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JOHANNES KEPLER JKU

Technisch-Naturwissenschaftliche
Fakultät

Extracting and Validating Skolem/Herbrand
Function-Based QBF Certificates

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplomingenieur

im Masterstudium

Informatik

Eingereicht von:

Mathias Preiner BSc

Angefertigt am:

Institut für Formale Modelle und Verifikation (FMV)

Beurteilung:

Univ.-Prof. Dr. Armin Biere

Mitwirkung:

DI Florian Lonsing
Assist.-Prof. Dr. Martina Seidl

Linz, März, 2012





Abstract

Quantified Boolean Formulas (QBF) allow succinct representations of many
real-world problems, e.g., in formal verification, artificial intelligence, or
computer-aided design of integrated circuits. Hence, for many practical in-
stances of QBF efficient decision procedures are highly requested. However,
in many applications of QBF, it is not sufficient to ”just” solve problems
but necessary to provide additional valuable information also denoted as
certificates. Given a problem formulated in QBF, it is possible to extract
such certificates.

In this thesis, we present the tools QRPcert and CertCheck for extracting
and validating Skolem/Herbrand function-based QBF certificates of (un)sat-
isfiability, which we obtain from Q-resolution proofs and traces. We discuss
the process of certificate extraction as implemented in QRPcert in detail and
further describe the validation of those certificates by means of CertCheck
and a SAT solver.

We applied our tools to the benchmark sets of the QBF competitions
2008 and 2010 and provide an extensive evaluation of the results. As a base
for QBF certificate extraction, we used Q-resolution traces recorded by the
state-of-the-art QBF solver DepQBF. The results of our experiments show
that the employed extraction technique is a promising approach for a unified
certification framework for QBF.

Finally, we discuss open problems and ideas for extending our tools in
order to improve the certification workflow as employed in our experiments.





Zusammenfassung

Quantifizierte Boolesche Formeln (QBF) erlauben kompakte Kodierungen
von Problemen in vielen Anwendungsbereichen wie z.B., Formaler Verifika-
tion, Künstlicher Intelligenz, sowie der Entwicklung von integrierten Schal-
tungen. Ein entscheidender Faktor dabei ist die Anwendung von effizienten
Algorithmen für die Evaluierung von QBF. In vielen Anwendungsbereichen
ist es jedoch nicht ausreichend nur die Erfüllbarkeit von Problemen zu be-
stimmen, sondern notwendig zusätzliche Informationen über den Beweisher-
gang in Form von sogenannten Zertifikaten zur Verfügung zu stellen. Diese
Zertifikate bieten nützliche Informationen über das Problem selbst und sind
daher für viele Anwendungsbereiche äußerst wichtig.

Diese Arbeit beschäftigt sich mit der Extrahierung und Validierung von
Skolem-/Herbrand-Funktions-basierten QBF-Zertifikaten. Es werden die
wichtigsten Algorithmen in QRPcert, einem Werkzeug zur Extrahierung von
QBF-Zertifikaten aus Q-Resolutionsbeweisen, im Detail vorgestellt. Darüber-
hinaus wird gezeigt, wie die von QRPcert extrahierten Zertifikate auf ihre
Richtigkeit überprüft werden.

Diese Arbeit beinhaltet umfangreiche Experimente, die auf den Bench-
mark-Tests der QBF Wettbewerbe von 2008 und 2010 durchgeführt wurden.
Für die Extrahierung der Zertifikate wurden Q-Resolutionsbeweise verwen-
det, die von DepQBF, einem Programm zur Evaluierung von QBF in kon-
junktiver Pränex-Normalform, erzeugt wurden. Die Ergebnisse der Expe-
rimente zeigen, dass die angewandte Technik zur Extrahierung von QBF
Zertifikaten einen vielversprechenden Ansatz für die einheitliche Zertifizie-
rung von wahren und falschen QBF bietet.

