to be identified efficiently, which seems to be a dif-
ficult task. Finally, copying the whole formula and discarding redundant parts
afterwards is a waste of work on its own.

Therefore, it is necessary to have a method for expansion which, by constuction,
yields the minimal expanded formula. Such method is called local expansion.

4.2 Local Expansion

In the following, first a method for local, NNF-based expansion of existential or
universal variables from the innermost scope Sn, as defined in section 2.2.4 (page
13) is presented. Afterwards, this method is adapted for expansion of universal
variables from scope Sn−1. We conjecture that these revised expansions are optimal
with respect to size increase of the formula.

Local expansion can be regarded as applying miniscoping [AB02] followed by
expansion: for a variable to be expanded, the scope of its quantifier is minimized
by pushing the quantifier from the prefix inside the formula successively. Then the
subformula in the minimized scope is expanded.

4.2.1 Innermost Expansion

Given a QBF S1 . . . Sn φ in NNF with n scopes and some variable x in Sn where
type(Sn) = ∃ (type(Sn) = ∀), let ers(x) denote the expansion-relevant subformula
of variable x, which is defined to be the smallest subformula of φ which contains
all occurrences of x. Hence ers(x) ∈ subf (φ), as defined in section 2.1.5 (page 10).

40 CHAPTER 4. EXPANSION

Local expansion of variable x in φ is defined as follows:

S1 . . . Sn φ ≡ S1 . . . (Sn \ {x}) φ[ers(x) / (ers(x)[x/0]⊗ ers(x)[x/1])] (4.12)

where operator ⊗ = ∨ (⊗ = ∧) if type(Sn) = ∃ (type(Sn) = ∀). In rule 4.12, φ is
modified by replacing the expansion-relevant subformula ers(x) by a subformula
consisting of two copies of ers(x), where variable x is assigned true and false,
respectively. Thus expansion of x is applied locally and does not require factoring.
Generally, factoring out is not possible any more because there are no common
unaffected subformulae in formula (ers(x)[x/0] ⊗ ers(x)[x/1]) which have been
copied unnecessarily. Hence local expansion yields the minimal expanded formula.

In this respect, it is important to point out that formula
(ers(x)[x/0]⊗ers(x)[x/1]) may likely contain other redundancies. Coping with the
general problem of redundancy removal is the topic of chapter 6. In this chapter,
the term “redundancy” stands for trivial redundancies which can be avoided solely
by copying the relevant parts during expansion only.

For the previous example in formula 4.2, ers(x) = (X1 ∧ X2). Note that, for
example, (C ∧X1 ∧X2) is a subformula of F which contains all occurrences of x,
but not the smallest one. Assuming that x ∈ Sn and type(Sn) = ∃ for some prefix
S1 . . . Sn, local expansion of x in formula F yields (omitting the prefix)

F ≡ A ∧ (B ∨ (C ∧ ((X1 ∧X2)[x/0] ∨ (X1 ∧X2)[x/1]︸ ︷︷ ︸
ers(x)[x/0] ∨ ers(x)[x/1]

))) (4.13)

The result is equal to formula 4.11, which has been obtained by postprocessing.

4.2.2 Non-innermost Expansion

We consider universal expansion of variables from scope Sn−1, that is, the first
non-innermost scope, only. Applying universal expansion strictly according to the
definition in section 2.2.4 has the same drawback as pointed out above: unaffected
subformulae are copied redundantly, probably together with needless duplications
of existential literals.

Concerning CNF, these problems have been investigated in Quantor [Bie04],
sKizzo [Ben05b] and quantifier trees [Ben05a]. For example, before some universal
variable x from scope Sn−1 is expanded in Quantor, the set of depending existential
variables from scope Sn is computed. Then all clauses which contain occurrences
of x or of any depending existential variable are copied during expansion. This
idea is generalized in [BB07] to universal expansion from arbitrary scopes. In the
following, we take the definitions and notation from [BB07] and adapt them for
NNF.

4.3. IMPLEMENTATION 41

Given a QBF S1 . . . Sn−1Sn φ in NNF with n scopes and some universal variable
x in Sn−1 where type(Sn−1) = ∀ and type(Sn) = ∃. Let ers(x) be defined as in the
previous section. Let Dx be the set of depending existential variables of x defined
as follows:

D(0)
x := {y ∈ Sn | y has occurrences in ers(x)}

D(k+1)
x := {z ∈ Sn | z has occurrences in ers(y′) for some y′ ∈ Dk

x}, k ≥ 0

Dx :=
⋃
k

Dk
x

Let urs(x,Dx) denote the expansion-relevant subformula of universal variable x
with respect to Dx, which is defined to be the smallest subformula of φ which
contains all occurrences of x and all occurrences of any existential variable y ∈ Dx.
We define local expansion of variable x in φ as follows:

S1 . . . Sn−1Sn φ ≡ (4.14)

S1 . . . (Sn−1 \ {x})(Sn ∪D′x) φ[u / u[x/0] ∧ u′[x/1]]

where u stands for urs(x,Dx) and urs(x,Dx)′ is obtained from urs(x,Dx) by sub-
stituting y′ for all occurrences of y ∈ Dx. D′x is the set which contains duplicated
variables y′ for every y ∈ Dx. The definition of urs extends the one of ers from the
previous section by taking the set of depending existential variables into account.
In fact, the notion of urs(x,Dx) is closely related to the CNF-based approaches
in [Bie04] and [BB07], where the set Dx is constructed via a connection relation
between variables: vi is locally connected to vj if both occur in a common clause.
In our NNF-based approach, the connection relation is generalized to subformulae.

4.3 Implementation

This section describes the implementation of local expansion in Nenofex. First, a
correspondence will be established between the concept of expansion-relevant sub-
formulae and subtrees in the NNF-tree. The essential problem is to identify the
subtree which, when copied during expansion, will yield an NNF-tree representing
the minimal expanded formula. Such subtrees are called expansion-relevant sub-
trees : the expansion-relevant subformula corresponds to the expansion-relevant
subtree and vice versa.

Second, algorithms for solving this problem are presented both for innermost
and non-innermost expansions, where the latter include computation of the set of
depending existential variables.

And third, the process of copying subtrees and assigning the expanded variable
will be explained in detail (sections 4.3.3 and 4.3.4), putting the focus on the
maintenance of node properties such as subformula size and level information.

42 CHAPTER 4. EXPANSION

1

2A

3

C X1 X2

B

Figure 4.1: NNF-tree for A ∧ (B ∨ (C ∧X1 ∧X2))

4.3.1 The Role of Least Common Ancestors

The notion of expansion-relevant subformulae ers and urs has been introduced
above. Since every subformula corresponds to a subtree in the NNF-tree, there
exists an expansion-relevant subtree in the NNF-tree which exactly represents the
expansion-relevant subformula ers or urs , respectively. It suffices to unlink this
subtree and replace it by an expanded subtree according to the rules of local
expansion from sections 4.2.1 and 4.2.2. We describe how to find this subtree in
an NNF-tree.

LCAs as an Over-approximation

Given an NNF-tree for some formula φ. The least common ancestor (LCA) of
some variable x ∈ V (φ), written as lca(x), is the LCA over all of its occurrences.
Hence lca(x) is a node which represents a subtree containing all literal nodes
of variable x. Figure 4.1 shows an NNF-tree for formula 4.2 from the previous
sections, where subformulae A, B and C are free of occurrences of x. Node 3
is the LCA of x. Observe that the subtree represented by node 3 does not only
contain all occurrences of x, but subgraph C as well.

Node lca(x) and its subtree do not necessarily correspond to the expansion-
relevant subformula of x. Correctness of local expansion does not suffer if copying

4.3. IMPLEMENTATION 43

the subformula of lca(x) instead of the expansion-relevant subformula, but the
resulting, expanded formula will not be minimal in this case.

Note that, if node 3 in figure 4.1 had only X1 and X2 as children, then the
subtree of lca(x) would be relevant with respect to local expansion of x. Such
situations are unlikely to occur in practice. For example, if formula φ is in CNF
and some variable x has been chosen for expansion, then lca(x) will be the root
of the CNF (unless variable x has one occurrence only and thus is unate). Thus
expanding x will copy the whole formula.

The notion of variable LCAs has to be extended in order to act as a suitable
concept for identifying the expansion-relevant subtree.

Expansion-Relevant LCAs

For some variable x ∈ Sn where type(Sn) = ∃/∀ and lca(x), the expansion-relevant
LCA of x is defined by the node lca(x) and all children of lca(x) which contain at
least one occurrence of x. Such children are called LCA-children.

In figure 4.1, for example, the expansion-relevant LCA of variable x comprises
node 3 and its children X1 and X2 .

Concerning non-innermost expansion of universal variables from scope Sn−1,
the expansion-relevant LCA is defined by the LCA over all occurrences of the
expanded variable and of all depending existential variables. The definition of
LCA-children is extended to children which contain at least one occurrence of x
or of any depending existential variable from set Dx.

Finally, a mutual correspondence has been established between expansion-
relevant LCAs, subtrees and subformulae: the expansion-relevant LCA of a vari-
able corresponds to the expansion-relevant subtree (and vice versa), which further
corresponds to the expansion-relevant subformula ers or urs (and vice versa).
Expansion-relevant LCAs are the concept which allows to compute expansion-
relevant subtrees in an NNF-tree.

In the following section, algorithms are presented for computing expansion-
relevant LCAs and related sets of depending existential variables for non-innermost
expansion.

4.3.2 Computing Expansion-relevant LCAs

The core algorithm (function compute lca in algorithm 2) for computing expansion-
relevant LCAs for both innermost and non-innermost expansion in Nenofex follows
directly from the definition of LCAs of sets (see section 3.1 on page 15). Given two
nodes, the basic idea is to carry out an explicit upward-directed search to determine
the LCA. For sets of nodes, the LCA is computed incrementally by application of
commutativity and associativity of the LCA operator. In order to compute LCAs

44 CHAPTER 4. EXPANSION

Algorithm 1: expansion relevant lca
Input: variable var ∈ V (φ)
Result: expansion-relevant LCA of var as (lca, lca children)
Data: occurrence lists neg occs, pos occs of var,

nodes lca, occ, set lca children

lca ← null1

lca children ← 602

forall occ ∈ neg occs do3

(lca, lca children) ← compute lca(lca, lca children, occ, 60)4

forall occ ∈ pos occs do5

(lca, lca children) ← compute lca(lca, lca children, occ, 60)6

for non-innermost expansion related to subformulae urs , the algorithm is designed
to work on intermediate expansion-relevant LCAs and their sets of collected LCA-
children. In each step of incremental computation, the intermediate expansion-
relevant LCA is successively enlarged.

It is important that the level of each node, which is the distance from the
root, is set correctly before LCA computation. The algorithm runs in O(1) space
and O(nm) time where n is the cardinality of the set of nodes where the LCA
is computed and m is the maximum node level in the tree. The time complexity
is a drawback, but the value of m is expected to be small on average due to the
imposed restrictions on the tree structure.

LCAs for Innermost Expansion

The pseudo-code for computing expansion-relevant LCAs of existential or universal
variables in scope Sn, which correspond to subformulae ers , is shown in algorithms
1 and 2.

Starting in algorithm 1, the pair (lca, lca children) denotes the (intermediate)
expansion-relevant LCA of variable var. After the data structures have been reset
(line 2), the core function compute lca is called on every occurrence of var (lines
4 and 6), where the expansion-relevant LCA is computed incrementally. Actually,
function compute lca takes two (intermediate) expansion-relevant LCAs (two nodes
and the respective collections of LCA-children; altogether four arguments in the
pseudo-code). Computation of the LCA of a variable using this function is a special
case, because the second argument is an occurrence of the variable. Therefore, the
respective set of LCA-children is always empty (the last argument of function
compute lca in lines 4 and 6).

Function compute lca in algorithm 2 computes the LCA of the given interme-
diate LCA and an occurrence of var as follows. First, trivial cases are handled

4.3. IMPLEMENTATION 45

Algorithm 2: compute lca
Input: two expansion-relevant LCAs (lca1, lca children1) and (lca2, lca children2)
Result: (lca, lca children), which is the (intermediate) expansion-relevant LCA of

(lca1, lca children1) and (lca2, lca children2)
Data: nodes high, high prev, low, low prev, lca, collection lca children

lca ← null, lca children ← 601

if lca1 = null then lca ← lca2, stop2

if lca2 = null then lca ← lca1, stop3

if lca1 = lca2 then4

lca ← lca15

lca children ← lca children1 ∪ lca children26

stop7

if level(lca1) ≥ level(lca2) then8

high ← lca2, low ← lca19

else10

high ← lca1, low ← lca211

assert(high 6= low)12

while high 6= low do13

if level(low) > level(high) then14

low prev ← low15

low ← parent(low)16

else17

assert(level(high) = level(low) and high 6= low)18

low prev ← low19

low ← parent(low)20

high prev ← high21

high ← parent(high)22

assert(high is the LCA of lca1 and lca2)23

lca ← high24

if high = lca1 then25

assert(lca1 is predecessor of lca2, lca2 was low and was moved upwards)26

lca children ← lca children1 ∪ {low prev}27

else if high = lca2 then28

assert(lca2 is predecessor of lca1, lca1 was low and was moved upwards)29

lca children ← lca children2 ∪ {low prev}30

else31

assert(both high and low were moved upwards)32

lca children ← {high prev } ∪ {low prev}33

46 CHAPTER 4. EXPANSION

(lines 2 and 3), where the algorithm stops immediately (these cases occur in the
first call of function compute lca from expansion relevant lca).

Lines 4 to 7 are relevant for LCA computation related to non-innermost ex-
pansion only (see below). The if-clause in line 4 is always false when computing
the LCA of a variable from the innermost scope.

Next (line 8), the node which is closer to the root, that is higher up in the tree,
is selected among lca1 and lca2 by level comparison.

The actual LCA computation by upward-directed search is carried out in the
loop in lines 13 to 22. The loop terminates if high equals low, that is the LCA
has been determined. As long as high and low have different levels, low is moved
upwards by following parent pointers, where the previous node is remembered in
each step (lines 14 to 16).

If levels of high and low are equal but the LCA has not yet been found out
(line 18), then parent pointers of high and low are followed in parallel fashion,
again remembering the previous node in each step (lines 18 to 22). The loop will
terminate because, in line 18, both high and low have the same distance to the
root of the NNF-tree (it is crucial that level information of nodes is set correctly).
At the latest, this happens at the root of the NNF-tree. Node high is the LCA of
lca1 and lca2 (line 24).

Finally, three cases can occur depending on the relationship between lca1 and
lca2. If lca1 is a predecessor of lca2 (line 25), then high (low) was assigned lca1
(lca2) in line 11 and only low was moved upwards by following parent pointers
until high was reached. Node low prev is uniquely added to the set of LCA-
children of lca1 (line 27). If the subtree denoted by (lca1, lca children1), which is
the intermediate expansion-relevant LCA, did not contain node lca2 before, then
it will after node low prev has been added. Analogous arguments apply for the
situation where lca2 is a predecessor of lca1, which is handled similarly (lines 28
to 30). If there is no successor-predecessor relationship between nodes lca1 and
lca2 (line 31), then both high and low were moved upwards. Nodes high prev
and low prev make up the set of LCA-children of high (line 33), which is the new
intermediate LCA. The previous intermediate LCA is now contained in the subtree
denoted by (lca, lca children).

After the LCA of a some variable x has been computed, the set of LCA-
children always contains at least two and at most n nodes where n is the number
of children of lca(x). Variables with only one occurrence are an exception, but
this case should never occur in practice if unates are eliminated until saturation.
Adding nodes uniquely to the set of LCA-children is implemented by marking all
nodes which are members of the set and adding nodes which are not yet marked
only. This operation can be carried out in constant time (sets are implemented
as stacks). All marks must be cleared before the first and after the last call of

4.3. IMPLEMENTATION 47

Algorithm 3: universal expansion relevant lca
Input: variable univ var ∈ Sn−1 where type(Sn−1) = ∀
Result: LCA of univ var as (univ lca, univ lca children), set Du

Data: set Du , nodes lca, e, set lca children

Du ← 601

(univ lca, univ lca children) ← expansion relevant lca(univ var)2

Du ← Du ∪ collect depending vars(univ var, univ lca children)3

forall unprocessed e ∈ Du do4

(lca, lca children) ← expansion relevant lca(e)5

(univ lca, univ lca children) ← compute lca(univ lca,univ lca children, lca,lca children)6

Du ← Du ∪ collect depending vars(univ var, univ lca children)7

Algorithm 4: collect depending existentials
Input: var ∈ Sn−1 where type(Sn−1) = ∀, set univ lca children
Result: set D
Data: set D, nodes u, s

D ← 601

forall unmarked u ∈ univ lca children do2

mark(u)3

forall unmarked s ∈ Successors(u) do4

mark(s)5

if is literal node(s) and var(s) ∈ Sn then6

D ← D ∪ {var(s)}7

compute lca from algorithm 1. The time required for clearing marks is linear in
the cardinality of the set.

LCAs for Non-innermost Expansion

Given a universal variable univ var ∈ Sn−1, the result of algorithm 3 is the
expansion-relevant LCA (corresponding to subformula urs), denoted by
(univ lca, univ lca children), and the set Du of depending existential variables,
both of which are computed incrementally.

First, the expansion-relevant LCA of univ var is computed according to algo-
rithm 1. The result is the intermediate LCA and LCA-children which contain all
occcurrences of the universal variable (line 2). Next, all existential variables from
scope Sn which have occurrences in the subtree denoted by
(univ lca, univ lca children) are collected (line 3).

Collecting depending variables is carried out in algorithm 4 by traversing the
subtree denoted by (univ lca, univ lca children). With this respect, it is important

48 CHAPTER 4. EXPANSION

not to visit the whole subtree with root univ lca since this node might have children
whose subtrees do not contain occurrences of univ var. Thus only the subtrees of
LCA-children which have been collected so far need to be considered, and further,
only those which have not yet been traversed. This can be achieved by marking
LCA-children whose subtree is traversed (line 3) and ignoring those which are
marked (line 2). For each unmarked LCA-child, all unmarked successors are visited
(line 4). The need for marking successors at this point (line 5) will become apparent
below: the subtree denoted by (univ lca, univ lca children) is enlarged similar to
algorithm 1 and it must be avoided to visit nodes more than once. If a successor
of an LCA-child is a literal node of some existential variable in scope Sn, then the
respective variable is added to set D. After the outer loop has terminated, set D
contains all depending existential variables which have occurrences in the subtree
of the intermediate expansion-relevant LCA of univ var. At the end, marks of
visited LCA-children or nodes are not cleared.

In algorithm 3, the intermediate expansion-relevant LCA of univ var is enlarged
by taking the LCAs of all depending existential variables into account (lines 5 to 7).

For each depending variable in set Du which has not been processed (line 4),
first the expansion-relevant LCA denoted by (lca, lca children) is computed (line
5) as described in algorithm 1.

Enlarging the intermediate LCA of univ var (line 6) is done by means of func-
tion compute lca in algorithm 2, which is called on (univ lca, univ lca children),
the intermediate LCA of the universal variable and on (lca, lca children), the
expansion-relevant LCA of a depending variable.

In algorithm 2, trivial cases in lines 2 and 3 can not occur when computing
LCAs for non-innermost expansion. Apart from that, figures 4.2 to 4.5 illustrate
all possible relationships between lca1 (in this case the universal LCA) and lca2
(the LCA of the depending existential variable) to be handled in algorithm 2. In
the figures, diamond-shape nodes represent operator nodes of arbitrary type, nodes
marked with black dots are LCA-children and nodes labelled R denote arbitrary
subgraphs.

First, if lca1 and lca2 are equal (line 4), then the respective sets of LCA-
children are unified and the algorithm terminates. In figure 4.2, LCA-children of
lca1 and lca2 are marked with black triangles and dots.

Otherwise, LCA computation is carried out as described in the previous section
in lines 8 to 24. For the cases in lines 25 and 28, figure 4.3 (figure 4.4) illustrates
the situation where high is a predecessor of low and where low prev is already
contained (not contained) in the set of LCA-children of high. Dashed lines in the
figures indicate paths of arbitrary length which are traversed by following parent
pointers in lines 14 to 16. Figure 4.5 shows the case where both high and low need
to be moved upwards. Node L is the LCA of the two. Dotted lines are traversed

4.3. IMPLEMENTATION 49

R

Figure 4.2:

high

R

low

R

Figure 4.3:

high

R

low

R

Figure 4.4:

L

high

lowR

R

Figure 4.5:

by following parent pointers in parallel fashion in lines 17 to 22.

After function compute lca has been called on the intermediate universal LCA
and the expansion-relevant LCA of the depending existential variable (line 6 in al-
gorithm 3), the parts of the (possibly) enlarged subtree denoted by
(univ lca, univ lca children) which have not been visited are traversed and de-
pending variables not yet collected are added to set Du (line 7). The loop in line
4 ends if all variables from the (possibly) growing set Du have been processed.

The purpose of marking nodes and variables is threefold. First, it is needed
for adding LCA-children in algorithm 2. Second, for marking visited nodes in
algorithm 4 in lines 3 and 5. It is crucial that each node in the subtree denoted
by (univ lca, univ lca children) is visited exactly once during the whole process
of incremental LCA computation and variable collection. For this kind of marks,
an optimized marking policy has been implemented which differs from the pseudo
code: it suffices to mark visited LCA-children only, in contrast to marking all nodes
in the subtree, and ignoring all successors of visited nodes in forthcoming graph
traversals. This reduces the effort of clearing marks afterwards. The third class
of marks are variable marks: any depending existential variable which has been
added to set Du is marked, which allows adding variables in constant time similar
to adding LCA-children. All marks of whatever kind must be cleared before and
at the end of algorithm 3.

50 CHAPTER 4. EXPANSION

4.3.3 Innermost Expansion

This section deals with maintenance and modifications of an NNF-tree during local
expansion of a variable from scope Sn, where type(Sn) = ∃/∀. Any time the tree
is modified, node properties such as level information or subformula size must be
updated. We make the following assumptions:

• the expanded variable has more than one occurrence

• the set of LCA-children does not contain a literal of the expanded variable

Concerning the first assumption, the situation will never occur if unates are elimi-
nated until saturation (which is expected). The second assumption is related to a
special case of local expansion which does not require copying subtrees (see section
4.3.5 below).

For some variable x ∈ Sn and its expansion-relevant LCA (lca, LCA-children)
as computed by algorithm 1, the NNF-tree has to be transformed according to
the rule of local expansion as defined in equation 4.12. Depending on the type
of the expanded variable, the type of node lca and the cardinality of set LCA-
children compared to the number of children of lca, eight situations can occur which
require different operations with respect to copying subtrees and maintaining node
properties.

We introduce a symbolic notation: a triple 〈var , lca, cardinality〉 denotes one
of the eight possible cases where var ∈ {∀,∃} represents the type of the variable,
lca ∈ {∨,∧} the type of the LCA and cardinality ∈ {=, <} the relation between
the set of collected LCA-children and the set of children of the LCA. Symbol <
represents the situation where the set of LCA-children is a proper subset of the
set of children of lca, otherwise symbol = is used if the two sets are equal.

This notation will be applied both for innermost and non-innermost expansion
as in the next section. For example, the triple 〈∃,∧,=〉 denotes the case of ex-
panding an existential variable which has an AND-node as LCA and the number
of collected LCA-children equals the number of children of its LCA. The situation
in figure 4.1 can be described by 〈∃,∧, <〉. Note that the set of collected LCA-
children always contains at least two nodes and at most as many as the number
of children of the respective LCA in the pair (lca, LCA-children).

Figures 4.6 to 4.9 show parts of an NNF-tree before (left) and after (right)
local expansion of an existential variable has been carried out, and hence can be
regarded as transformation templates. A node labelled L stands for the LCA or
its copy, as in figure 4.8, edges marked with black dots indicate LCA-children or
their copies and nodes labelled R are the remaining children of the LCA which
do not contain occurrences of the expanded variable. Nodes which are labelled
[1] ([0]) correspond to subtrees where the expanded variable is set to true (false).

4.3. IMPLEMENTATION 51

This kind of label represents the restriction operators [x/1] and [x/0] as applied
in the rule of local expansion (equation 4.12).

Concerning necessary tree modifications, only the four cases 〈∃, ∗, ∗〉 will be
described in detail because each of these cases has a dual one (written as “≈”) in
〈∀, ∗, ∗〉. Dual cases can be treated by applying the same sequences of transfor-
mations, provided that the types of nodes are adapted to universal expansion (see
below):

〈∃,∨,=〉 ≈ 〈∀,∧,=〉
〈∃,∨, <〉 ≈ 〈∀,∧, <〉
〈∃,∧,=〉 ≈ 〈∀,∨,=〉
〈∃,∧, <〉 ≈ 〈∀,∨, <〉

Figures 4.6 to 4.9 represent the dual universal cases as well if node types are
inverted (AND-node instead of OR-node and vice versa; corresponding figures A.1
to A.4 may be found in the appendix).

Copying subtrees is performed in a non-recursive, linear depth-first search
traversal where nodes are copied in postorder. Any node properties, in partic-
ular level information, are copied as well. In most situations (see below), this
can save setting node levels in the copied subtree in an additional traversal after
copying.

In the forthcoming descriptions, it is assumed that the basic graph operations
are used for linking and unlinking nodes or maintaing node properties (see section
3.4.4 on page 30). In the implementation, tree modifications during expansion
never cause violations of structural restrictions. All restrictions are fulfilled after-
wards.

Cases 〈∃,∨,=〉 and 〈∃,∨, <〉

The rule of local expansion requires that the expansion-relevant subformula ers(x)
is replaced by ers(x)[x/0] ∨ ers(x)[x/1], which corresponds to replacing the
expansion-relevant subtree denoted by (lca, LCA-children) by a disjunction over
two copies of the subtree (actually, the original subtree and one copy). Since the
LCA, which is the root of the subtree, is an OR-node as well, the structural restric-
tion of alternating types over levels forces the adjacent OR-nodes to be merged
into one node. This has the same effect as if copies of all collected LCA-children
were added to the LCA in advance. The following sequence of operations has to
be carried out:

• for each LCA-child lca-ch in LCA-children, generate a copy lca-ch-copy and
add it to the child list of node lca (node L in figures 4.6 and 4.7).

52 CHAPTER 4. EXPANSION

L L

[0] [0] [1] [1]

Figure 4.6: Expansion template for case 〈∃,∨,=〉

• update the subformula sizes of node lca and of all its predecessors by adding
the sum over the subformula sizes of all nodes lca-ch-copy that have been
generated in the previous step

Figures 4.6 for case 〈∃,∨,=〉 and 4.7 for case 〈∃,∨, <〉 show the the NNF-trees
before and after expansion. Node L is an OR-node. Note that it is not necessary
to explicitly set level information in the subtree of a node lca-ch-copy because
levels have been copied and the original LCA-child and its copy have the same
parent after expansion. Thus node levels are correctly set after copying. The
transformations can be applied to the dual cases 〈∀,∧,=〉 and 〈∀,∧, <〉 without
any modification.

Case 〈∃,∧,=〉

Like in the previous case, local expansion requires the subtree of
(lca, LCA-children) to be replace by a disjunction over two copies of the sub-
tree. Since the parent of lca is an OR-node, replacing the subtree will insert an
OR-node into the child list of the parent of lca, thus violating the structural re-
striction of alternating types: the adjacent OR-nodes must be merged. As before,
this effect can be anticipated by applying the following sequence of operations:

• generate a copy lca-copy of the whole subtree denoted by node lca

4.3. IMPLEMENTATION 53

L

R

L

[0] [0] [1] [1]

R

Figure 4.7: Expansion template for case 〈∃,∨, <〉

• add lca-copy to the child list of the parent of lca (lca and lca-copy will be
siblings then)

• update the subformula sizes of the parent of lca and of all its predecessors
by adding the subformula size of lca-copy

Again, levels are correctly set during copying the subtree, no additional traversal
of the copy is necessary. Figure 4.8 illustrates the transformation, where node L
is an AND-node. Like before, the transformations can be applied to the dual case
〈∀,∨,=〉 without any modification.

There is a special case (not shown in the figures) if lca is the root of the
NNF-tree, that is lca has no parent. A new tree root has to be generated during
expansion:

• create a new OR-node new-root

• make new-root the root of the tree

• add lca to the child list of new-root

• update level information in the subtree of lca by traversal (for all nodes,
levels will be increased by one)

• generate a copy lca-copy of the whole subtree denoted by node lca

54 CHAPTER 4. EXPANSION

L L L
[0] [1]

Figure 4.8: Expansion template for case 〈∃,∧,=〉

• add lca-copy to the child list of new-root

• set the subformula size of new-root to 1 + 2 ∗ size(lca)

Level information which has been set in the subtree of lca will be copied when
generating lca-copy. In order to handle this special situation in the dual case
〈∀,∨,=〉, AND-nodes have to be created instead of OR-nodes.

Case 〈∃,∧, <〉

Different from the previous cases, inserting the disjunction over the two copies
of the subtree of (lca, LCA-children) does not violate the structural restriction
of alternating types. Since lca is an AND-node and the set of LCA-children a
proper subset of its children (there is at least one child which does not contain an
occurrence of the expanded variable), the disjunction has to be added to the child
list of lca and the copies of the subtree denoted by (lca, LCA-children), which have
an AND-node as root, have to be linked to the disjunction.

This situation is shown in figure 4.9. Subtree R does not contain an occur-
rence of the expanded variable. The types of L, which represents the LCA, and
S are AND-node and OR-node, respectively. Node S, a “split node”, is the dis-
junction over two copies of the expansion-relevant subtree and can be regarded to
semantically “split” the expanded subtree with root S into two branches where
the expanded variable is set to true and false. In the previous expansion cases, the

4.3. IMPLEMENTATION 55

L

R

L

SR

[0] [1]

Figure 4.9: Expansion template for case 〈∃,∧, <〉

split node is implicitly represented by the (already present) OR-node where the
copies of the expansion-relevant subtrees have been inserted.

The described expansion is performed in the following sequence of operations:

• create a new OR-node split-or

• add split-or to the child list of lca

• create a new AND-node new-and and set its subformula size to one

• add new-and to the child list of split-or (in figure 4.9, new-and will be a
child of S then)

56 CHAPTER 4. EXPANSION

• for each LCA-child lca-ch in LCA-children, unlink lca-ch from lca, add it to
the child list of new-and and add the subformula size of lca-ch to the one
of new-and. The subtree with root new-and now represents the expansion-
relevant subtree.

• update level information in the subtree of new-and by traversal (for all nodes,
levels will be increased by two)

• generate a copy new-and-copy of the whole subtree denoted by node new-and

• add new-and-copy to the child list of split-or

• set the subformula size of split-or to 1 + 2 ∗ size(new-and)

• update the subformula sizes of the parent of split-or and of all its predecessors
by adding 1 + 1 + size(new-and): one for split-or, one for new-and-copy and
the size of the subgraph of new-and

Apart from the special case in 〈∃,∧,=〉 where the LCA is the root of the tree,
this is the only situation where levels are set explicitly by traversing the subtree.
Concerning the dual case 〈∀,∨, <〉, AND-nodes have to be created instead of OR-
nodes and vice versa.

Figures 4.10 to 4.12 show expansion of variable x in formula

(a ∨ b) ∧ (¬x ∨ c) ∧ (¬x ∨ d) ∧ (x ∨ e) ∧ (x ∨ f)

which is in CNF. In figure 4.10, the root is the LCA of variable x and nodes C1 to
C4 represent clauses containing variable x and hence form the set of LCA-children.
The expansion-relevant formula is C1∧C2∧C3∧C4. Figure 4.11 shows the graph
after relevant subtrees have been copied according to case 〈∃,∧, <〉, but before x
has been assigned and propagated. Labels [x/0] and [x/1] indicate the parts where
x will be set to true and false. The expanded formula after assigning the variable
is shown in figure 4.12. Note that parent merging causes the literals to move up
to the two conjunctions.

Assigning the Expanded Variable

After the different cases in expansion have been treated as described above, all
node properties are set correctly. It remains to set the expanded variable to true
and false in the respective parts of the NNF-tree. By convention, the variable is
set to false in the original subtrees (labelled “[0]” in the figures) and to true in the
copied ones (labelled “[1]” in the figures). Assigning the variable is carried out as
described in section 3.4.7 (page 35).

4.3. IMPLEMENTATION 57

R C1 C2 C3 C4

a b x c x d x e x f

Figure 4.10: Example for case 〈∃,∧, <〉 – original formula

R S

C1 C2 C3 C4 C1 C2 C3 C4

a b

x c x d x e x f

[x/0] [x/1]

x c x d x e x f

Figure 4.11: Example for case 〈∃,∧, <〉 – before propagating variable assignments

58 CHAPTER 4. EXPANSION

R S

e f c d

a b

Figure 4.12: Example for case 〈∃,∧, <〉 – the expanded formula

Since occurrence lists are traversed during assigning a variable, a way has to be
found to distinguish occurrences in the original subtrees from the ones in the copied
subtrees. This is achieved by marking all copied occurrences of the expanded vari-
able during copying (rather than in an additional traversal of the copied subtrees).
For all marked occurrences the variable will be set to true, and to false otherwise.

A Possible Optimization in Level Maintenance

Case 〈∃,∧, <〉 and the special situation in 〈∃,∧,=〉 and the dual cases for universal
expansion require node levels to be set explicitly in an additional traversal of the
affected subtree. In all other cases, level information is copied.

In an advanced approach, which has not been implemented, node levels could
be set directly during copying, both in the original subtree and in the copied one,
because the difference between the old and new value of a node’s level (before and
after expansion) is known in advance. Thus local expansion can be carried out
by visiting nodes in the expansion-relevant subtree exactly once during copying,
where levels, subformula sizes and occurrence marks for assigning the variable are
set in one pass. In addition, the subformula sizes of all predecessors of the “split-
node” (the node where copies of subtrees are linked to) must be updated, which
is not expected to be expensive due to the structural restrictions for keeping node
levels low.

4.3.4 Non-innermost Expansion

Expansion of universal variables from scope Sn−1 can be described by taking into
account only the four cases 〈∀, ∗, ∗〉 among the eight possible cases. The same two

4.3. IMPLEMENTATION 59

assumptions are made as in the previous section at the beginning. The expansion-
relevant LCA, denoted by urs(x,Dx), is computed by algorithm 3. For the re-
spective cases 〈∀, ∗, ∗〉, exactly the same sequences of operations are applied as
listed above for the dual cases 〈∃, ∗, ∗〉. Additionally, depending existential vari-
ables from set Dx are duplicated and added to the innermost scope before subtree
copying. Occurrences of any variable in Dx in the original subtree will be replaced
by occurrences of the duplicated variable in D′x in the copied subtree. During
subtree copying, checking if an existential variable occurs in set Dx, and hence has
been duplicated, can be done in constant time if a pointer is set from each original
variable in Dx to its duplicate when variables are copied.

4.3.5 A Special Case: Non-increasing Expansions

In the previous two sections, the assumption has been made that the set of LCA-
children does not contain a literal of the expanded variable, hence the expansion-
relevant LCA of some variable x does not have a literal of x as a child. In the
opposite case, the expanded variable can immediately be assigned a value (see
below) without copying subtrees. The reason is that copied subtrees would be
deleted by assigning the expanded variable if ordinary, local expansion had been
carried out as described. These effects can be anticipated by assigning the ex-
panded variable in advance, which causes the formula to decrease in size. This
kind of “non-increasing” expansions are applicable both for innermost and non-
innermost expansions, in any of the eight cases defined above. Non-increasing
expansion corresponds to the following equivalences (see [AB02]):

∃x (x ∨ φ) ≡ true
∃x (¬x ∨ φ) ≡ true
∀x (x ∧ φ) ≡ false
∀x (¬x ∧ φ) ≡ false

∃x (x ∧ φ) ≡ φ[x/1]
∃x (¬x ∧ φ) ≡ φ[x/0]
∀x (x ∨ φ) ≡ φ[x/0]
∀x (¬x ∨ φ) ≡ φ[x/1]

In the rules, x and ¬x can be regarded as the literal in the set of LCA-children
and the boolean operators as the LCA of some variable x.

The value that is assigned to the “expanded” variable depends on its type and
on the polarity of the literal. If the variable is existential and the literal positive
(negative), the variable can be set to true (false). Else, if the variable is universal
and the literal positive (negative), the variable is assigned false (true).

60 CHAPTER 4. EXPANSION

Chapter 5

Variable Scores

Eliminating variables by expansion or resolution as in Nenofex or Quantor [Bie04]
may result in an increase of the formula size which could yield the elimination
process impractical. A similar situation applies for search-based, exponential-time
decision procedures for SAT [SAT07]. The observed efficiency and feasibility of
these procedures relies on certain structural properties of problem instances in
practice, where approaches like learning or backjumping [SS96] can benefit from.
Concerning structured QBF, variables likely differ considerably in the amount of
size increase that is caused if the variable is eliminated by expansion or resolution.
A heuristic approach for selecting the variable to be eliminated can profit from
this property. For example, in Quantor the scheduling of variable eliminations is
based on a cost measure which considers the number of literals that are added to
the formula in an elimination step.

In this chapter a cost measure for expansion on NNF will be introduced which
takes into account the total number of nodes in the NNF-tree before and after
expanding a particular variable (section 5.1). The expansion costs of a variable
are defined as the difference between the tree size after and before expansion (the
size of an NNF-tree is the number of nodes in the tree). A variable is “cheaper”
than another if it has lower costs, and hence would be expanded first in a greedy
elimination strategy because less size increase is caused.

The score of a variable in Nenofex is an upper bound on the actual expansion
costs and is used to assess variables for scheduling expansions. Scores take into
account the number of nodes which are added to and removed from the NNF-tree
during expansion in order to estimate the actual expansion costs as precisely as
possible. Exact computation of the number of removed nodes is complex, therefore
this number is an approximation when scores are computed.

61

62 CHAPTER 5. VARIABLE SCORES

Given the expansion-relevant LCA of a variable, algorithms are presented for com-
puting its score (sections 5.2.1 and 5.2.2). Finally, a scheme for partial recompu-
tation of scores after modifications of the NNF-tree is described (section 5.3 and
5.4). The idea is to avoid full recomputation of variable scores whenever possible
by excluding variables whose score has not been affected by the recent expansion.