Am Ende dieser Arbeit werden einige Ideen zur Erweiterung der entwi-
ckelten Programme diskutiert, um den in den Experimenten angewendeten
Zertifizierungsprozess weiter zu verbessern.
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Chapter 1

Introduction

Quantified Boolean formulas (QBF) are an extension of propositional logic
(SAT) and allow existential and universal quantification over variables. QBF
provide compact encodings for many problems in formal verification [7, 14,
24, 31, 19, 44], planning [40, 39, 17, 38] and electronic design automa-
tion [10, 34, 49, 20]. By allowing quantification of variables, the complex-
ity class of the satisfiability problem of QBF is raised from NP-complete
(SAT) to PSPACE-complete. Due to the wide range of applicability of
QBF there is high interest in developing efficient algorithms for solving
many practical instances of QBF problems. The most popular approach
to solve the satisfiability problem for QBF is an extension of the success-
ful Davis-Putnam-Logemann-Loveland (DPLL) [13] procedure for SAT as
employed in [51, 16, 30]. Other approaches employ techniques like Skolem-
ization [4, 25, 26], Q-resolution with expansion [5], or circuit-based proce-
dures [22].

Efficient evaluation techniques are crucial in applications of QBF but not
the only important aspect. If a QBF solver concludes that a given problem
is satisfiable (sat) resp. unsatisfiable (unsat), there is no way to verify the
correctness of the result without further evidence. Hence, techniques for
validating the answer of a QBF solver are highly requested.

As an example consider model checking, where an unsatisfiable prob-
lem indicates that the system to be checked is free from certain types of
defects, whereas a satisfiable problem indicates that certain requested prop-
erties are not met and the system might be erroneous. Therefore, in many
applications it is not sufficient that a solver returns mere sat/unsat answers.
For example, in case of erroneous behaviour of a system the result of the
solver should be the basis for providing counter-examples. As a matter of
fact, it is possible to provide evidence of the correctness of a solver’s result
by extracting so-called certificates of (un)satisfiability for a solved problem.
These certificates further provide valuable information to serve as a base for
extracting e.g., error traces or counter-examples.

1



2 CHAPTER 1. INTRODUCTION

In SAT, it is relatively straightforward to extract certificates of (un)satis-
fiability from a SAT solver, where a certificate is either represented as a
model or a resolution proof depending on whether given problem is sat-
isfiable or unsatisfiable. Certificates of satisfiability may, e.g., be used to
provide counter-examples, whereas resolution proofs may be used as input
for other algorithms such as the computation of Craig interpolants in model
checking [32].

In case of QBF, certificates can be beneficial in similar ways, but they
are considerably harder to extract. Commonly accepted representations of
certificates of (un)satisfiability are Q-resolution proofs and sets of Boolean
functions that represent the truth values of the existentially quantified vari-
ables. Given a satisfiable QBF, certificates of satisfiability can be either
represented by cube resolution proofs as in [50, 35] or as sets of so-called
Skolem functions as in [4, 25, 26]. Certificates of unsatisfiability are usu-
ally represented by clause resolution proofs. In case that a given certificate
is a set of Skolem functions, we gain further valuable information on the
solved problem, which can be exploited, e.g., to provide counter-examples
or error traces to faulty states. In [44], e.g., Skolem function-based cer-
tificates are used for localizing and correcting faults in sequential circuits.
Skolem functions are directly derivable for Skolemization-based solvers as
presented in [4, 25, 26]. However, the extraction of Skolem functions is not
directly applicable to QBF solvers that employ the successful DPLL style
procedures.

Recently, a promising approach for extracting Skolem function-based
certificates of satisfiability (resp. their dual counterpart, Herbrand function-
based certificates of unsatisfiability) from cube (resp. clause) resolution
proofs was introduced in [2]. This technique is solver-independent and may
be applied to any QBF solver that provides resolution proofs of (un)satis-
fiability. Hence, it is also applicable and well-suited for DPLL-based QBF
solvers.