5.1 Definition

Given a QBF S1 . . . Sn φ, its NNF-tree and an existential or universal variable x
from scope Sn−1 or Sn, the accurate expansion costs of x are defined as

cost(x) := size(φ′)− size(φ)

where formula φ′ is obtained from φ by eliminating x by local expansion and size
is the number of nodes in the NNF-tree representing the formula. This definition
is refined to

cost(x) := score inc(x)− scoredec(x)

where the increase score (decrease score) of x, written as score inc(x) (scoredec(x)),
is the number of nodes which are added to (deleted from) the NNF-tree of φ during
local expansion of variable x. Expanding a variable with positive (negative) costs
will increase (decrease) the size of the formula.

Increase and decrease score are the central concepts of expansion costs in
Nenofex, but accuracy of costs is traded for simplicity of computation: the score
of a variable is defined as

score(x) := score inc(x)− scoredec(x)

and is an upper bound (an over-approximation) on the accurate expansion costs,
thus score(x) ≥ cost(x) for all variables x. In contrast to positive costs, expanding
a variable with positive score could possibly decrease the size of the formula.
Although the score definition is equal to the one of accurate expansion costs, scores
are not exact, which has its roots in the implementation of score computation.

Given the expansion-relevant LCA of a variable, computation of increase scores
can be done efficently and in a straightforward way derived from the different cases
in expansion (see section 4.3.3 on page 50). Thus increase scores are accurate in
Nenofex.

Concerning decrease scores, the situation is more complex. Due to the struc-
tural restrictions of the NNF-tree, node deletions can lead to further, recursive
deletions (see section 3.4.6 on page 33). Although possible, recursive effects are
not considered in the computation of decrease scores, which consequently are a
lower bound (an under-approximation) on the actual number of deleted nodes.

5.2. SCORE COMPUTATION 63

The reason is that the implementation becomes complicated: all applications of
parent merging and one-level simplification need to be determined in advance,
which requires inspecting child lists of involved nodes recursively. Furthermore,
it is questionable if exact scores are worth the effort compared to estimated, pes-
simistic scores in the sense of producing considerably smaller formulae in a se-
quence of expansions.

Since increase scores are exact, it is the computation of decrease scores in
Nenofex which renders variable scores inaccurate and pessimistic.

5.2 Score Computation

Given a QBF S1 . . . Sn φ and an existential or universal variable x from scope
Sn−1 or Sn, first the expansion-relevant LCA (lca, LCA-children) of x needs to
be determined before its score can be computed. In general, it is assumed that
variable x has more than one occurrence and that the set LCA-children does not
contain a literal of x, hence non-increasing expansion (see section 4.3.5) can not
be applied.

5.2.1 Increase Score

The increase score score inc(x) of a variable can be determined by counting the
nodes which would be added to the NNF-tree during local expansion. This is done
by anticipating the expansion case which applies to the variable as follows (size is
the subformula size of a subtree):

• cases 〈∃,∨, ∗〉:
score inc(x) :=

∑
c

size(c)

for all nodes c in the set LCA-children

• case 〈∃,∧,=〉:
score inc(x) := size(lca) + r

where r = 1 if lca(x) is the root of the tree (a new root needs to be created)
and 0 otherwise.

• case 〈∃,∧, <〉:
score inc(x) :=

∑
c

size(c) + 3

for all c in the set LCA-children, and three additional nodes (one disjunction
and two conjunctions)

64 CHAPTER 5. VARIABLE SCORES

Dual cases in 〈∀, ∗, ∗〉 are treated similarly. If the set LCA-children contains a
literal of x then the increase score is always set to zero because non-increasing
expansion can be applied.

Computing increase scores requires O(|LCA-children|) time since every node
in set LCA-children is inspected and subformula sizes are stored and maintained
for each node, which allows looking up sizes in constant time.

5.2.2 Decrease Score

The decrease score scoredec(x) of a variable can be determined by counting the
nodes, and only those, which would be deleted immediately by assigning the vari-
able during local expansion. Node deletions in parent merging or one-level simpli-
fication are ignored.

Variable x is virtually assigned true, then false, where the number of “deleted”
nodes is counted each time by marking and collecting nodes which would be deleted
if x was assigned and propagated really. This corresponds to anticipating the
immediate effects of real assignments in the two subtrees during local expansion
(like the subtrees labelled [0] and [1] in figure 4.9, for example).

Figure 5.1 shows part of an NNF-tree. Node 1 is the LCA of variable x. Dashed
lines represent paths of arbitrary length, solid lines a path with length of one, and
black dots mark collected LCA-children. Node R is a child of the LCA which does
not contain an occurrence of x.

Computing decrease scores is implemented as follows: first x is set to false
virtually. All AND-nodes (OR-nodes) which are parents of positive (negative)
occurrences are marked as deleted by setting a deletion mark in the node. Further,
all negative (positive) occurrences which have AND-nodes (OR-nodes) as parents
are marked as deleted. In figure 5.1, nodes 3, 4 and 6 and the occurrence at node
5 would be marked. Each marked node denotes the root of a deleted subtree.

Next, all marked nodes are collected under the requirement that a node which
has a marked (that is, virtually deleted) predecessor is discarded and the prede-
cessor is collected instead. The reason is that such marked nodes occur in the
subtree of another marked (and virtually deleted) node, thus the marked node is
subsumed under the subtree of its marked predecessor. In figure 5.1, node 6, which
is virtually deleted, occurs in the subtree of node 3, which is a virtually deleted
predecessor, and hence would not be collected.

For each positive and negative occurrence, the path from the occurrence up to
the LCA x is traversed by following parent pointers and the highest marked node
on the path, that is the one at the lowest level, is collected. Upward traversing
is interleaved with clearing marks of virtually deleted nodes along the path. This
saves clearing marks in an additional traversal of the expansion-relevant subtree.

5.2. SCORE COMPUTATION 65

1

2 3R

4 x

6

x

x5

x

Figure 5.1: Computation of decrease scores – example

It is necessary to check if a marked node to be collected occurs in the collection
already. This can happen because such nodes are possibly predecessors of various
deleted nodes. Traversing the path starting from all of these nodes will discover one
and the same marked predecessor, which should be added to the collection exactly
once. For example in figure 5.1, if marked node 3 was a predecessor of various
occurrences of x then it would be found more than once during upward traversing.
In order to check if a node has been collected already, separate collection marks (not
to be confused with deletion marks) are set in all collected nodes. Adding nodes
to the collection can then be done in constant time (collections are implemented
as stacks).

After node collecting has been carried out for all positive and negative occur-
rences, the subformula sizes of all collected nodes, that is the numbers of nodes
in the respective subtrees, are summed up (the subformula size for each node is
maintained and can be looked up in constant time). This yields an intermediate

66 CHAPTER 5. VARIABLE SCORES

decrease score with respect to assigning the variable false. For the example in
figure 5.1, the sizes of nodes 3 and 4 and of the literal at node 5 contribute to the
intermediate decrease score.

Setting the variable to true virtually and computing the respective intermediate
decrease score is carried out analogously, provided that all deletion and collection
marks are reset before.

Finally, the two intermediate decrease scores are added which comes to the
decrease score scoredec(x) of variable x. Note that it is possible to operate on
one and the same subtree (which is the expansion-relevant subtree of x) when
virtually assigning the variable true and false because this subtree will be copied
if the variable is expanded and real assignments will be made in the respective
copies.

Computing decrease scores as described requires O(nm) time, where n is the
number of occurrences of the variable and m the maximum node level in the NNF-
tree. The path from an occurrence up to the LCA is expected to be short due to
the structural restrictions of the NNF-tree which are supposed to keep node levels
low.

Alternatively, if these paths were not traversed and occurrences or their parents
collected as deleted without searching for virtually deleted predecessors, then more
probably than not computing decrease scores would be faster, but at the cost of
unreliability of variable scores. Collected nodes which have a virtually deleted
and collected predecessor will contribute twice to the decrease score: directly with
their own size, and indirectly if the size of the deleted predecessor is added to the
incremental decrease score. This could yield optimistic total scores which are no
longer an upper bound on the accurate expansion costs because fewer nodes could
be deleted in real expansion than predicted.

If the set of collected LCA-children of x contains a literal of x then non-
increasing expansion can be applied. In this case, the decrease score has to be
computed with respect to the value which really will be assigned to the variable
during expansion (see section 4.3.5 on page 59), the opposite value needs to be
ignored in virtual assignments. Since the increase score of such variables is zero
(see above), the total score will always be negative, thus reflecting a guaranteed
decrease of the formula size after expansion.

5.3 Updating Scores

The computation of increase and decrease scores takes into account the number of
nodes which are deleted from or added to the NNF-tree during expansions. There-
fore, both variable scores and LCAs will have to be updated after any modifications
of the NNF-tree, since score computation is based on the LCA of a variable. For

5.4. MARKING VARIABLES FOR UPDATE 67

example, the expansion-relevant LCA of a variable needs to be updated if the sub-
tree denoted by one of the collected LCA-children does not contain an occurrence
of that variable any more.

There are several update strategies. First, scores and LCAs of all variables
can be recomputed from scratch. This simple but could become expensive if the
number of variables is large.

In a refined approach, recomputation could be done for those variables only,
whose scores and LCAs have been affected by the recent modifications of the NNF-
tree. This policy reduces the effort of score updates considerably. Particularly on
structured formulae, the number of affected variables could be much smaller than
the total number of variables in the formula.

Finally, instead of recomputing scores and LCAs from scratch, it is possible to
maintain these properties incrementally, which is the most sophisticated but also
most complicated approach. For any modification of the NNF-tree, first it has to
be determined what property (LCA, increase- or decrease score) of which variable
is affected, and second how the new, updated values can be obtained from the old
ones. These tasks are not trivial and probably even can not be fulfilled efficiently
in the present implementation without introducing auxiliary data structures (see
section 5.5 for remarks in this respect).

Based on observations made in this section , a scheme for partial LCA and
score update has been implemented in Nenofex which considers only variables
whose scores or LCA have been affected by an expansion.

5.4 Marking Variables for Update

The computation of expansion-relevant LCAs and of increase- or decrease scores
(directly or indirectly) relies on the literal nodes of a variable. Therefore, adding
or deleting literal nodes in an NNF-tree will change the LCA or score of certain
variables.

Whenever units or unates are eliminated or a variable is expanded, the NNF-
tree is modified. Modifications occur in a subtree, the modified subtree, which
can be identified depending on the source of modification, for example by figuring
out how expansion of a given variable will change the NNF-tree. If a variable
is expanded, then the modified subtree consists of the subtree denoted by the
expansion-relevant LCA and the parts that have been copied.

In Nenofex, the scores and LCAs of variables are updated based on this obser-
vation. By considering the modified parts of an NNF-tree, the set of affected vari-
ables is determined. For such variables, any of the properties expansion-relevant
LCA, increase- or decrease score could have been changed by modifications, but
not necessarily all of them at the same time. For example, there are situations

68 CHAPTER 5. VARIABLE SCORES

where only the increase score of a variable needs to be updated.
This possibility is taken into consideration by introducing three update marks

for affected variables, one for updating the LCA (LU-mark), the increase- and
decrease score (ISU-mark, DSU-mark) each. A variable is

• ISU-marked, if it is marked for increase score update

• DSU-marked, if it is marked for decrease score update

• LU-marked, if it is marked for LCA update

Only marked properties are recomputed from scratch. This strategy is a compro-
mise between complex, incremental maintenance of LCAs and scores and simple,
but possibly expensive full recomputation of all properties of variables.

5.4.1 Marking for LCA Update

Any time a literal node is deleted or copied during expansion, the respective vari-
able is LU-marked. The first situation can be caught in the function for deleting
subtrees, delete subformula introduced in section 3.4.4 (page 30). For the second,
LU-marking of variables is interleaved with copying the expansion-relevant subtree
if a variable is expanded. This avoids additional traversals of the subtree solely
for setting LU-update marks.

The policy for LU-marking is very conservative, particulary with respect to
deletions of literal nodes. Deleting an occurrence of a variable does not necessarily
invalidate its computed expansion-relevant LCA. This is the case if, and only if,
the subtree of at least one collected LCA-child does not contain an occurrence
of the variable any more after deletion. For example, in figure 5.1 node 1 is the
expansion-relevant LCA of variable x and has two collected LCA-children marked
with black dots. Deleting one occurrence of x in the subtree of either LCA-child
does not require recomputation of the LCA afterwards (ignoring recursive effects
of parent merging and one-level simplification), since both subtrees still contain at
least one occurrence.

Every time a variable is LU-marked, it is also ISU- and DSU-marked, because
increase- and decrease score change whenever the LCA changes.

5.4.2 Marking for Increase Score Update

Since the increase score of a variable depends on the subformula sizes of its collected
LCA-children or of its LCA, a variable is ISU-marked, if one of its occurrences
is deleted or copied during expansion because in these situation the expansion-
relevant LCA will be recomputed. This policy is similar to LU-marking.

5.4. MARKING VARIABLES FOR UPDATE 69

Apart from this, there are situations for certain variables where no occurrences are
deleted but which still require the increase scores of these variables to be updated.
This must be done every time the subtree of some collected LCA-child of any of
these variables is modified, that is its subformula size changes.

In the following two sections, related scenarios are investigated where the in-
crease score of variables is not affected by deletions of one of their occurrences.
Finally, based on observations made, the policy of ISU-marking of variables in
Nenofex is presented.

In figures 5.2 to 5.6, dashed lines denote paths of arbitrary length and nodes
under the requirement of alternating types. Black dots mark LCA-children and
nodes R at an LCA of a variable represent subtrees which do not contain occur-
rences of that variable.

Modified subtrees are defined as the parts of an NNF-tree where modifications
will occur if a variable is eliminated.

Inspecting Modified Subtrees

Given a variable x and its expansion-relevant subtree, assume that x is either unit
or unate or eliminated by non-increasing expansion, that is no subtrees are copied
during the elimination of x (this case is ruled out here because variables would be
ISU-marked during subtree copying anyway).

Variable x will be assigned a value and all modifications of the NNF-tree during
propagation of the variable will occur in the expansion-relevant subtree of x, which
is the modified subtree with root lca(x) this case.

In certain cases, the increase score of some variable y which has occurrences
in the modified subtree, assuming that no occurrence of y is deleted during the
elimination of x, needs to be updated. Depending on the positions of lca(x) and
lca(y), three situations may occur (assume that y has an occurrence in the modified
subtree, which is the expansion-relevant subtree of x).

First (see figure 5.2, left tree), assume that lca(x) is a predecessor of lca(y) and
that lca(y) 6= lca(x), thus the expansion-relevant subtree of y is contained in the
modified subtree. If the expansion-relevant subtree of y contains an occurrence of
x then variable y needs to be ISU-marked because there exists an LCA-child of y
whose subtree is modified when x is eliminated. In the other case (see figure 5.2,
right tree), if the expansion-relevant subtree of y does not contain an occurrence
of x then the increase score of y does not have to be updated because the subtrees
of its LCA-children are not affected if x is eliminated.

70 CHAPTER 5. VARIABLE SCORES

lca(x)

lca(y)
xR

yR

xy

lca(x)

xR

y yR

lca(y)
x

Figure 5.2:

lca(y)

lca(x)
yR

xR

xy

Figure 5.3:

x

lca(y)

x yR

lca(x)

x y

Figure 5.4:

Second (see figure 5.3), assume that lca(y) is a predecessor of lca(x) and that
lca(y) 6= lca(x). Since by assumption y has at least one occurrence in the mod-
ified subtree, it follows that an LCA-child of y is reachable on a path from that
occurrence up to lca(y) by following parent pointers. This path contains lca(x).
It is exactly that LCA-child whose subformula size will change because its subtree
contains the modified subtree. Hence variable y needs to be ISU-marked.

Third (see figure 5.4), assume that lca(y) = lca(x). Since by assumption y has
at least one occurrence in the modified subtree, it follows that the sets of collected
LCA-children of x and y are not disjoint (in figure 5.4, the common LCA-child is
marked with a black triangle). If x is assigned and propagated then the subtrees of
every LCA-child of x will be modified, and so all subtrees of LCA-children common
to both x and y. There is at least one common LCA-child, hence variable y needs
to be ISU-marked.

In every situation described in this section, variable y had occurrences in the
modified subtree. This is not the case for the examples in the following section.

Inspecting Predecessors of Modified Subtrees

Given a variable x and its expansion-relevant subtree, assume that x is either
unit or unate or eliminated by expansion, in contrast to the previous section, now

5.4. MARKING VARIABLES FOR UPDATE 71

lca(y)

yR

r

R M M

y

Figure 5.5: ISU-marking of y

lca(y)

y yR

r

R M M

Figure 5.6: No ISU-marking of y

including the possibility of ordinary expansion. In this case, the modified subtree
contains the copied subtree as well, otherwise it is the expansion-relevant subtree
of x. Let r be the root of the modified subtree (see figures 5.5 and 5.6; nodes M
denote parts of the modified subtree).

There are variables which do not have occurrences in the modified subtree but
whose increase score still needs to be updated.

For some variable y and its expansion-relevant LCA, assume that lca(y) is
a predecessor of r, lca(y) 6= r and y does not have occurrences in the modified
subtree (see figure 5.5). If there is a node n on the path r, . . . , n, lca(y) by following
parent pointers such that n is a LCA-child of y, then y needs to be ISU-marked
because the modified subtree is a successor of an LCA-child of y and consequently
is contained in the subtree of that LCA-child.

Note that it would be too pessimistic to simply check the path for nodes which
are the LCA, not an LCA-child, of some variable. In figure 5.6, ISU-marking of
variable y is not necessary because the subtrees of its LCA-children do not change.
There is no LCA-child of y on the path r, . . . , lca(y).

72 CHAPTER 5. VARIABLE SCORES

ISU-marking Policy

The policy of ISU-marking of variables in Nenofex is drawn from the observations
made in the two previous sections. It is conservative in the sense that variables
might be ISU-marked unnecessarily (for situations like in the right tree in figure
5.2, for example). The reason is that in the examples recursive effects of parent
merging and one-level simplification are not taken into consideration.

Before elimination of units, unates or variables by non-increasing expansion,
first the variable’s expansion-relevant LCA (which is the modified subtree in this
case) is traversed and all variables which have occurrences in this subtree are
ISU-marked. Second, the path from the LCA up to the root of the NNF-tree is
traversed and all variables which have an LCA-child on the path are ISU-marked.
Finally the variable is eliminated.

Concerning ordinary expansion, all variables where occurrences have been
copied are ISU-marked (marking is interleaved with subtree copying). Like before,
the path from the LCA up to the root is inspected before expansion is carried out.

Additionally, variables where occurrences are deleted are ISU-marked (similar
to LU-marking).

5.4.3 Marking for Decrease Score Update

For some variable x, the decrease score depends on the subtree sizes of nodes
which have occurrences of x as children because these sizes are summed up during
computation (see section 5.2.2). The deletion of any subtree of the NNF-tree will
affect the decrease score of variables where a predecessor of the deleted subtree
has an occurrence of that variable as a child, since the subtree of the predecessor
contains the deleted subtree.

Subtree deletions occur frequently in Nenofex and each time the child lists
of predecessors had to be inspected in order to mark all affected variables. In
contrast, a conservative approach has been implemented similar to ISU-marking.

Before elimination of units, unates or variables by non-increasing expansion,
the variable’s expansion-relevant subtree (which is the modified subtree in this
case) is traversed and all variables which have occurrences in this subtree are
DSU-marked. The path from the modified subtree’s root up to the root of the
NNF-tree is inspected. For any node on this path which has a literal of some
variable x as a child, x needs to be DSU-marked.

In figure 5.7, node 3 is the LCA of some variable v to be eliminated (its occur-
rences are not shown) and hence is the root of the modified subtree. Node R does
not contain occurrences of v, nodes D indicate subtrees to be deleted, dashed lines
represent paths of arbitrary length and nodes and solid lines for paths of length
one. On the path 3, 2, 1 node 2 has literals of variables x and y as children, con-

5.4. MARKING VARIABLES FOR UPDATE 73

1

2

4

z

3 lca(v)

R

D D D

x y

Figure 5.7: DSU-marking of x and y

1 2 3R

lca(x,y,z)

x y

x z y z

LCA-child list occurrences
node 1: x, y
node 2: x, z
node 3: y, z

Figure 5.8: Example for LCA-child
list occurrences

sequently these variables are DSU-marked. Note that if decrease scores of x and
y are computed, then node 2 will be marked as deleted if variables are virtually
assigned true. The subtree of node 2 contains the modified subtree. Therefore
the contribution of node 2 to the intermediate decrease score of variables x and y
changes.

Concerning ordinary expansion, further all variables where occurrences are
deleted or copied are DSU-marked and path checking is carried out before. A
path check is necessary because, as described for node deletions, copying subtrees
during expansion changes the size of any predecessor’s subtree. For predecessors
which have literals as children, the respective variables need to be DSU-marked.

All deletions during expansions occur in the modified subtree, which is the least
common ancestor of all deleted subtrees (this is node 3 in figure 5.7). The path from
its root up to the root of the NNF-tree (nodes 3, 2, 1) would be traversed multiple

74 CHAPTER 5. VARIABLE SCORES

times if path inspection was carried out starting from each deleted subtree. This
is avoided in Nenofex by inspecting this path once and instead DSU-marking all
variables in the modifed subtree as a precaution, where variables might be DSU-
marked unnecessarily. In figure 5.7, variable z does not have to be DSU-marked.
If the decrease score of z is computed, node 4 will be marked as deleted when z is
virtually assigned false. The subtree of node 4 does not contain a deleted subtree
and hence its contribution to the intermediate decrease score does not change.

5.4.4 Efficiency Concerns: New Data Structures

In order to mark variables for increase or decrease score update, the path from the
root of the modified subtree up to the root of the NNF-tree must be inspected.
Due to the structural restrictions, this path is expected to be short and since literal
nodes are stored first in child lists, DSU-marking can be carried out efficiently.

Concerning ISU-marking, checking if a node on the path is an LCA-child of
some variable is problematic. The sets of LCA-children of all variables in the
formula have to be searched for each node on the path. In the worst case, ISU-
marking requires O(mnc) time, where m is the maximum node level in the NNF-
tree, n is the total number of variables in the formula and c is the maximum
cardinality of all sets of LCA-children of variables. In particular large values of n
could turn path inspection into a serious performance bottleneck. In order to cope
with this problem, two new data structures are introduced.

First, variables which have one and the same node as LCA are stored in a
doubly linked list. These lists are implemented the same way as child list: pointers
to the previous and next list entry are embedded in each variable object and each
node in the NNF-tree has a pointer to the first and last entry of its variable list. At
most n nodes can have such a variable list (probably fewer in practice), pointers of
remaining nodes are set to null. Embedding pointers in variable objects is possible
because a variable occurs in exactly one list if its LCA has been computed.

During path inspection, these variable lists can be used to restrict the number
of variables whose LCA-children are searched: if the parent of a path node is the
LCA of one or more variables, then it suffices to search the LCA-children of the
variables stored in its variable list, rather than of all variables in the formula.
However, this is no remedy for the need to search LCA-children.

Searching can be avoided at all if, for each node in the NNF-tree, the set of
variables is stored where that node occurs in the set of LCA-children. A node has
an LCA-child list occurrence in some variable x if it occurs in the set of collected
LCA-children of x. Each node has a set of LCA-child list occurrences which are
pointers to the respective variable objects. In practice, these sets are relevant only
for nodes whose parents are the LCA of at least one variable, and are empty in
all other nodes. Note that, in contrast to variable lists introduced above, it is not

5.5. FUTURE WORK 75

possible to implement sets of LCA-child list occurrences as doubly linked lists with
pointers embedded in variable objects, because a node can be an LCA-child for
several variables.

In figure 5.8, nodes 1, 2 and 3 occur in the set of LCA-children of more than one
variable. The AND-node at the root is the LCA of variable x, y and z. The table
shows LCA-child list occurrences. For example, in node 2 pointers to variables x
and z are stored because node 2 is an LCA-child of these variables.

Thus pointers to variables will be added to the set of LCA-child list occurrences
of several nodes. Sets of LCA-child list occurrences are implemented as stacks
which store pointers to variable objects.

ISU-marking of variables during path inspection can then be carried out by
ISU-marking exactly the variables which are stored in a path node’s set of LCA-
child list occurrences. Searching LCA-children of variables is not necessary any
more.

Maintaining the new data structures is a complex issue. Various situations
concerning parent merging, node deletions and LCA computation need to be con-
sidered. Some questions related to the current implementation are left open. For
example, it is not clear if the lists of variables with common LCA introduced first
are still needed if sets of LCA-child list occurrences are maintained. Before the
LCA of a variable is recomputed, the variable’s entries in the sets of LCA-child list
occurrences must be removed, which is done by searching these sets in each node
which is an LCA-child of that variable. This could possibly become expensive if
a variable has many LCA-children whose sets of LCA-child list occurrences are
large.

5.5 Future Work

Instead of marking variables for recomputing LCAs, increase- or decrease scores
from scratch, these properties could be maintained incrementally if the NNF-tree
is modified. The approaches presented in the following sections should be regarded
as first, rough ideas for incremental maintenance.

5.5.1 Maintaining LCAs

Concerning node deletions, the LCA and LCA-children of some variable x do not
change as long as the subtree of each LCA-child contains at least one occurrence of
x (the crucial property of LCA-children). This can be determined efficiently if an
occurrence counter is maintained for each collected LCA-child. Each occurrence
has a pointer to the LCA-child whose subtree contains that occurrence (alterna-
tively, this LCA-child could be found out via following parent pointers until the

76 CHAPTER 5. VARIABLE SCORES

LCA of the variable is reached). If an occurrence is deleted, the counter of its
LCA-child is decreased by one. If it goes down to zero, the LCA-child can be re-
move from the set of LCA-children. The LCA of a variable needs to be recomputed
from scratch if, and only if, there is exactly one LCA-child left.

If a variable is expanded, occurrence counters and sets of LCA-children can be
maintained depending on the expansion case.

5.5.2 Maintaining Scores

Path inspection could be applied for incremental maintenance of scores. If a sub-
tree of size s is deleted then all predecessors p of its root must visited. If p has a
literal of some variable x as a child, then s must be subtracted from the decrease
score of x. If p is an LCA-child of some variable x, then s must be subtracted
from the increase score of x.

If some variable x is expanded, the sizes of the copied subtrees have to be added
to the increase scores of all variables where an LCA-child is a predecessor of the
expansion-relevant LCA of x. If a predecessor has a literal of some variable y as a
child then the sizes have to be added to the decrease score of y.

The sizes of copied nodes which have a literal node of some variable y as a
child must be added to the decrease score of y.

Chapter 6

Redundancy Removal

Local expansion has been introduced in chapter 4 as a method for expanding a
variable where only the relevant parts of a formula are copied. This way, introduc-
ing redundancy related to unnecessarily copied parts is avoided, but nonetheless
the expanded formula likely will contain redundant parts. The same problem ap-
plies to expansion-based QBF solvers which operate on CNF. In Quantor [Bie04],
redundant clauses are detected using subsumption checking.

In this chapter, the implementation of two approaches related to redundancy
removal on NNF will be presented. The first approach has been taken from the
domain of automatic test pattern generation (ATPG) for combinatorial circuits and
is concerned with redundancy removal in general. The second approach has been
adopted from circuit optimization: in global flow a circuit is minimized by applying
transformations which are based on implications. Implications are derived by
analizing the global flow of values in the circuit.

Redundancy removal in Nenofex is an orthogonal method for heuristically im-
proving the performance of the solver, but is not an integral part of it. The
general approaches of ATPG-based redundancy removal and global flow have been
modified and are closely related to each other. Applying only global flow as im-
plemented in Nenofex does not necessarily reduce the size of the NNF-tree, but
could enable ATPG-based redundancy removal to detect further redundant parts.

6.1 Preliminaries

In the following two sections, an brief overview on ATPG-based redundancy re-
moval and global flow is provided. The purpose is to introduce the basic concepts
as a background for the approaches that have been implemented in Nenofex. The
material has been selected from [MLB00] and [KS97].

77

78 CHAPTER 6. REDUNDANCY REMOVAL

6.1.1 ATPG-based Redundancy Removal

In a combinatorial circuit various kinds of defects might occur, particularly during
the manufacturing process or during the use of the device. A defect causes the
circuit to produce wrong output values. The presence of erroneous outputs, that
is erroneous behaviour, can be detected by testing. A test is a set of input values,
called test pattern, where the good and the faulty circuit show different output
values.

In structural testing, the internal circuit structure (gates, connections between
gates) is taken into consideration. In order to test if a particular gate or line
is faulty, a minimal set of input values is generated by which erroneous circuit
behaviour related to that particular part can be detected. Test patterns can be
generated algorithmically, which is the main purpose of methods for ATPG.

In testing, certain scenarios of faults are modelled. A typical model for faults
related to single connections between gates (not for gates themselves) is the stuck-
at-fault model. Such faults are modelled by assigning a fixed value to a line. A
line is said to be stuck-at-1 (stuck-at-0), if it always carries true (false) regardless
of the intended value. A test for a stuck-at fault is a minimal set of input values
where the good and the faulty circuit show different behaviour. If a fault does
not change the behaviour of the circuit, then it is redundant and the respective
hardware may be removed from the circuit without affecting its function.

Detection and removal of redundant stuck-at faults can be combined with
ATPG in order to optimize a circuit for size. Faults are tested in cyclic fash-
ion where redundant faults are removed until saturation. Removing redundant
faults can cause further faults to become redundant.

In ATPG-based redundancy removal, testing a stuck-at fault comprises three
steps:

• fault sensitization: the corresponding line is assigned the opposite value of
the fault: for a stuck-at-1 fault, the line is assigned false, otherwise true.
This is necessary in order to activate the fault. For example, a stuck-at-0
fault can not be detected by a test pattern if the line carries value false
anyway.

• path sensitization: the effect of the activated fault must be propagated un-
ambiguously along a path, called fault path, to an output signal of the circuit.
At the output, observed wrong behaviour must be caused solely by the fault.
This can be achieved by assigning conservative values to all off-path inputs
of gates along the fault path. For example, off-path inputs of OR-gates
(AND-gates) must be assigned false (true). This guarantees that the value
of gates on the fault path depends on the value at the fault site resulting
from fault sensitization. There might be exponentially many paths where

6.1. PRELIMINARIES 79

1

2 3 4

a b a b c d e

1

2 3

a b d e

Figure 6.1: Detecting subsumed clauses by ATPG-based redundancy removal

the fault effect can be propagated. If propagation on one path fails, then all
remaining paths have to be considered.

• justification: all signal assignments made in the two previous steps must
be justified by finding a set of input values of the circuit which establishes
the configuration of internal signal assignments. This is done by starting at
an unjustified, assigned signal and recursively assigning inputs of this signal
with justifying values. For example, an AND-gate which is assigned false
may be justified by assigning false to one of its inputs. Selecting inputs to be
assigned during justification requires making decisions. During justifications,
conflicts can occur if some signal assignment contradicts a previously made
assignment. In this case, conflicting assignments have to be discarded and
alternatives have to be chosen. This is referred to as backtracking.

If all fault paths and alternative assignments have been tried out but conflicts
could not be resolved, then the fault is untestable: it is not possible to find a set of
input values such that the fault effect can be observed at an output of the circuit.
The corresponding hardware is redundant and may be removed from the circuit
without affecting its function.

Details about various ATPG algorithms and a historic survey about their de-
velopment and refinements may be found in [MLB00].

An example for detecting redundancy is shown in figure 6.1. The tree on the
left is a CNF where clause (a∨ b∨ c) is subsumed by clause (a∨ b). The stuck-at-1
fault at the line between node 1 and node 3 is not testable: node 3 is assigned
false (fault sensitization) which causes variables a, b and c to be assigned false
(justification of false at node 3). Path sensitization requires both node 2 and node
4 to be assigned true, which can not be achieved for node 2 since both a and b are
false. Backtracking is not possible, hence node 3 is redundant. The reduced tree
is shown on the right.

80 CHAPTER 6. REDUNDANCY REMOVAL

1

2 3

a b a c

2

b c

1

a

Figure 6.2: Detecting distributivity by global flow

In section 6.2, the implementation of ATPG-based redundancy removal in Nenofex
is presented. The special topological situation of an NNF-tree has been taken into
account in order to adapt the general ATPG-algorithm.

6.1.2 Global Flow

Global flow is an approach for circuit minimization where implications are de-
rived from signals which are then used to transform and optimize the circuit.
Implications provide information about the logical flow of a value. The circuit is
transformed in order to reduce its size, but without changing the logical flow of
values.

Figure 6.2 shows an example for an optimization which global flow, but not
ATPG-based redundancy removal can detect. Literal a may be factored out by
applying distributivity. Assigning variable a true will result in assigning node 1
true as well. The tree on the right has been transformed without changing the
logical flow between a and node 1.

For any signal x in the circuit, there are four sets of implications defined as
FVW (x) := {s : x = V → s = W} where V,W ∈ {0, 1} and s is a signal. For
example, F00(x) is the set of all signals which will be assigned false as a consequence
of x being assigned false.

Given the sets FVW for some signal x, the following transformations are valid:

• if y ∈ F00(x) then replace y by x ∧ y

• if y ∈ F01(x) then replace y by ¬x ∨ y

• if y ∈ F10(x) then replace y by ¬x ∧ y

• if y ∈ F11(x) then replace y by x ∨ y

6.2. REDUNDANCY REMOVAL: IMPLEMENTATION 81

In order to optimize a circuit, first some signal x is chosen where the sets of
implications FVW (x) are computed. In practice, only subsets of the sets F1W (x)
and F0W (x) are considered because computation of the full set of implied signals is
complex. Furthermore, in these subsets only those signals are taken into account
for transformations which are in the transitive fanout of x (the fanout of signal
x is the set of output signals). In general, circuits are DAGs and some signal x
might have several signals in its fanout.

Next, an implication is chosen and the circuit is transformed according to the
respective rule. Certain connections of x to other nodes may be removed, provided
that the logical flow of the value from x to the implied node does not change.
After the transformation, it has to be checked if the area has decreased. If not,
all modifications are reversed and another node is chosen where again implications
are derived. These steps are carried out successively for all signals in the circuit.

Details about the entire process of global flow are omitted here and may be
found in [KS97]. In section 6.3, a modified, limited approach which has been
implemented in Nenofex is presented.

6.2 Redundancy Removal: Implementation

In Nenofex redundancy is eliminated by testing nodes according to the stuck-at
fault model. Regarding the tree as a circuit, testing a node in the NNF-tree means
testing the “line” from the node to its parent.

ATPG is an NP-complete problem: testing faults is presumed to require expo-
nential time. For this reason, a limited approach which does not rely on decisions
has been implemented in Nenofex. Consequently, backtracking is not needed. The
fault type to be tested for a node is chosen such that fault sensitization can be
carried out without decisions. Our approach requires polynomial time for testing
a node but is incomplete: redundant nodes might remain undetected.

Instead of assigning nodes in fault- or path sensitization like in general ATPG,
in our approach only variables are assigned in these two phases. Assigned vari-
ables are then propagated which causes nodes to be assigned. In fault- or path
sensitization, variable assignments are drawn from literal nodes which have to be
assigned a particular value.

In contrast to testing faults in an arbitrary circuit, where the fault can be
propagated to an output on more than one fault path, there is exactly one such
path for each node in the NNF-tree (this is a structurally inherent property of
trees). Selecting of a fault path where path sensitization has to be carried out is
trivial.

A lazy approach of path sensitization has been implemented which is inter-
leaved with propagation of assigned variables: instead of assigning off-path inputs

82 CHAPTER 6. REDUNDANCY REMOVAL

of fault path nodes in advance in order to guarantee that the fault effect can be
observed at the tree root, conservative values of such off-path input nodes are
forced on demand during propagations. Justification of these forced values again
does not involve decisions, but only implications.

Conflicts can not be resolved in our approach because no decisions have been
made to derive variable assignments and forced node assignments. Hence from a
conflict it can immediately be concluded that the fault is untestable.

In the following description of ATPG-based redundancy removal and its imple-
mentation in Nenofex, first necessary data structures and related design decisions
are introduced. Next, the focus is put on the process of fault testing, in particu-
lar on the combination of lazy path sensitization and value propagation and their
optimizations.

6.2.1 Data Structures

In Nenofex, global flow and redundancy removal are applied to a subtree of the
NNF-tree, the optimization-subtree, which is specified by its root r and all relevant
children of r. Note that the optimization-subtree denotes a subformula, which
allows the relevant children to be a proper subset of all children of r. This notion
is similar to the one of LCA-children of expansion-relevant LCAs.

The nodes of the optimization-subtree are kept on a fault queue, which is
implemented as a contiguous, circular array. Variable assignments derived during
fault testing are enqueued on a propagation queue. Further, all assigned nodes
and variables are collected during propagation. For this purpose, marks are used
in order to indicate if an object has already been collected or not. In the following,
data structures related to nodes and variables are introduced.

Variable-related Data Structures

The set of variables which occur in the optimization-subtree will likely be a proper
subset of the set of variables in the NNF-tree, because the optimization-subtree is
expected to be smaller. Subtree variables are collected in an initialization phase
(see below) and stored separately on a list. Further, each variable has two addi-
tional collections of positive and negative occurrences in the optimization-subtree,
which are not implemented as ordinary, doubly linked occurrence lists (see section
3.4.1 on page 25), but as stacks.

Node-related Data Structures

In ATPG-based redundancy removal and global flow, variables and nodes are as-
signed values which are propagated in turn. These tasks require certain pieces of

6.2. REDUNDANCY REMOVAL: IMPLEMENTATION 83

information to be stored for each node in the optimization-subtree.

A node has a value which is either undefined, true or false. Depending on
the node type and the value, further assignments of nodes can be triggered. For
example, assigning an AND-node true will cause its parent, which is an OR-node,
to be assigned true as well. An AND-node will be assigned true if all of its children
are assigned true. In order to detect such implied assignments efficently, a watcher
scheme has been implemented (see section 6.2.7 below). For each node in the
optimization-subtree, the number of unassigned children is maintained together
with a pointer to an unassigned child. The use of watchers avoids counting all
assigned children of a node each time a child has been assigned. Watchers are an
integral part of SAT solvers [ZM02b].

The value of a node is justified if, and only if, it is a consequence of the current
values of its children. For example, true is justified at an OR-node if at least one
of its children is true. Each node has a justification mark indicating if its value is
justified or not, and a path mark which is set if the node occurs on the path from
the fault node currently being tested up to the root of the optimization-subtree
(the fault path).