In this thesis, we present tools for extracting and validating Skolem/Her-
brand function-based QBF certificates that are obtained from Q-resolution
proofs, based on the approach introduced in [2]. The structure of the thesis
is organized as follows. In Chapter 2, we give an overview on the prelimi-
naries required for this thesis followed by a short summary on related work
and the introduction of Skolem/Herbrand function extraction in Chapter 3.
After that, in Chapters 4 and 5 we describe the tools developed for ex-
tracting and validating Skolem/Herbrand function-based QBF certificates.
Chapter 6 provides an extensive evaluation of the experimental results con-
ducted on the benchmark sets of the QBF competitions 2008 and 2010.
In the last chapter, we discuss the results and provide an outlook on future
improvements of our framework.



Chapter 2

Preliminaries

2.1 Quantified Boolean Formulas

Quantified Boolean formulas (QBF) are an extension of propositional logic
and introduce universal and existential quantification over propositional
variables. This extension provides quantified Boolean formulas with a pow-
erful and compact representation for important application in artificial in-
telligence, knowledge representation, verification, and synthesis.

2.1.1 Syntax

In addition to universal (∀) and existential (∃) quantifiers, quantified Boolean
formulas also employ a set of logical connectives restricted to the conjunc-
tion (∧), disjunction (∨) and negation (¬). Further, quantified Boolean
formulas may also contain the Boolean constants true (>) and false (⊥).
In the following, we use → and ↔ for denoting logical implication resp.
equivalence.

Definition 2.1 (QBF). The set of quantified Boolean formulas is inductively
defined as in [11].

1. Propositional variables and the Boolean constants are quantified Boolean
formulas.

2. If Φ1 and Φ2 are quantified Boolean formulas, then ¬Φ1, Φ1 ∧Φ2 and
Φ1 ∨ Φ2 are quantified Boolean formulas.

3. If Φ is a quantified Boolean formula, then ∃x.Φ and ∀x.Φ are quantified
Boolean formulas.

4. Only formulas given by (1) to (3) are quantified Boolean formulas.

The set of variables of a quantified Boolean formula Φ is denoted as var(Φ),
which is composed of the set of existentially quantified variables var∃(Φ)
and the set of universally quantified variables var∀(Φ) of Φ. A literal l is

3



4 CHAPTER 2. PRELIMINARIES

either a variable x or its negation ¬x with x ∈ var(Φ), which we also denote
as positive or negative occurrence of variable x, respectively. Variable x in
formula ∃x.φ (resp. ∀x.φ) is called a quantified variable, where φ denotes
the scope of x. An occurrence of variable x is called bound if the scope of
∃x (resp. ∀x) includes the occurrence of x. All occurrences of variable x
that are not bound are called free occurrences. A variable x in formula Φ
is called free (resp. bound) if there is a free (resp. bound) occurrence of x
in Φ. A formula is called closed if it does not contain any free variables.
In the following, we consider closed quantified Boolean formulas in prenex
normal form, i.e., a QBF in the form Q.φ, where Q is a sequence of quantified
variables denoted as prefix and a propositional formula φ denoted as matrix.

Definition 2.2 (Prenex Normal Form (PNF)). Let Φ be a QBF in prenex
normal form such that:

Φ = Q1X1 . . . QnXn︸ ︷︷ ︸
prefix

. φ(x1, x2, . . . , xm)︸ ︷︷ ︸
matrix

where Qi is a quantifier with Qi ∈ {∀, ∃}, Xi is a set of variables with
Xi ⊆ var(Φ) bound by Qi at nesting level i and φ is a propositional formula
over variables xj ∈ var(Φ).

Note that the prefix is linearly ordered by nesting level, i.e., the variables
of Xi precede the variables of Xi+1 (resp. the variables of Xi+1 tail the
variables of Xi). We say that x ≺ y with x ∈ Xi and y ∈ Xi+1 iff
Xi precedes Xi+1. Nesting level 1 (resp. level n) is called the outermost
(resp. innermost) nesting level of formula Φ. Further, note that any QBF in
non-prenex form, as introduced in Definition 2.1, can be transformed into
prenex normal form, as shown in [27].