All mentioned pieces of information are grouped together to form an ATPG-
Info object. This object is not part of a node in the sense of being embedded in its
memory region, but assigned to each node in the optimization-subtree by setting
a pointer from the node to the object, which has been allocated in advance.

Embedding ATPG-Info objects into nodes or not is a major design decision.
In the first case, memory requirements will be higher because the optimization-
subtree is expected to be much smaller than the NNF-tree in practice (in our
implementation, an ATPG-Info object has a size of 28 bytes, assuming 4 bytes
for pointers and integers). ATPG-Info objects of nodes not in the subtree remain
unused during optimization. On the other hand, cache performance during value
propagations will likely be better if these objects are embedded. Experiments have
not yet been carried out with this respect, but it has been decided to allocate and
assign ATPG-Info objects on demand during initialization.

Redundancy removal and global flow operate on a fault queue, which, for ex-
ample, is a collection of pointers to all nodes in the optimization-subtree. If a node
in the subtree is deleted and memory allocated to the node released, it will have
to be removed from the fault queue in order to prevent invalid memory accesses
in forthcoming test cycles. It would be cumbersome to remove deleted nodes from
the fault queue right before they are physically released, because the fault queue
had to be linearly searched for the deleted node and for all of its successors, which
consequently will be deleted as well.

In order to overcome this situation, a scheme for lazy removal of deleted nodes
has been implemented. Instead of storing pointers to real subtree nodes, the

84 CHAPTER 6. REDUNDANCY REMOVAL

1

x y

1 2 3Array of ATPG-Info
 objects

P1

P2

Figure 6.3: Relation between tree nodes and their proxies

fault queue stores pointers to proxy nodes. The same applies to the collections
of a variable’s subformula occurrences. During initialization, each node in the
optimization-subtree is assigned an ATPG-Info object and a proxy node: the proxy
has a pointer to the real node, the real node a pointer to the ATPG-Info object,
which has a pointer to the proxy (this is necessary in order to deallocate proxies of
deleted real nodes after redundancy removal has finished; see next section). Mem-
ory regions allocated for proxy nodes are different from those of real nodes. Thus
deleting and releasing a real node does not invalidate its proxy, which afterwards
can still be accessed without causing invalid memory reads. A proxy node has a
pointer to the corresponding real node and a deletion mark which is set if the real
node has been deleted in either function merge-parent or delete-subformula (see
sections 3.4.4 and 3.4.5 on page 30). During fault testing, proxy nodes to be tested
are taken from the fault queue. Before a real node is accessed from its proxy, the
deletion mark is checked. If it is set, then the real node has been deleted, hence
its proxy can be discarded and another proxy is taken from the queue instead.
This way, the fault queue is cleaned up on-the-fly without the need for searching
deleted nodes.

Figure 6.3 shows the pointer structure (dotted lines) between tree nodes, its
proxies and ATPG-Info objects. A node has a pointer to its ATPG-Info object,
which has been allocated in advance in an array (shown at the bottom). Proxies
(nodes P1 and P2) are accessible from an ATPG-Info object. The fault queue
would store nodes P1 and P2 instead of 1 and x.

Initialization and Finalization

Before redundancy removal or global flow can be carried out, data structures
necessary for fault testing and value propagation must be set up. First, an array

6.2. REDUNDANCY REMOVAL: IMPLEMENTATION 85

Algorithm 5: collect fault nodes
Input: optimization-subtree
Result: fault queue with proxies of nodes
Data: stack fault stack, queues fault queue, queue, node cur

enqueue(queue, root)1

while queue not empty do2

cur ← dequeue(queue)3

if cur is operator node then4

push(fault stack, cur)5

foreach child ch of cur do6

enqueue(queue, ch)7

else8

enqueue(fault queue, cur)9

while fault stack not empty do10

cur ← pop(fault stack)11

enqueue(fault queue, cur)12

is allocated which stores as many ATPG-Info objects as there are nodes in the
optimization-subtree.

Next, the optimization-subtree is traversed. Each node is assigned an ATPG-
Info object and a proxy by establishing pointer relations as in figure 6.3. Whenever
a literal node is found, the respective variable is added to the list of subtree
variables, if not already present (this can be checked in constant time if collected
variables are marked). The proxy of the literal node is added to the respective
collection of subtree occurrences. Watchers need to be initialized in operator nodes,
which is described in section 6.2.7.

Resetting data structures and deallocating proxy nodes does not require the
optimization-subtree to be traversed again. Instead, the array of ATPG-Info ob-
jects is traversed and for each object, first the real node is accessed via its proxy,
provided that the deletion mark is not set, and the pointer to the corresponding
ATPG-Info object is set to null (see figure 6.3). Next, the proxy is deallocated.
After these tasks have been carried out for each ATPG-Info object, the array
can be released. Additionally, sets of subformula occurrences for each collected
subformula variable are reset, and finally the set of collected variables as well.

6.2.2 Collecting Fault Nodes

After data structures have been set up, the proxies of all nodes in the optimi-
zation-subtree are collected in the fault queue. Fault nodes are tested in the order
they appear on the fault queue. Generally, the order does not matter but for

86 CHAPTER 6. REDUNDANCY REMOVAL

1

2 3a

4

c d

5

e f

6

g h

b

before line 10 in algorithm 5:
fault stack: 1,2,3,4,5,6
fault queue: a,b,c,d,e,f,g,h

finally:
fault stack: 6 0
fault queue: a,b,c,d,e,f,g,h,6,5,4,3,2,1

Figure 6.4: Collecting fault nodes

our approach of ATPG-based redundancy removal and for global flow, choosing a
particular order could sometimes postpone unnecessary tests if promising nodes
are tested first. Literal nodes should be tested before operator nodes because at
least the assignment of the literal’s variable can be derived from fault sensitization
(possibly more during lazy path sensitization; see below). For operator nodes
which do not have literal nodes as children, no variable assignments can be derived
during fault sensitization, hence such nodes should be tested last.

Choosing the order of fault nodes is a heuristic approach and does not guarantee
performance improvements. A simple algorithm for establishing an order has been
implemented.

Proxies of nodes are collected in the fault queue by traversing the optimization-
subtree in breadth-first search and enqueuing literals before operators, which in
turn are enqueued in reverse order as being visited. In algorithm 5, breadth-first
search starts at the root of the optimization-subtree (line 1). If an operator is found
(line 4), it is pushed on an intermediate fault node stack (line 5), and all of its
children are enqueued. Literals are immediately enqueued on the fault queue (line
9). After all nodes have been visited, the fault queue contains literal nodes only.
Operators from the intermediate stack are enqueued (line 10), which establishes
the final order of nodes on the fault queue.

Figure 6.4 shows an example, where the tree is the optimization-subtree. In
line 7 of algorithm 5, children are always enqeued starting at the leftmost child.
On the right, first the contents of the intermediate fault stack and of the fault
queue are shown after the tree has been traversed, and then the final order of
nodes on the fault queue.

6.2. REDUNDANCY REMOVAL: IMPLEMENTATION 87

Algorithm 6: test fault nodes
Input: fault queue with proxies of nodes
Result: redundant (untestable) fault nodes
Data: queues fault queue, non red faults, node fault node,

flag test again, global flag conflict

conflict ← 0, test again ← 11

while test again do2

test again ← 03

while fault queue not empty do4

fault node ← dequeue(fault queue)5

if fault node marked as deleted then6

continue7

if is redundant(fault node) then8

assert(conflict = 1)9

test again ← 1, conflict ← 010

collect fault path nodes(fault node)11

delete subformula(fault node)12

else13

assert(conflict = 0)14

enqueue(non red faults, fault node)15

unmark fault path nodes()16

reset touched nodes and vars()17

if test again then18

swap(fault queue, non red faults)19

6.2.3 Testing Fault Nodes

The nodes on the fault queue are tested successively in cyclic fashion, from the
first to the last node, because eliminating redundancies can cause further nodes
to become redundant. Whenever redundancy is detected and eliminated, nodes
which have not been tested in the current test cycle are processed before the next
cycle starts. If testing always continued at the first node on the queue each time
a redundant node is found, then some nodes would be tested more than once in a
cycle, which should be avoided.

Algorithm 6 shows the steps involved in testing. An iteration of the outer
loop (line 2) corresponds to a test cycle where all nodes on the fault queue are
tested exactly once. Nodes are tested in the inner loop (line 4). A proxy is taken
from the fault queue. If its deletion mark indicates that the corresponding real
node has already been deleted, then the proxy is discarded immediately and a new
one is dequeued (lines 6 and 7; the loop condition will be re-evaluated if command
continue is executed). Redundant nodes detected in function is redundant (line 8)
are indicated by setting the global flag conflict to true, which arises if both values

88 CHAPTER 6. REDUNDANCY REMOVAL

Algorithm 7: is redundant
Input: node fault node
Result: global flag conflict is true if, and only if, fault node is redundant (untestable)
Data: global flag conflict, node fault node, type fault type, queue propagation queue

assert(conflict = 0), assert(propagation queue is empty)1

if parent(fault node) is OR then2

fault type ← s a 03

else4

fault type ← s a 15

fault sensitization(fault node, fault type)6

assert(conflict = 0)7

lazy path sensitization(fault node, fault type)8

mark fault path nodes()9

while conflict = 0 and propagation queue not empty do10

var ← dequeue(propagation queue)11

propagate assigned var(var)12

return conflict13

true and false are derived for a variable during propagation (see below). Redundant
nodes are deleted from the optimization-subtree (line 12), where deletion marks
of proxy nodes are set in function delete subformula and proxies of nodes on the
fault path are collected (line 11; the purpose of collecting path nodes is pointed
out in section 6.2.8 below). A new test cycle will start after all nodes on the fault
queue have been processed because flag test again is set to true. Otherwise, nodes
not deemed to be redundant (our approach is incomplete; nodes which are in fact
redundant might remain undetected) are put on an auxiliary queue (line 15). After
a node has been tested, the values of all assigned nodes and variables are reset
and the nodes on the path from the fault node to the root of the optimization-
subtree are unmarked (lines 16 and 17). These nodes have been marked in function
is redundant (line 8) before (the purpose of marking is pointed out below). After
all nodes on the fault queue have been tested (that is the fault queue is empty and
the current test cycle has finished) and redundancy has been found (line 18), the
auxiliary queue, now containing all nodes not found redundant, becomes the fault
queue in the forthcoming test cycle and vice versa. In the following sections, the
actual process of testing nodes in function is redundant is described.

6.2.4 Fault Sensitization

In order to test a fault node (algorithm 7), first the fault type is determined which
depends on the parent’s type (line 2). If the parent is an OR-node (AND-node),

6.2. REDUNDANCY REMOVAL: IMPLEMENTATION 89

the fault node will be tested for stuck-at-0 (stuck-at-1). In our approach of ATPG-
based redundancy removal, fault sensitization is the process of deriving variable
assignments (not node assignments) from fault nodes and is carried out in function
fault sensitization (line 6). For stuck-at-0 (stuck-at-1) faults, variable assignments
will be derived from the fault node (if possible) which, when propagated, result in
assigning the fault node true (false). Hence if a fault node is tested for stuck-at-0
and is a literal node, then the literal’s variable is assigned false (true) if the literal
node is negated (not negated). Otherwise, if it is an operator (it can only be an
AND-node in this case), then for all of its literal children (if any), the variables
are assigned false (true) if the respective literal child is negated (not negated).
Assignments for stuck-at-1 faults are derived analogously.

Since no decisions are made to assign operator nodes during testing, it is neces-
sary to choose fault types as described because this allows assigning nodes without
making decisions. The motivation for choosing the fault type for literal nodes de-
pening on the type of the parent is different. For example, if a literal node with an
OR-node as parent was tested for stuck-at-1 instead of stuck-at-0, then this fault
would be equivalent to the stuck-at-1 fault of the parent (as pointed out, this fault
type has to be tested there), that is the two faults have the same effect: if the
literal node is always true (stuck at true), then so is the parent because it is an
OR-node. The situation where the literal is stuck-at-1 is already covered by the
parent being tested for stuck-at-1. Hence the literal node is tested for stuck-at-0.
For literal nodes with AND-nodes as parents, the analogous argument applies.

Variables assigned in fault sensitization are enqueued on the propagation queue.
Literal children of a node can be accessed efficiently because they occur before
operator nodes in a child list.

Fault sensitization is the motivation for ordering nodes on the fault queue
as described in section 6.2.2. Literal nodes are tested first because during fault
sensitization the assignment of the literal’s variable can always be derived, and
possibly more during path sensitization. The more assignments are derived, the
more likely a conflict occurs during propagation.

Note that fault sensitization as described can never yield conflicts (line 7)
because all nodes in the tree are one-level simplified, in particluar child lists of
nodes do not contain complementary literals.

6.2.5 Lazy Path Sensitization

Path sensitization in general derives mandatory node assignments from all nodes
on the fault path currently being considered. The classical approach could become
problematic if child lists are long, like at the root of a large formula in CNF: the
full child list had to be traversed and each child had to be assigned a conservative
value. This must to be carried out each time a fault is tested.

90 CHAPTER 6. REDUNDANCY REMOVAL

In order to cope with this problem, a lazy version of path sensitization (line 8
in algorithm 7) has been implemented in Nenofex where variable assignments are
derived in contrast to node assignments as in classical path sensitization. Instead
of assigning all children of fault path nodes in advance, the path is traversed and,
for each path node, only literal children are considered (like in fault sensitization,
literal children can be accessed efficiently). If the path node is an OR (AND), then
the literal child’s variable is assigned true (false) if the literal child is negated, and
false (true) otherwise. Variables assigned in path sensitization are enqueued on
the propagation queue.

Note that, unlike in fault sensitization, conflicting variable assignments might
arise during lazy path sensitization, either in combination with assignments from
fault-, or solely within those from path sensitization. In such case, the global flag
conflict will be set to true (line 8).

Nodes on the fault path are marked (line 9), which is an integral part of lazy
path sensitization. Variable assignments derived in the previous step guarantee
conservative values for literal children of path nodes only. Values for remaining
operator children are taken into consideration on demand during the process of
propagation, which avoids setting these values explicitly by fully traversing child
lists of path nodes.

6.2.6 Propagation

If conflicting variable assignments have been derived in fault- or lazy path sensiti-
zation, function is redundant returns true (line 13 in algorithm 7) without prop-
agating enqeued variables. If the fault node and all fault path nodes have only
operator nodes as children, then the propagation queue will be empty before line
10 and the function returns false. Otherwise, assigned variables are taken from
the queue and propagated sucessively (line 12).

In function propagate assigned var, all positive and negative subformula occur-
rences of the variable to be propagated (these are stored separately and hence can
be accessed efficiently) are assigned values. Occurrences which have been deleted
are removed from the collections on-the-fly (like with the fault queue, proxies of
occurrences are collected). If the variable is assigned true, then positive (nega-
tive) occurrences are assigned true (false), otherwise, if the variable is false, then
positive (negative) occurrences are assigned false (true). Propagated variables are
collected for resetting after testing has finished (see algorithm 6, line 17). Node
assignments are carried out in functions forward propagate falsity (algorithm 8)
and forward propagate truth (algorithm 12 on page 129), which are called on each
occurrence depending on the value to be propagated. In either function, conflicts
can occur if values implicitly imposed by lazy path sensitization can not be justified
(see below). In this case, the global flag conflict is set to true which causes propa-

6.2. REDUNDANCY REMOVAL: IMPLEMENTATION 91

gation to abort immediately and function propagate assigned var returns (line 12
in algorithm 7). During propagation, assigned nodes and variables are collected
for resetting values afterwards (see algorithm 6, line 17).

Forward Propagations

In a forward propagation, a value is assigned either to a literal node whose vari-
able is currently propagated (like in function propagate assigned var), or to an
operator node whose value is implied by the values of its children. The latter is a
recursive forward propagation. After assigning a node, it must be checked if values
constrained by lazy path sensitization are violated (for example, an OR-node on
the fault path has a child which has just been assigned true) or require mandatory
assignments of certain nodes: if, for example, an OR-node on the fault path has
an AND-child which has all of its children assigned to true except one single child
remaining unassigned, then this child must be assigned false in order to justify the
mandatory value false at the AND-child. Such implied assignments are referred to
as backward propagations (see next section).

Algorithm 8 shows the pseudo-code of function forward propagate falsity (see
algorithm 12 on page 129 for the dual function forward propagate truth), which is
called on some node n to be assigned false. Under the preconditions that conflicts
did not occur in prior propagations and that n is unassigned, n is assigned false and
its justification flag is set to true (line 3). Forward propagations can only happen
if the propagated value is justified. This condition is trivially satisfied for assign-
ments of literal nodes (their values are justified by the value of the corresponding
variable), but for operator nodes to be assigned in recursive propagations, various
cases have to be distinguished in advance.

If parent p of n is and AND (line 20) then a conflict occurs if p is on the fault
path but n is not, because n has just been assigned false (line 23): the global flag
conflict is set to true, which causes propagation in function propagate assigned vars
(algorithm 7 line 12) to stop immediately. A node is on the fault path if it has
been marked before (algorithm 7 in line 9). In the general case, p will be assigned
false recursively (line 25). If p has already been assigned false before, then its
value is now justified by n (line 28). In the latter case, p has been assigned false
in an (in a sequence of) implied backward propagation(s) resulting from lazy path
sensitization (see algorithm 9 in the next section).

If p is an OR (line 6), then p either is unassigned or assigned true. It can
not be false because in this case all of its children had to be false, hence function
forward propagate falsity would have never been called on n.

In the general case (line 16), if p is unassigned and either both p and pp (the
parent of p) occur on the fault path or both not (it is impossible that p is on the
fault path and pp is not), then p will be assigned false recursively if false is justified

92 CHAPTER 6. REDUNDANCY REMOVAL

Algorithm 8: forward propagate falsity
Input: node n to be assigned false
Result: further propagations (backward or forward) or conflict (flag conflict = 1)
Data: nodes n, ch, p and pp, global flag conflict

assert(conflict = 0)1

assert(n unassigned)2

assign false(n), n.justified ← 13

p ← parent(n)4

pp ← parent(p)5

if p is OR then6

assert((p is unassigned) or (p is true))7

if (p is true and not justified) or8

(p unassigned and not on fault path and pp on fault path) then9

if p has exactly one unassigned child then10

ch ← find unassigned child(p)11

backward propagate truth(ch)12

if p unassigned and conflict = 0 then13

forward propagate truth(p)14

p.justified ← 115

else if p unassigned then16

if all children of p assigned then17

assert(all children assigned false)18

forward propagate falsity(p)19

else20

assert(p is AND)21

if n not on fault path and p on fault path then22

conflict ← 123

else if p not assigned then24

forward propagate falsity(p)25

else26

assert(p is false)27

p.justified ← 128

6.2. REDUNDANCY REMOVAL: IMPLEMENTATION 93

by the children’s values (line 19). Note that p can not have a child which is true
(line 18), otherwise p would have been assigned true before.

If p is true and not justified (line 8), or unassigned and not on the fault path
whereas its parent pp is (line 9), then it has to be checked whether p has exactly
one unassigned child remaining. The reason is that in the first case p has been
mandatorily assigned true in an (in a sequence of) implied backward propagation(s)
before, and the remaining unassigned child ch (line 11) must be assigned true (line
12) for justifying p (all other children of p are false). In the second case, the value
of the remaining unassigned child is implied in the course of lazy path sensitization,
which requires p (not on the fault path) to be assigned true because pp is an AND
on the path (as before, all other children of p are false). In both cases, truth
is propagated backwards by calling function backward propagate truth on child ch
(line 12) of p. Afterwards, p can be assigned true (line 14) unless a conflict occurred
in backward propagation(s).

Backward Propagations

In a backward propagation, a value is assigned either to a variable or to an op-
erator node where, for both cases, the value is implied either by certain values
constrained in lazy path sensitization or by the value of the respective parent (for
example, assigning true to an AND-node will cause all of its children to be assigned
true as well). Backward propagations are always carried out on children of nodes,
in contrast to forward propagations where parents are assigned. A backward prop-
agation on a literal child represents an assignment of the literal’s variable, which
will yield a conflict if that variable has already been assigned the opposite value
before. Conflicts in backward propagation always result from failed justifications
of values at children of fault path nodes. For example justification of an AND-
node’s value (must be false in this case) whose parent is an OR-node on the fault
path could fail because backward propagation on the remaining unassigned child
yields a conflict.

Algorithm 9 shows the pseudo-code of function backward propagate truth, called
on some node n to be assigned true (pseudo-code of function backward propagate -
falsity may be found in algorithm 13 on page 130). As in forward propagations, n
must be unassigned and conflicts must not have occurred before.

If n is a literal node (line 3), then the corresponding variable either has already
been assigned but not yet fully propagated (line 8), or has not been assigned (line
5). In the first case, a conflict occurs if the variable’s value would cause the literal
node to be assigned false in forthcoming propagations (line 10). Otherwise (line 5),

94 CHAPTER 6. REDUNDANCY REMOVAL

Algorithm 9: backward propagate truth
Input: node n to be assigned true
Result: further propagations (backward) or conflict (flag conflict = 1)
Data: node n, variable var, global flag conflict, queue propagation queue

assert(conflict = 0)1

assert(n unassigned)2

if n is a literal then3

var ← variable(n)4

if var unassigned then5

if n negated then assign false(var) else assign true(var)6

enqueue(propagation queue, var)7

else8

if (n negated and var true) or (n not negated and var false) then9

conflict ← 110

else if n is AND then11

assign true(n)12

forall children ch of n and conflict = 0 do13

assert(ch is literal or OR)14

if ch unassigned then15

backward propagate truth(ch)16

n.justified ← 117

else18

assert(n is OR)19

assign true(n)20

if n has exactly one unassigned child then21

ch ← find unassigned child(n)22

backward propagate truth(ch)23

n.justified ← 124

the variable is assigned a value which will (during propagations) result in assigning
the literal node true (line 6). The assigned variable is enqueued in the propagation
queue.

If n is a an AND-node (line 11), then n and all of its children are assigned true
(lines 12 and 16) unless a conflict occurs during recursive backward propagation
on any child (line 13) where function propagate assigned vars would return imme-
diately (algorithm 7 line 12). A child ch (line 15) is either already assigned true or
unassigned, but not assigned false because in this case n had been assigned false
as well and function backward propagate truth would have never been called on n.
After all children have been assigned, the value of n is justified (line 17).

If n is an OR-node (line 18), then it is assigned true in any case (line 20) but
justified if, and only if, there is exactly one unassigned child which can be assigned

6.2. REDUNDANCY REMOVAL: IMPLEMENTATION 95

true in turn (line 23) for justification of n (line 24). Such assignments are implied
by the values of n and of children already assigned. A child ch (line 22) is either
already assigned false or unassigned, but not assigned true because in this case n
had been assigned true as well and function backward propagate truth would have
never been called on n.

Remarks

The implementation of forward and backward propagation in Nenofex is non-
recursive. Concerning functions forward propagate truth and forward propagate -
falsity, tail-recursive calls like in lines 19 and 25 of algorithm 8 can easily be
avoided by assigning p to n and jumping to the beginning of the function. This
simple solution is not possible in an implementation of backward propagation: an
auxiliary stack is used where all nodes to be assigned are pushed onto (like in line
16 of algorithm 9).

6.2.7 Watchers

Figuring out the number of assigned children left like in algorithm 8 (lines 10 and
17) or algorithm 9 (line 21) can become a bottleneck if the child list is searched
explicitly each time. For example, if the optimization-subtree is a whole CNF,
then the child list of the root can be very long.

For this reason, a counter-and-watcher scheme has been implemented which
allows both to determine the current number of unassigned children and to retrieve
the remaining unassigned child of a node in constant time. Counters and watchers
are updated each time a child is assigned, which requires a total of linear time over
the full sequence of child assignments of a node. Watchers play an important role
in efficient SAT solvers. In [ZM02b], various related approaches are surveyed.

Each node has a counter which is initially set to the number of children. Each
time a child is assigned, the counter is decremented by one. Thus a node has
exactly one unassigned child left if, and only if, the counter has value one. In order
to access this child in constant time, a pointer to an unassigned child, the watcher,
is maintained in the sequence of child assignments for each node. Initially, the
watcher is set to the first child of a node by convention. If the watcher is assigned,
then an unassigned sibling must be found by following next-pointers in the child
list starting at the current watcher. This is crucial: searching must not start at
the beginning of the child list each time. The unassigned child becomes the new
watcher.

96 CHAPTER 6. REDUNDANCY REMOVAL

After a node has been tested (algorithm 6 in line 8), counters and watchers are
reset to their initial values when assigned nodes and variables are reset (algorithm
6, line 17). This requires nodes where a child has been assigned (and hence the
counter or watcher been modified) to be collected in addition to all assigned nodes.

The implementation of the watcher scheme becomes complicated by handling
a special situation: since the optimization-subtree denotes a subformula, not all
children of its root necessarily occur in this subtree. A typical example is a CNF
where only a few clauses are part of the optimization-subtree, whose root is the root
of the CNF. The counter-and-watcher scheme must consider only such children
of the optimization-subtree’s root in order to work properly. Thus at the root
(and only there), it must operate locally to the set of relevant children instead of
operating on the full child list. This is done by maintaining a watcher list where
proxy nodes of all relevant children of the root are collected. The list is set up
during initialization when ATPG-Info objects are assigned. Deleted nodes must be
removed from the list on demand, hence proxies are collected instead of real nodes
which allows checking the deletion mark of the proxy. If a node on the watcher
list is deleted in parent merging, then new nodes must be added to the watcher
list.

The watcher of the optimization-subtree’s root is initially set to the first child in
the watcher list (instead of the child list). For updating this watcher, an unassigned
child on the watcher list must be found which, in contrast, can not be done by
following next-pointers as described, but by searching the watcher list starting at
the position of the current watcher. Hence the position of the watcher on the
watcher list must be maintained together with the pointer to the watcher.

6.2.8 Marking Variables for Update

Deleting redundant nodes in the optimization-subtree modifies the NNF-tree,
which requires affected variables to be marked for update. Approaches as de-
scribed in chapter 5 are applied. All three update marks (see section 5.4 on page
67) are set for a variable where an occurrence has been deleted. Concerning score
update, the situation is slightly different. Traversing the optimization-subtree and
setting both ISU- and DSU-marks for all occurring variables is likely be too con-
servative, that is many variables could be marked unnecessarily. Furthermore, the
extent of modifications caused by redundancy removal is expected to be smaller
than the one caused by expansions.

For this reason, the approaches for marking variables have been adapted. For
each redundant node to be deleted, the proxies of nodes on the path from the
redundant node up to the root of the optimization-subtree are collected (see algo-
rithm 6, line 11). Instead of traversing the optimization-subtree and consequently
considering all nodes, marking is restricted to the set of collected path nodes be-

6.3. GLOBAL FLOW: IMPLEMENTATION 97

cause these nodes all are predecessors of deleted subtrees. For each collected path
node which has a literal node as a child, the corresponding variable is DSU-marked.
If a path node has LCA-child list occurrences in some variables, then these are
ISU-marked. The same arguments apply as pointed out in sections 5.4.2 and 5.4.3.

Additionally, the nodes on the path from the root of the optimization-subtree
up to the root of the NNF-tree are considered and marks are set as described for
collected path nodes before. The nodes on this path are ignored during collection
because the path had to be traversed for every redundant node (all the path nodes
are predecessors of every redundant node).

Marking both with respect to collected nodes and path nodes up to the root
of the NNF-tree is carried out once after the whole process of testing nodes (see
algorithm 6) has finished.

6.3 Global Flow: Implementation

The implementation of global flow relies on the same data structures as redun-
dancy removal (see section 6.2.1): the same tasks for initializing and resetting have
to be carried out before and after the whole process of global flow as before and af-
ter redundancy removal. Nodes of the tree are tested for implications successively,
which suggests that our approach is incomplete: not all possible implications can
be identified. In order to compute sets of implications for some node in the tree,
variable assignments are derived from that node and propagated. Only forward
propagations are needed, where the same functions forward propagate truth and
forward propagate falsity as in redundancy removal are called. Backward propa-
gation can never occur in global flow because there are no mandatory node assign-
ments to be fulfilled.

Our approach is a modified version of general global flow as described in [KS97].
For some node x, the types of implications (see section 6.1.2) considered for trans-
formation are limited to sets F00(x) and F11(x). On the one hand, transformations
related to all other types require the introduction of negation, which would vio-
late the structural properties of NNF (for example, transformations related to set
F01(x) if x is an OR-node), and on the other hand, not all sets can be computed
because in our approach decisions are not made for assigning nodes (for example,
computation of sets F10(x) and F11(x) requires decisions if x is an OR-node).

The most important difference between our approach and general global flow
is to ignore the option of reversing modifications. Instead, only such modifications
are carried out which do not increase the size of the NNF-tree (see section 6.3.2).
Furthermore, transformations are applied with nodes already present in the NNF-
tree. In a tree there is exactly one path (fault path) from each node up to the

98 CHAPTER 6. REDUNDANCY REMOVAL

Algorithm 10: find implications
Input: queue with proxies of nodes
Result: derived implications
Data: queues tested nodes, queue, nodes imp, n, flag test again

test again ← 1, imp ← null1

while test again do2

test again ← 03

while queue not empty do4

n ← dequeue(queue)5

if n marked as deleted then6

continue7

imp ← derive implication(n)8

if imp not null then9

collect implication path nodes(n)10

mark implicant vars for update(n)11

test again ← 112

apply transformation(n, imp)13

imp ← null14

enqueue(tested nodes, n)15

reset touched nodes and vars()16

if test again then17

swap(queue, tested nodes)18

root. In our approach, the highest implication, that is the one closest to the root,
on this path is considered for transformations.

In contrast to the general approach, the application of global flow in Nenofex
does not necessarily reduce the size of the NNF-tree. It is the purpose of a sub-
sequent application of redundancy removal to identify parts which have not been
detected as redundant before transformations in global flow.

6.3.1 Finding Implications

Algorithm 10 shows the pseudo-code of function find implications. The basic work
flow is similar to the one of function test all faults in algorithm 6: nodes are taken
from the queue and tested for implications in cyclic fashion (lines 2, 4 and 17),
where deleted nodes are discarded (line 7) as in fault testing. If an implication
can be derived from some node n (line 9), then proxies of nodes on the path
from n up to the root of the optimization-subtree are collected (line 10) and all
variables occurring in the subtree of n are marked for full update of LCA and
scores (line 11). The purpose of collecting path nodes and marking is described
in section 6.3.3 below. The optimization-subtree is modified (line 13), hence a

6.3. GLOBAL FLOW: IMPLEMENTATION 99

Algorithm 11: derive implication
Input: potential implicant n
Result: the highest node implied by n (if any) on the path from n up

to the root of the optimization-subtree
Data: queue propagation queue, variable var, nodes n, high imp

assert(propagation queue is empty)1

get necessary var assignments(n)2

high imp ← null3

if propagation queue not empty then4

while propagation queue not empty do5

var ← dequeue(propagation queue)6

propagate assigned var(var)7

high imp ← find highest implication on path(n)8

return high imp9

new test cycle will start (line 12) if all nodes on the queue have been processed.
Transformations related to implications might also cause parent mergings and one-
level-simplifications. For this reasons, node n is re-enqueued to be tested again
for implications in the next cycle (line 15), no matter if an implication has been
derived or not. After a node has been tested, all assigned nodes and variables are
reset similarly to fault testing (line 16).

Deriving Implications

Testing nodes for implications is carried out in function derive implication, the
pseudo-code of which is shown in algorithm 11. From the potential implicant n
(line 2), variable assignments are drawn (if any) which depend on the parent’s
type exactly as if that node had been tested for a stuck-at-fault (see algorithm
7, lines 2 and 6): propagation of assigned variables is then expected to result in
assigning n true (false) if its parent is an OR (AND). Note that this need not
happen necessarily, for example, if n has only operator nodes as children. In this
case, no variable assignments can be derived.

From some node, the same set of variable assignments is drawn if that node is
tested for a stuck-at-fault as if it is tested for implications (in fact, in the imple-
mentation of global flow, function fault sensitization, originally devised for fault
testing, is called to derive variable assignments from a potential implicant). The
reason is that our adapted approach of global flow entirely relies on propagations,
decisions related to fault- or implication testing are not considered at all. For ex-
ample, variable assignments can not be drawn from an AND-node to be assigned
false without making a decision: at least one of its children must be assigned false.

100 CHAPTER 6. REDUNDANCY REMOVAL

Hence deriving variable assignments from potential implicants in adapted global
flow always intends to assign an AND-node (OR-node) true (false) because this
can be achieved by assigning all of its children true (false).

The policy of deriving variable assignments based on the stuck-at-fault model
is applied to literals as well, but for different reasons. If the potential implicant
is a literal node and its parent an AND-node (OR-node), then the corresponding
variable will be assigned false (true) if the literal is positive and true (false) oth-
erwise. In the forthcoming propagation of the variable, the parent will then be
assigned in a forward propagation.

The assignment of exactly one variable can be derived if the potential implicant
is a literal, where generally both true or false could be assigned to the variable
independently from the stuck-at-fault model. For example, for a positive literal
with an AND-node as parent, the corresponding variable could be assigned true as
well in a general approach of global flow instead of false as described before. For
literals as potential implicants in our adapted approach, the reason why only vari-
able assignments according to the stuck-at-fault model are considered is related to
the transformation of the optimization-subtree (see next section): transformations
related to implications are carried out without generating new nodes, that is nodes
which are already present in the tree are re-arranged.

Like in fault testing, derived variable assignments are propagated successively
(line 7 in algorithm 11) by assigning occurrences depending on their polarities
and the value of the variable. On the other hand, backward propagations and
conflicts can not occur during propagation in global flow because, unlike in fault
testing, there are no mandatory assignments where justification could fail. After all
variables have been propagated until saturation in function propagate assigned var,
the path between node n and the root of the optimization-subtree is inspected (line
8), where several cases concerning the values of path nodes have to be handled.

Function find highest implication on path returns null immediately if either n
is unassigned or is an OR-node (AND-node) and assigned true (false). In the
first case, assigning the potential implicant failed at all where in the two latter
cases the wrong value according to the stuck-at-fault model had been assigned (we
conjecture that the potential implicant is redundant then and could be removed;
in the implementation these two cases are ignored). From all path nodes, the
highest node high imp, that is the one at the lowest level, whose value equals the
one of the potential implicant is selected. The requirement of equal values ensures
that implications of the form n = 0 → high imp = 1 and n = 1 → high imp = 0
are ignored. Transformations related to such implications would add negation
operators which had to be eliminated in order to keep the represented formula in
NNF. This problem does not arise if only implications n = 0→ high imp = 0 and
n = 1→ high imp = 1 are considered.

6.3. GLOBAL FLOW: IMPLEMENTATION 101

2

3 4B

1

A

a b a c

2

3 4B

1

a A

a b a c

Figure 6.5: An unreliable implication yields an invalid transformation

If an implication has been identified in path inspection, it has to be checked if
that implication is justified at a global view. The root of the optimization-subtree
might have children which are not part of the subtree (this is also the reason of
introducing watcher lists in section 6.2.7). Values at the root could be justified
locally with respect to the children in the optimization-subtree, but not when all
children are taken into consideration. Figure 6.5 illustrates the problem: node 2 is
the root of the optimization-subtree which contains children 3 and 4 (marked with
black dots), but not B. If literal a at node 3 is tested for implications, then variable
a will be assigned true which results in node 2 being assigned true as well during
propagation, because all of its children in the optimization-subtree are assigned
true (node 2 has a watcher list). But the value of node 2 is not justified from
a global point of view, because child B is not assigned true. Hence the derived
implication is unreliable and must be discarded since the transformation is invalid
(left tree in figure 6.5). Note that unreliable implications can occur at the root
of the optimization-subtree only because this is the only node which can have a
watcher list. On the other hand, true (false) at the root is always justified if it is
an OR-node (AND-node) and derived implications are therefore always reliable.

Node high imp returned by function find highest implication on path, unless it
is null, is the highest node implied by n (algorithm 11, line 8) and the corresponding
transformation can be applied (algorithm 10 , line 13).

102 CHAPTER 6. REDUNDANCY REMOVAL

2

3 4

1

a b a c

2

3 4

1

a

a b a c

Figure 6.6: Transformation related to literal nodes as implicants

6.3.2 Applying Transformations

In a general approach of global flow, a circuit is modified by inserting and removing
particular connections according to derived implications. All modifications are
reversed if it turns out that the area of the circuit has been increased. In our
adapted approach, the size of the tree is not monitored when transformations are
applied and the option of reversing modifications is ignored. Furthermore, only
such implications are considered which do not increase the size of the tree.

By restricting the set of implications and deriving variable assignments ac-
cording to the stuck-at-fault model as described, it is guaranteed that trans-
formations need not introduce new nodes but can be carried out by simply re-
arranging nodes which are already present in the tree. Transformation for impli-
cation n = 0 → high imp = 0 is applied on the tree by replacing high imp by
n∧high imp, and for implication n = 1→ high imp = 1 by replacing high imp by
n∨ high imp (see section 6.1.2). If new nodes were added to the tree in the trans-
formation in our adapted approach, then the original node n would be redundant
in any situation, that is the respective stuck-at fault would be untestable. Hence it
is valid to re-arrange present nodes instead of introducing new ones and applying
redundancy removal to the original node afterwards. In practice, the outcome of
testing that stuck-at fault is anticipated, but redundancy removal will have to be
applied to the optimization-subtree anyway after global flow has finished because
further nodes could become redundant.

Consider the example in figure 6.6 which shows parts of optimization-subtrees.
First (left tree in figure 6.6), assume that node 1 is the highest node assigned

6.3. GLOBAL FLOW: IMPLEMENTATION 103

3

4 5

1

2a

a b c d

Figure 6.7: Copying vs. moving implicants

true if literal a at node 3 is tested for implications (variable a will be assigned
true according to the stuck-at-fault model as described). In the tree on the right,
the necessary transformation has been performed: a copy of literal a has been
added to node 1. Observe that the stuck-at fault of the original literal at node
3 (also the one at node 4) is now untestable because a conflict will occur in lazy
path sensitization at node 1. Dashed lines indicate nodes where the corresponding
stuck-at-fault is untestable. Therefore, the original literal at node 3 in the tree on
the left could be unlinked and added to node 1 (literal a at node 4 will again be
untestable then) without generating a new node.