The matrix of a quantified Boolean formula in PNF may be represented
in several different normal forms.

Definition 2.3 (Conjunctive Normal Form (CNF)). A propositional for-
mula is in conjunctive normal form if it is a conjunction of clauses
C1∧. . .∧Cn, where a clause is a disjunction of literals, i.e., Ci = l1∨. . .∨lm.

Definition 2.4 (Disjunctive Normal Form (DNF)). A propositional formula
is in disjunctive normal form if it is a disjunction of cubes C1 ∨ . . . ∨ Cn,
where a cube is a conjunction of literals, i.e., Ci = l1 ∧ . . . ∧ lm.

Note that an empty clause (resp. empty cube), i.e., a clause (resp. cube)
without any literals, may be represented as the empty set ∅ and is con-
sidered to be ⊥ (resp. >). Any propositional formula can be transformed
into CNF or DNF, while potentially increasing the size of the formula [27].
The transformation into CNF is done via Tseitin’s encoding [48], whereas
converting a formula into DNF is achieved by applying rewriting rules like
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the distributivity law and De Morgan’s laws [27]. Note that a propositional
formula in CNF (resp. DNF) may also be considered as a set of clauses
(resp. cubes) {C1, . . . , Cn}, where a clause (resp. cube) C is a set of literals
{l1, . . . , lm}. In the following, we consider quantified Boolean formulas to be
given in either prenex conjunctive normal form or prenex disjunctive normal
form.

Definition 2.5 (Prenex Conjunctive Normal Form (PCNF)). A QBF is in
prenex conjunctive normal form if it is in prenex normal form and its matrix
is in conjunctive normal form.

Definition 2.6 (Prenex Disjunctive Normal Form (PDNF)). A QBF is in
prenex disjunctive normal form if it is in prenex normal form and its matrix
is in disjunctive normal form.

Example 2.1. Given a propositional formula φ = x ↔ y representing the
logical equivalence of the variables x and y. We reformulate φ into a QBF
stating that for every truth value of x there exists an equivalent truth value
for y. Formula 2.1 represents the resulting QBF Φ1 in PCNF, whereas the
equivalent QBF Φ2 in PDNF is shown in Formula 2.2.

Φ1 = ∀x∃y.(¬x ∨ y) ∧ (x ∨ ¬y) (2.1)

Φ2 = ∀x∃y.(x ∧ y) ∨ (¬x ∧ ¬y) (2.2)

2.1.2 Semantics

In contrast to the NP-complete satisfiability problem of propositional logic
(also denoted as SAT), deciding the satisfiability of closed quantified Boolean
formulas (also denoted as QSAT) is PSPACE-complete, as shown in [45].

Definition 2.7 (Satisfiability of propositional logic). Let φ, φ′, and φ′′ be
propositional formulas and let ¬, ∧, and ∨ be the only logical connectives
used. Further, let I be a given mapping from the set of propositional vari-
ables to the set of truth values {F,T}. Then, I can be extended for arbitrary
formulas as follows.

1. If φ = >, then I(φ) = T.

2. If φ = ⊥, then I(φ) = F.

3. If φ = v and v is a propositional variable, then I(φ) = T iff I(v) = T.

4. If φ = ¬φ′, then I(φ) = T iff I(φ′) = F.

5. If φ = φ′ ∨ φ′′, then I(φ) = T iff I(φ′) = T or I(φ′′) = T.

6. If φ = φ′ ∧ φ′′, then I(φ) = T iff I(φ′) = T and I(φ′′) = T.

The satisfiability of quantified Boolean formulas is defined by extending
Definition 2.7 as follows.
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Definition 2.8 (Satisfiability of QBF). Let Φ = Q.φ be a QBF in PNF. Then

1. ∃x.φ is satisfiable iff I(φ[x/⊥]) = T or I(φ[x/>]) = T.