When assigning variables from literal nodes which are tested for implications, it
is necessary to keep the stuck-at-fault model to be able to re-arrange nodes instead
of copy nodes. In figure 6.7, if literal a at node 4 is tested for implications and
variable a is assigned false (instead of true according to the stuck-at-fault model)
then node 1 will be the highest implied node. But moving literal a from node 4
to node 1 is an invalid transformation: in this case there is no untestable stuck-at
fault the test of which could be anticipated. A new literal a had to be added to
node 1 in order to transform the tree properly (the stuck-at fault of the original
literal a at node 4 is still testable, that is not redundant, then).

For transformations based on implicants which are operator nodes, the same
argument applies as for literal nodes. In figure 6.8, node 5, when assigned false, is
an implicant for node 1 (variables a and b will be assigned false; assume that node

104 CHAPTER 6. REDUNDANCY REMOVAL

2

3 4

5

a b

6

c d

7

a b

8

e f

1

2

3 4

5

a b

6

c d

7

a b

8

e f

N

a b

1

Figure 6.8: Transformation related to operator nodes as implicants

1 is the highest node implied by node 5). Like before, a conflict will occur at new
node N in lazy path sensitization if the stuck-at-fault if original node 5 in the tree
on the right is tested. Examples for the dual cases may be found in figures A.5
and A.6 on page 128.

Given an implication defined by nodes n and high imp, cases have to be distin-
guished depending on the type of the implication and on the type of high imp when
a transformation to the optimization-subtree is applied. If n = 0→ high imp = 0,
then n is a literal or an OR-node and becomes a child of high imp (a sibling
high imp) if high imp is an AND-node (OR-node). Otherwise, if n = 1 →
high imp = 1, then n is a literal or an AND-node and becomes a child of high imp
(a sibling high imp) if high imp is an OR-node (AND-node). Note that the type
of n follows from the implication type due to the policy of deriving variable as-
signments according to the stuck-at-fault model. The structural restriction of
alternating types over levels will be kept in any case without taking special steps.

The following actions have to be carried for re-arranging nodes in order to
transform the tree:

• unlink n from its old parent op

• update subformula sizes of op and its predecessors by subtracting size(n)

• add n to the child list of its new parent np depending on the type of high imp
and the implication type

6.3. GLOBAL FLOW: IMPLEMENTATION 105

• update the subformula sizes of np and of all its predecessors by adding size(n)

• update the levels of all nodes in the subtree of n (this subtree is expected to
be small)

• if n is a literal then apply one-level simplification to np

• if op has only one child left, then apply parent merging

If n is added to the child-list of high imp then it must also be added to the watcher
list of high imp, if needed.

6.3.3 Marking Variables for Update

Marking variables for LCA- and score update in global flow is very similarly to
marking in redundancy removal (see section 6.2.8): again, nodes on the path from
n up to high imp are collected for each derived implication (see algorithm 10, line
10) and marks are set as in redundancy removal. Additionally, the subtree of the
implicant is traversed and all occurring variables are LU-, ISU- and DSU-marked
(algorithm 10, line 11). This is done as a precaution because the LCA of any of
these variables could be affected when nodes are re-arranged.

106 CHAPTER 6. REDUNDANCY REMOVAL

Chapter 7

Putting It All Together

This chapter presents a global view on the system of Nenofex as an expansion-based
QBF solver for negation normal form which integrates the approaches introduced
in the previous chapters. In section 7.1, the core algorithm is described: after an
instance of QBF in QDIMACS format [QDI05] has been parsed and data structures
have been initialized, variables are successively expanded in a greedy scheduling
policy starting at the innermost scope, where the goal is to keep the NNF-tree small
in each expansion. If there are either only existential or only universal variables
left, then a propositional formula in CNF is generated from the NNF-tree which is
forwarded to a SAT solver. In this case, the result for the QBF instance depends
on the result returned by the SAT solver.

Finally, experimental results are presented in section 7.2, where Nenofex is com-
pared against Quantor [Bie04] on benchmark instances from the competitive QBF
evaluation 2007 (available from QBFLIB [GNT01b]). Additionally, the effect of
global flow and redundancy removal on the performance of Nenofex is investigated.

7.1 System Description

This section presents the components of the core algorithm in Nenofex step by
step from initialization of data structures to returning an answer for the given
QBF. On certain parts, remarks will be made which are relevant in the context of
the whole system, but which have been neglected before in the respective chapters
where the parts have been described independently from each other. Figure 7.1
shows the phases of the algorithm. As indicated, in either phase the solver may
stop and return an answer for the given QBF.

107

108 CHAPTER 7. PUTTING IT ALL TOGETHER

INIT

True/False

UNITS UNATES GF RR EXP SAT

Figure 7.1: Core algorithm of Nenofex. Parsing and initialization (INIT), elim-
ination of units and unates (UNITS, UNATES), global flow (GF), redundancy
removal (RR), expansion (EXP) and propositional SAT solving (SAT)

7.1.1 Parsing and Initialization

The first phase (INIT in figure 7.1) involves parsing the given problem instance in
QDIMACS format and setting up data structures. Scopes are stored on a scope
list, where each scope has a variable list and a priority queue where pointers to
the variables in the scope are stored in ascending order with respect to their score
(see section 7.1.4 below). The priority queue is implemented as an array-based
heap data structure (for heaps see [OW02], for example).

Clauses are parsed and added to the NNF-tree after one-level simplification
has been carried out on each. Node properties like subformula size or level are
set on-the-fly. The result of parsing is an NNF-tree which represents the input
CNF, which is fully one-level simplified and where all node properties are correctly
set. No additional traversals of the tree are needed to carry out these tasks. It
may happen that the solver aborts parsing and immediately returns a result. For
example, if the input formula contains two complementary unit literals, then it
can be concluded that the formula is false during parsing.

Two scope pointers are set, one to the innermost scope, called current scope,
and the other one to the first non-empty non-innermost scope, called next scope.
Variables will be selected for expansion from either of these two (the actual schedul-
ing policy is described below), but the invariant must be kept up that both scopes
are never empty (unless there is exactly one non-empty scope left in the formula)
and do not have the same type. If any of the two becomes empty in the course of
expanding variables, then scope pointers will be moved in direction towards the
outermost scope on demand until the next non-empty scope is encountered. If
both current scope and next scope have the same type, then the two scopes are
merged into one scope which becomes the new current scope and the pointer to
next scope is moved.

7.1. SYSTEM DESCRIPTION 109

Before expansion of variables starts, the scores of all variables in current scope
(and only those) are computed and the order in its priority queue is set up.

7.1.2 Elimination of Units and Unates

Unit elimination is the first step in the main loop for eliminating variables in
Nenofex, which consists of phases UNITS up to EXP (expansion) in figure 7.1.
Units and unates are detected and eliminated until saturation in phases UNITS
and UNATES as described in sections 3.4.8 and 3.4.9 on page 36. These two
phases are entered in cyclic fashion until the NNF-tree neither contains units nor
unates. Jumping back to unit elimination after successful unate elimination in
phase UNATES is necessary because unate elimination may produce new units.
Like in the previous phase, it may happen that the result for the formula is known
during these two phases. For example, if the root of the NNF-tree is an OR-node
and has as a child a literal node of a variable which is unate, then the result will
be true if that variable is assigned a value such that the literal child becomes true.

7.1.3 Global Flow and Redundancy Removal

Global flow (phase GF in figure 7.1) and redundancy removal (phase RR) are
carried out on an optimization-subtree which is built depending on recent modifi-
cations of the NNF-tree. The optimization-subtree in general denotes the region
where all modifications over a sequence of operations (expansions, unit- or unate
elimination) have been carried out. For example, if the optimization-subtree is
empty and a variable is expanded then this subtree will be exactly the variable’s
expansion-relevant subtree including copied subtrees and minus deleted nodes. If
another variable is expanded, then the optimization-subtree is updated accord-
ingly. The idea is to carry out global flow and redundancy removal on the region
of the NNF-tree where modifications have been performed because this region
likely contains redundant parts after subtrees have been copied.

The optimization-subtree can become very large over a sequence of expansions.
In practice, it is therefore necessary to impose a fixed limit on the size of this
subtree and discard parts of it on demand. Consequently, limitting the size will
also reduce the runtime spent in phases GF and RR.

Like elimination of units and unates before, global flow and redundancy removal
are carried out in cyclic fashion, where each optimization runs until saturation.
If redundancy has been found and removed in phase RR, then a new cycle will
start at GF because the optimization-subtree has been modified and hence further
implications could be derived. This process will continue until neither implications
nor redundancies can be identified in the optimization-subtree. If any modifica-
tions have been performed in the cycles (consisting of GF and RR) before, then

110 CHAPTER 7. PUTTING IT ALL TOGETHER

phase UNITS is entered again (see the second branch after phases GF and RR in
figure 7.1).

In practice, optimizing large subtrees until saturation with respect to implica-
tions and redundancy is impractical due to the amount of required runtime. In
order to cope with this problem, fixed, separate limits are imposed on the size of
the optimization-subtree and on the number of propagations during global flow
and redundancy removal. If a propagation limit is reached, then the respective
phase is left immediately and will not be entered again in a cycle (this option is
not reflected in figure 7.1) but the other phase remains enabled, provided that its
limit has not yet been reached.

The result for the formula is known either in phase GF or RR when the root
of the NNF-tree is deleted during one-level simplification.

7.1.4 Expansion

Expansion is the final phase (EXP in figure 7.1) in the variable elimination loop.
Variables are selected for expansion depending on their scores and on the types of
current scope and next scope. In Nenofex, generally a greedy strategy is applied:
in order to keep the size of the NNF-tree small in each expansion, always the
minimum score variable is selected.

The invariant on the types of current scope and next scope guarantees that
these scopes always have different types. Consequently, only two cases can occur.

First, if next scope is existential and current scope, which is the innermost
scope, is universal, then only variables from current scope may be selected, that
is only universal expansion of variables from the innermost scope is carried out.
On formulae in CNF this case can easily be handled by applying forall-reduction
to eliminate all variables in current scope. Before selection, the expansion-relevant
LCAs and scores of variables in current scope which are marked for update (any of
LU-mark, ISU-mark or DSU-mark may be set) are recomputed. Marked variables
need not be searched explicitly in this scope, but are collected on a list at the
time when they are marked and hence can be accessed efficiently. Generally,
only variables from current scope are collected for update. After scores have been
recomputed, the order in the priority queue of current scope is updated. The
minimum score variable is removed from the priority queue and expanded.

For the second case where next scope is universal and current scope is existen-
tial, variables from both scopes may be selected for expansion, hence universal
expansion of variables from the first non-innermost scope is the second possibil-
ity in this case. But this kind of expansion must first be enabled. A variable
from next scope is eligible for expansion if, and only if, the preceding expansion
(1) caused the size of the NNF-tree to increase and (2) the size increase (not the
absolute size) to exceed a threshold, called the universal threshold, the value of

7.1. SYSTEM DESCRIPTION 111

which is chosen heuristically. The universal threshold is initially set to 10 nodes.
If an expansion causes the size of the NNF-tree to increase by 10 or more nodes,
then universal expansion of exactly one variable from next scope will be forced in
the next cycle (a cycle consists of phases UNITS to EXP in figure 7.1). After
the forced universal expansion, the universal threshold is increased by 10 nodes.
Again, the increased threshold must be exceeded to enable another forced universal
expansion of a variable from next scope.

The reason for forced universal expansions in the case where next scope is uni-
versal and current scope is existential is that score computation of non-innermost
universal variables is expensive (depending existential variables in current scope
have to be collected). Updating the scores of all affected variables from both
next scope and current scope after each expansion can become impractical on large
formulae. Consequently, only the scores of variables from current scope are re-
computed and when it comes to force a universal expansion of a variable from
next scope, the scores of all variables in that scope are computed from scratch and
the minimum score variable within that scope is chosen. This typically constitutes
a deviation of the greedy strategy of variable selection because the minimum score
variable from current scope may well be cheaper than the one in next scope.

In phase EXP, it may happen that the whole NNF-tree is deleted when a
variable is expanded. In this case, the solver will immediately return a result.

7.1.5 SAT Solving

After each expansion in the variable elimination loop, it is checked if there are both
existential and universal variables left in the formula denoted by the NNF-tree. If
not, then the elimination loop terminates and a propositional formula in CNF is
generated from the NNF-tree which is in turn forwarded to a SAT solver.

If there are only existential variable left, then a CNF will be generated which
is satisfiable if, and only if, the formula denoted by the NNF-tree is satisfiable.
Thus the SAT solver is used for satisfiability checking.

Otherwise, if there are only universal variables left, then a CNF will be gen-
erated which is satisfiable if, and only if, the formula denoted by the NNF-tree is
not a tautology. The SAT solver is used for tautology checking. Some formula φ is
a tautology if, and only if, formula ¬φ, the refutation formula, is unsatisfiable.

The algorithm for generating a CNF from an NNF-tree requires time which is
linear in the number of nodes in the tree and is based on the Tseitin transformation
[Tse68]. Ideas from the two approaches of Boy de la Tour [dlT92] and Plaisted and
Greenbaum [PG86] are combined to reduce the number of clauses in the resulting
CNF.

112 CHAPTER 7. PUTTING IT ALL TOGETHER

7.2 Experimental Results

Experiments have been carried out on the test set used in the competitive QBF
evaluation in 2007 (benchmarks and results are available from [GNT01b]). The
test suite contains 1136 instances. Tests were run on a cluster of Pentium IV 3
GHz workstations running Linux, where runtime and memory were limited by 900
seconds and 1.5 GB, respectively.

Both Nenofex and Quantor were run on the full set of instances, and for
Nenofex, the following three versions concerning global flow (GF) and redundancy
removal (RR) have been set up:

• (GF, RR): both global flow and redundancy removal are enabled

• (no GF, RR): only redundancy removal is enabled

• (no GF, no RR): both global flow and redundancy removal are disabled

Additionally, in each test run the size of the optimization-subtree has been limited
by 500 nodes in all versions of Nenofex.

Table 7.1 shows a comparison of Quantor and Nenofex in all versions by consid-
ering the number of instances where the solvers succeeded, timed out (line OOT)
or ran out of memory (line OOM). The number of instances solved by Nenofex
decreases from (GF, RR) to (no GF, no RR), which indicates that global flow
and redundancy removal contribute positively to the solver’s performance. On the
other hand, time is traded for memory when enabling optimizations: the number
of instances where Nenofex ran out of time increases from (no GF, no RR) to (GF,
RR), the opposite effect can be observed concerning the memory limit.

Table 7.3 shows the numbers of instances where either both or only one of
Quantor and the best-performing version of Nenofex succeeded, timed out or ran
out of memory. The sources of timeouts seem to be different in Quantor and
Nenofex, which timed out more often.

Figure 7.6 shows a plot of sorted penalized runtimes of Quantor and all three
versions of Nenofex. The times recorded for instances where a solver ran out of
memory were set to 900 seconds (the time limit) in order to have comparable
runtimes (times are plotted on the vertical axis, the unit is seconds).

Figures 7.2 to 7.5 show scatter plots of penalized runtimes in seconds. A data
point is defined by the time achieved by two solvers on a particular instance. Ver-
tical and horizontal line-shape cumulations of data points along value 900 indicate
instances where one of the two solvers ran out of time or memory.

The conjecture that redundancy removal can profit from global flow is sub-
stantiated in several ways. The first line in table 7.2 shows the percentage of
nodes which have been deleted in the variable elimination loop (phases UNITS up

7.2. EXPERIMENTAL RESULTS 113

to EXP in figure 7.1). Values are computed with respect to the total amount of
created nodes. The second line shows the percentages of nodes which have been
deleted in the course of optimizations with respect to the total amount of created
nodes, and the third line is similar to the second but values are computed with
respect to the total amount of deleted nodes. For example, in Nenofex (GF, RR),
67.47 % of all created nodes were deleted in the variable elimination loop, 5.89
% of all created nodes were deleted in the course of global flow and redundancy
removal, which accounts for 8.34 % of all deleted nodes.

Figures 7.7 to 7.9 show plots of sorted ratios of deleted nodes in solved instances.
Ratios are plotted on the vertical axis. These sorted ratios were taken to compute
the values in table 7.2. In figure 7.7, a value of 1 indicates that an instance
has been solved entirely by expansions without SAT solving, for values 0 the
instances contained only one type of variables at start and hence SAT solving
could immediately be applied.

Although the percentages of nodes deleted by optimizations are small, more
instances can be solved when optimizations are enabled (see table 7.1). Global flow
and redundancy removal seem to have a positive effect on the number of solved
instances, even though the immediate influence on the number of deleted nodes is
minor.

Tables 7.4 to 7.5 show the numbers of instances where either both or only one
of two versions of Nenofex succeeded, timed out or ran out of memory. In any
table, the best-performing version (GF, RR) is compared to another. The versions
where optimizations are partially (table 7.4) or totally (table 7.5) switched off
are, apart from few exceptions, not capable of solving instances uniquely, that is
instances which version (GF, RR) could not solve .

Thus switching on both global flow and redundancy removal seems to be justi-
fied. It enables Nenofex to solve the largest number of instances compared to the
three other versions, furthermore to run out of memory on the smallest number
of instances, but at the same time has the drawback of causing time outs on the
largest number of instances.

Concerning expansions, LCA computation and marking variables for score up-
date, statistical observations are listed in the following. Data has been drawn from
runs on instances where Nenofex (GF, RR) succeeded.

• Table 7.6 shows the relative frequencies (percentage) of the eight possible
expansion cases (defined in section 4.3.3 on page 50) summed up over all
instances where the three versions of Nenofex succeeded.

• parent pointer dereferences in LCA computation: for each instance which
was solved by Nenofex (GF, RR), the average number of parent pointer
dereferences per call of function compute lca in algorithm 2 (page 45) has

114 CHAPTER 7. PUTTING IT ALL TOGETHER

been computed. The arithmetic mean over these average values is 3.3 and
the maximum is 9.3, which suggests that the NNF-tree has a flat structure.

• variables marked for score update in innermost scope: for each instance which
was solved by Nenofex (GF, RR), the average percentage of LU-marked, ISU-
marked and DSU-marked variables in the innermost scope with respect to
the amount of remaining variables in that scope has been computed before
each expansion (before the cheapest variable is selected for expansion, scores
are recomputed for marked variables in this scope only). The arithmetic
mean over these average values is roughly 4.48% for all three types of marks,
hence in the majority of cases, all three marks were set. The LCA and
scores of roughly 36.3 variables had to be recomputed. This value is the
arithmetic mean over the average numbers of variables in the innermost scope
which were either LU-marked, ISU-marked or DSU-marked before variable
selection. This suggests that the marking policy for LCA and score updates is
justified: the scores of only a small amount of variables in the innermost scope
needs to be recomputed. In contrast, it can be expected that recomputation
of scores of all variables in this scope takes more time than recomputation
of scores of marked variables only.

7.2. EXPERIMENTAL RESULTS 115

Nenofex
Quantor GF, RR no GF, RR no GF, no RR

Solved 421 361 352 313
OOT 32 124 103 83
OOM 683 651 681 740

Table 7.1: Comparison of Quantor and Nenofex in three different versions by
number of instances where solvers succeeded, timed out (OOT) and ran out of
memory (OOM).

(GF, RR) (no GF, RR)
del./created 67.47 65.90

del. by opt./created 5.89 4.27
del. by opt./deleted 8.34 6.74

Table 7.2: Influence of optimizations on the percentage of deleted nodes.

Quantor only Both Nenofex (GF, RR) only Sum
Solved 79 342 19 440
OOT 18 14 110 142
OOM 80 603 48 731

Table 7.3: Number of instances where both or only one of Quantor and Nenofex
(GF, RR) succeeded, timed out or ran out of memory.

(GF, RR) only Both (no GF, RR) only Sum
Solved 14 347 5 366
OOT 37 87 16 140
OOM 14 637 44 695

Table 7.4: Number of instances where both or only one of Nenofex (GF, RR) and
Nenofex (no GF, RR) succeeded, timed out or ran out of memory.

(GF, RR) only Both (no GF, no RR) only Sum
Solved 50 311 2 363
OOT 51 73 10 134
OOM 6 645 95 746

Table 7.5: Number of instances where both or only one of Nenofex (GF, RR) and
Nenofex (no GF, no RR) succeeded, timed out or ran out of memory.

116 CHAPTER 7. PUTTING IT ALL TOGETHER

 1

 10

 100

 1000

 1 10 100 1000

Figure 7.2: Scatter plot of penalized runtimes of Quantor and Nenofex (GF, RR).
Below the diagonal Quantor is faster.

 1

 10

 100

 1000

 1 10 100 1000

Figure 7.3: Scatter plot of penalized runtimes of Nenofex (GF, RR) and Nenofex
(no GF, no RR). Below the diagonal Nenofex (no GF, no RR) is faster.

7.2. EXPERIMENTAL RESULTS 117

 1

 10

 100

 1000

 1 10 100 1000

Figure 7.4: Scatter plot of penalized runtimes of Nenofex (GF, RR) and Nenofex
(no GF, RR). Below the diagonal Nenofex (no GF, RR) is faster.

 1

 10

 100

 1000

 1 10 100 1000

Figure 7.5: Scatter plot of penalized runtimes of Nenofex (no GF, RR) and Nenofex
(no GF, no RR). Below the diagonal Nenofex (no GF, no RR) is faster.

118 CHAPTER 7. PUTTING IT ALL TOGETHER

 0.01

 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000 1200

(GF, RR)
(no GF, RR)

(no GF, no RR)
Quantor

Figure 7.6: Plot (logarithmic scale on vertical axis) of sorted penalized runtimes

 0.1

 1

 10

 100

 1 10 100 1000

P
er

ce
nt

ag
e

GF,RR
no GF, RR

no GF, no RR

Figure 7.7: Plot (logarithmic scale on both axes) of sorted ratios of total deleted
nodes with respect to total created nodes in solved instances

7.2. EXPERIMENTAL RESULTS 119

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

P
er

ce
nt

ag
e

GF,RR
no GF, RR

Figure 7.8: Plot (logarithmic scale on both axes) of sorted ratios of total nodes
deleted by GF and RR with respect to total created nodes in solved instances

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

P
er

ce
nt

ag
e

GF,RR
no GF, RR

Figure 7.9: Plot (logarithmic scale on both axes) of sorted ratios of total nodes
deleted by GF and RR with respect to total deleted nodes in solved instances

120 CHAPTER 7. PUTTING IT ALL TOGETHER

(GF, RR) (no GF, RR) (no GF, no RR)

〈∃,∨,=〉 8.65 7.47 7.16
〈∃,∨, <〉 0.3 0.20 0.01
〈∃,∧,=〉 0.18 0.22 0.25
〈∃,∧, <〉 90.65 91.9 92.32

〈∀,∨,=〉 0.00 0.00 0.00
〈∀,∨, <〉 0.10 0.10 0.13
〈∀,∧,=〉 0.02 0.02 0.03
〈∀,∧, <〉 0.10 0.09 0.10

Table 7.6: Relative frequencies (percentage) of expansion cases

Chapter 8

Summary

In this report Nenofex, an expansion-based solver for quantified boolean formulae
(QBF) has been presented. The solver works on negation normal form (NNF)
and successively eliminates variables from the two innermost scopes by expansion.
The motivation for the use of NNF instead of conjunctive normal form (CNF) as
formula representation relies on the observation that expansion of some existential
variable on NNF is involved with linear size increase of the formula, whereas elim-
inating the same variable by resolution on CNF can increase the formula quadrat-
ically in the worst case.

In Nenofex, a formula in NNF is represented as an NNF-tree, which is a struc-
turally restricted tree consisting of operator nodes (logical conjunction and dis-
junction) and positive or negative literal nodes. An operator node may have an
arbitrary number of children, yet must have at least two. Thus operator nodes
denote an n-ary boolean function. Nodes which have only one child left are merged
with their parent. The type of child nodes must be different from the type of their
parent. This restriction corresponds to applications of the law of associativity of
logical conjunction and disjunction. Operator nodes must not have multiple or
complementary literal nodes of one and the same variable as children. These situ-
ations are avoided by applying one-level simplification. The structural restrictions
must be preserved under any modifications of the NNF-tree, which does not re-
quire fully traversing the tree but can be carried out locally at the regions where
modifications took place. The purpose of structural restrictions is to keep the size
of the NNF-tree small and the distance between nodes and the root short, which
was partially confirmed by experimental results.

Expanding a variable in Nenofex is performed locally by copying relevant parts
of the NNF-tree only. In order to expand some variable, only the expansion-
relevant subtree is copied. This is the smallest subtree which contains all oc-
currences of the variable. Thus copying irrelevant subtrees is avoided within the
expansion procedure. Expansion in Nenofex relies on an extended notion of least

121

122 CHAPTER 8. SUMMARY

common ancestors (LCAs) of variables. The LCA of two nodes in the NNF-tree is
the one common ancestor of the nodes which is farthest away from the root. The
LCA of a variables is the LCA over all of its occurrences. The expansion-relevant
LCA of a variable is an extension of its LCA which takes into account the set
of all children of the LCA whose subtrees contain at least one occurrence of that
variable. This definition establishes a correspondence between expansion-relevant
subtrees and expansion-relevant LCAs of variables. In the algorithm for incremen-
tal computation of expansion-relevant LCAs, which follows from the definition,
an explicit upward-directed search is carried out starting from each occurrence of
the variable. Concerning runtime, the algorithm will profit from flat NNF-trees.
When the expansion-relevant subtree of a variable is copied, node properties are
updated in interleaved fashion. Thus the NNF-tree need not be fully traversed to
carry out this task.

An expansion is involved with a potential increase of the size of the NNF-tree.
In Nenofex expansions are scheduled in order to keep the size small. For this
purpose, always the cheapest variable with respect to a cost measure is expanded.
The cost measure for expansions is the size increase in terms of number of nodes
that is caused when a variable is expanded. Variables are assessed based on their
score, which is a pessimistic estimate on the actual expansion costs. Score compu-
tation is based on expansion-relevant LCAs and is carried out by considering the
number of nodes which are added to (increase score) and deleted from (decrease
score) the NNF-tree in an expansion. Increase scores are exact and can be com-
puted efficiently. In contrast, decrease scores are not exact. These are computed
by anticipating the immediate effects of variable assignments during expansion.
Variables are virtually assigned true and false and the sizes of virtually deleted
subtrees (that is the numbers of nodes in the subtrees) are summed up. Nodes
which would be virtually deleted by one-level simplification are not counted which
renders decrease scores inaccurate but allows simpler computation. The scores of
variables will change if the NNF-tree is modified. Instead of recomputing the scores
of all variables, variables whose LCA or scores have been affected by modifications
are marked for score update. Affected variables are identified by inspecting parts
of the NNF-tree where modifications occur. Experiments show that the scores
of only a small amount of variables had to be recomputed on average after an
expansion, which justifies the use of update marks.

Redundancy is removed from the NNF-tree by means of two approaches from
circuit optimization. In global flow, implications are derived from signals which
are then used for transforming the circuit to reduce its size. ATPG-based redun-
dancy removal relies on the detection of untestable faults in the circuit. A fault
which can not be tested does not affect the circuit’s function and hence the cor-
responding hardware can be removed. In Nenofex, the implementation of global

123

flow and ATPG-based redundancy removal is very limited and incomplete. Not all
redundant parts in the NNF-tree can be detected. Despite the limitations, experi-
ments suggest that these two approaches are crucial for achieving best performance
in terms of the number of solved instances, but also that they are involved with
considerable runtime overhead.

Variables are expanded in cyclic fashion in Nenofex. After units and unates
have been eliminated until saturation, redundancy is removed in a small part of the
NNF-tree until a cutoff criterion is satisfied. The cheapest variable from the two
innermost scopes is expanded. If the expansion of an existential variable causes
the size increase to exceed a heuristic threshold, then a universal expansion is
forced and the threshold is increased. Scores are updated for variables from the
innermost scope only. If there is only one type of variables left in the formula,
then a CNF will be generated from the NNF-tree which is forwarded to a SAT
solver. This way, the SAT solver performs a check for tautology or satisfiability of
the formula represented by the NNF-tree.

Experiments confirm the hypothesis that existential expansion on NNF yields
smaller formulae than resolution on CNF. In a comparison with Quantor, a CNF-
based solver with similar strategy, Nenofex ran out of memory on less instances,
but also had more time outs. With respect to scheduling heuristics and runtime
improvements, there is still room for optimizations.

124 CHAPTER 8. SUMMARY

Appendix A

Figures and Algorithms

L L

[0] [0] [1] [1]

Figure A.1: Expansion template for case 〈∀,∧,=〉

125

126 APPENDIX A. FIGURES AND ALGORITHMS

L

R

L

[0] [0] [1] [1]

R

Figure A.2: Expansion template for case 〈∀,∧, <〉

L L L
[0] [1]

Figure A.3: Expansion template for case 〈∀,∨,=〉

127

L

R

L

SR

[0] [1]

Figure A.4: Expansion template for case 〈∀,∨, <〉

128 APPENDIX A. FIGURES AND ALGORITHMS

2

3 4

5

a b

6

c d

7

a b

8

e f

1

2

3 4

5

a b

6

c d

7

a b

8

e f

N

a b

1

Figure A.5: Transformation related to operator nodes as implicants

2

3 4

1

a b a c

2

3 4

1

a

a b a c

Figure A.6: Transformation related to literal nodes as implicants

129

Algorithm 12: forward propagate truth
Input: node n to be assigned true
Result: further propagations (backward or forward) or conflict (flag conflict = 1)
Data: nodes n, ch, p and pp, global flag conflict

assert(conflict = 0)1

assert(n unassigned)2

assign false(n), n.justified ← 13

p ← parent(n)4

pp ← parent(p)5

if p is AND then6

assert((p is unassigned) or (p is false))7

if (p is false and not justified) or8

(p unassigned and not on fault path and pp on fault path) then9

if p has exactly one unassigned child then10

ch ← find unassigned child(p)11

backward propagate falsity(ch)12

if p unassigned and conflict = 0 then13

forward propagate falsity(p)14

p.justified ← 115

else if p unassigned then16

if all children of p assigned then17

assert(all children assigned true)18

forward propagate truth(p)19

else20

assert(p is OR)21

if n not on fault path and p on fault path then22

conflict ← 123

else if p not assigned then24

forward propagate truth(p)25

else26

assert(p is true)27

p.justified ← 128

130 APPENDIX A. FIGURES AND ALGORITHMS

Algorithm 13: backward propagate falsity
Input: node n to be assigned false
Result: further propagations (backward) or conflict (flag conflict = 1)
Data: node n, variable var, global flag conflict, queue propagation queue

assert(conflict = 0)1

assert(n unassigned)2

if n is a literal then3

var ← variable(n)4

if var unassigned then5

if n negated then assign true(var) else assign false(var)6

enqueue(propagation queue, var)7

else8

if (n negated and var false) or (n not negated and var true) then9

conflict ← 110

else if n is OR then11

assign false(n)12

forall children ch of n and conflict = 0 do13

assert(ch is literal or AND)14

if ch unassigned then15

backward propagate falsity(ch)16

n.justified ← 117

else18

assert(n is AND)19

assign false(n)20

if n has exactly one unassigned child then21

ch ← find unassigned child(n)22

backward propagate falsity(ch)23

n.justified ← 124

Bibliography

[AB02] A. Ayari and D. A. Basin. QUBOS: Deciding quantified boolean logic
using propositional satisfiability solvers. In M. Aagaard and J. W.
O’Leary, editors, FMCAD, volume 2517 of Lecture Notes in Computer
Science, pages 187–201. Springer, 2002.

[BB04] P. Bjesse and A. Borälv. DAG-aware circuit compression for formal
verification. In ICCAD, pages 42–49. IEEE Computer Society / ACM,
2004.

[BB06] R. Brummayer and A. Biere. Local two-level and-inverter graph min-
imization without blowup. Proc. 2nd Doctoral Workshop on Mathe-
matical and Engineering Methods in Computer Science (MEMICS’06),
October 2006.

[BB07] U. Bubeck and H. Kleine Büning. Bounded universal expansion for
preprocessing QBF. In Marques-Silva and Sakallah [MSS07], pages
244–257.

[BCCZ99] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model
checking without BDDs. In R. Cleaveland, editor, TACAS, volume
1579 of Lecture Notes in Computer Science, pages 193–207. Springer,
1999.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic model checking: 1020 states and beyond. Inf. Com-
put., 98(2):142–170, 1992.

[Ben05a] M. Benedetti. Quantifier trees for QBFs. In F. Bacchus and T. Walsh,
editors, SAT, volume 3569 of Lecture Notes in Computer Science, pages
378–385. Springer, 2005.

[Ben05b] M. Benedetti. skizzo: A suite to evaluate and certify QBFs. In
R. Nieuwenhuis, editor, CADE, volume 3632 of Lecture Notes in Com-
puter Science, pages 369–376. Springer, 2005.

131

132 BIBLIOGRAPHY

[Bie04] A. Biere. Resolve and expand. In H. H. Hoos and D. G. Mitchell, edi-
tors, SAT (Selected Papers, volume 3542 of Lecture Notes in Computer
Science, pages 59–70. Springer, 2004.

[BKF95] H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for quan-
tified boolean formulas. Inf. Comput., 117(1):12–18, 1995.

[BL94] H. Kleine Büning and T. Lettmann. Aussagenlogik: Deduktion und
Algorithmen. B.G.Teubner Stuttgart, 1994.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Trans. Computers, 35(8):677–691, 1986.

[CE81] E. M. Clarke and E. A. Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In D. Kozen,
editor, Logic of Programs, volume 131 of Lecture Notes in Computer
Science, pages 52–71. Springer, 1981.

[CGS98] M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate
quantified boolean formulae. In AAAI/IAAI, pages 262–267, 1998.

[DIM93] DIMACS. Satisfiability Suggested Format, 1993.

[DLL62] M. Davis, G. Logemann, and D. W. Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[dlT92] T. Boy de la Tour. An optimality result for clause form translation. J.
Symb. Comput., 14(4):283–302, 1992.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification
theory. J. ACM, 7(3):201–215, 1960.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[GNT01a] E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjumping for quan-
tified boolean logic satisfiability. In B. Nebel, editor, IJCAI, pages
275–281. Morgan Kaufmann, 2001.

[GNT01b] E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean
Formulas satisfiability library (QBFLIB), 2001. www.qbflib.org.

[HR04] M. Huth and M. Ryan. Logic in Computer Science. Modelling and
Reasoning about Systems. Cambridge University Press, 2004.

BIBLIOGRAPHY 133

[HS04] H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations &
Applications. Elsevier / Morgan Kaufmann, 2004.

[JB07] T. Jussila and A. Biere. Compressing BMC encodings with QBF.
Electr. Notes Theor. Comput. Sci., 174(3):45–56, 2007.

[JBS+07] T. Jussila, A. Biere, C. Sinz, D. Kröning, and C. M. Wintersteiger. A
first step towards a unified proof checker for QBF. In Marques-Silva
and Sakallah [MSS07], pages 201–214.

[KPKG02] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai. Robust
boolean reasoning for equivalence checking and functional property
verification. IEEE Trans. on CAD of Integrated Circuits and Systems,
21(12):1377–1394, 2002.

[KS97] W. Kunz and D. Stoffel. Reasoning in Boolean Networks: Logic Syn-
thesis and Verification Using Testing Techniques. Kluwer Academic
Publishers, Norwell, MA, USA, 1997. Foreword By R. E. Bryant.

[MLB00] V. D. Agrawal M. L. Bushnell. Essentials of Electronic Testing for
Digital, Memory and Mixed-Signal VLSI Circuits. Kluwer Academic
Publishers, Norwell, MA, USA, 2000.

[MSS07] J. Marques-Silva and K. A. Sakallah, editors. Theory and Applications
of Satisfiability Testing - SAT 2007, 10th International Conference,
Lisbon, Portugal, May 28-31, 2007, Proceedings, volume 4501 of Lec-
ture Notes in Computer Science. Springer, 2007.

[OW02] T. Ottmann and P. Widmayer. Algorithmen und Datenstrukturen, 4.
Auflage. Spektrum Akad. Verl., 2002.

[PG86] D. A. Plaisted and S. Greenbaum. A structure-preserving clause form
translation. J. Symb. Comput., 2(3):293–304, 1986.

[QDI05] QDIMACS standard, version 1.1, 2005. http://www.qbflib.org/

qdimacs.html.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution prin-
ciple. J. ACM, 12(1):23–41, 1965.

[SAT07] SAT Competition, 2007. http://www.satcompetition.org/2007/.

[SC85] A. Prasad Sistla and E. M. Clarke. The complexity of propositional
linear temporal logics. J. ACM, 32(3):733–749, 1985.

134 BIBLIOGRAPHY

[SS96] J. P. Marques Silva and K. A. Sakallah. GRASP - a new search algo-
rithm for satisfiability. In ICCAD, pages 220–227, 1996.

[Tse68] G. S. Tseitin. On the complexity of derivation in propositional calculus.
Studies in Constructive Mathematics and Mathematical Logic, 1968.

[ZM02a] L. Zhang and S. Malik. Conflict driven learning in a quantified boolean
satisfiability solver. In L. T. Pileggi and A. Kuehlmann, editors, IC-
CAD, pages 442–449. ACM, 2002.

[ZM02b] L. Zhang and S. Malik. The quest for efficient boolean satisfiability
solvers. In CAV ’02: Proceedings of the 14th International Confer-
ence on Computer Aided Verification, pages 17–36, London, UK, 2002.
Springer-Verlag.

Lebenslauf

Persönliches

Name: Florian Matthias Lonsing

Geburtsdatum/-ort: 12. April 1983 in Linz

Ausbildung

Okt. 2005 –
Magisterstudium Informatik,
Johannes Kepler Universität Linz,
voraussichtlich bis Jänner 2008

Okt. 2002 – Okt. 2005
Bakkalaureatsstudium Informatik,
Johannes Kepler Universität Linz

Okt. 2001 – Apr. 2002 Grundwehrdienst

Sep. 1993 – Jun. 2001 Allgemeinbildende Höhere Schule (Gymnasium)
in Linz

Sep. 1989 – Jul. 1993 Volksschule in Linz

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Magisterarbeit selbstständig
und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel
nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche
kenntlich gemacht habe.

Florian Lonsing Linz, Dezember 2007