2. ∀x.φ is satisfiable iff I(φ[x/⊥]) = T and I(φ[x/>]) = T.

where φ[x/⊥] (resp. φ[x/>]) denotes the substitution of all occurrences of
x in φ by ⊥ (resp. >). The substitution is also denoted as assigning the
Boolean constant ⊥ (resp. >) to variable x.

In case of a satisfiable propositional formula φ, it is sufficient to show that
there exists an assignment of truth values (i.e., Boolean constants) to a
subset of var(φ) such that φ evaluates to true. However, showing that a QBF
Φ is satisfiable requires to construct a set of Boolean functions for (a subset
of) var∃(Φ), where a function represents the truth value of the respective
variable depending on the assignments of all preceding universally quantified
variables. This set of Boolean functions is denoted as a satisfiability model.
We generalize the definition of a satisfiability model as presented in [11] as
follows.

Definition 2.9 (Satisfiability Model). Let Φ = Q.φ be a closed QBF in
PNF with var∃(Φ) = {y1, . . . , yk}. Let fyi = f(x1, . . . , xn) for all xj with
xj ≺ yi and xj ∈ var∀(Φ) be a Boolean function representing the truth value
of variable yi. Let M = {fy1 , . . . , fyk} be a set of Boolean functions. M is
a satisfiability model of Φ iff I(φ[y1/fy1 , . . . , yk/fyk ]) = T.

Note that Boolean functions are constants if the corresponding existentially
quantified variable is not dependent on preceding universally quantified vari-
ables. In this case, the Boolean functions are represented by the Boolean
constants ⊥ and >. If we extend Definition 2.9 to quantified Boolean formu-
las with free variables, this would also apply to the Boolean functions of the
corresponding free variables, as they are considered to be existentially quan-
tified and to precede all other bound variables (as defined in the QDIMACS1

standard).

Example 2.2. As an example, we consider a satisfiable QBF in PCNF given
in Formula 2.3 and its satisfiability model M = {fy1 , fy2}, where fy1 = ⊥
and fy2 = ¬x1 ∨ ¬x2.

∃y1∀x1x2∃y2.(¬y1∨x1)∧(x1∨¬x2∨y2)∧(¬x1∨¬x2∨¬y2)∧(x2∨y2) (2.3)

Substituting all occurrences of the existential variables y1 and y2 with their
resp. Boolean function yields Formula 2.4. The resulting Formula 2.4 is true
for every assignment of x1 and x2 and therefore, M is a valid satisfiability
model of Formula 2.3.

∀x1x2.(¬fy1 ∨ x1)∧ (x1 ∨¬x2 ∨ fy2)∧ (¬x1 ∨¬x2 ∨¬fy2)∧ (x2 ∨ fy2) (2.4)

Note that fy1 is assigned to the Boolean constant ⊥ because variable y1

neither depends on x1 nor x2.

1http://www.qbflib.org/qdimacs.html
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2.1.3 Q-Resolution

Q-Resolution is a complete and sound approach for evaluating quantified
Boolean formulas [12] and is an extension of the resolution rule of proposi-
tional logic.

Definition 2.10 (Resolution). Let φ be a propositional formula in CNF and
let C1 and C2 be two clauses of φ. If there exists a variable x ∈ var(φ) such
that x ∈ C1 and ¬x ∈ C2, resolving C1 and C2 on pivot variable x yields the
resolvent C = {C1 ∪ C2} \ {x,¬x}.

Proposition 2.1 ([41]). Resolvent C is a logical consequence of C1 and C2

and can be added to φ without changing the truth value of φ.

Q-Resolution extends the resolution rule for propositional logic on CNF to
PCNF by adding two rules: first, the pivot variable is restricted to be an
existentially quantified variable. Second, all universally quantified literals
that do not precede an existentially quantified literal are removed, which is
called Universal-Reduction.

Proposition 2.2 (Universal-Reduction [11]). Let Φ = Q.φ be a QBF in
PCNF and let C be a clause in φ. Let y be the innermost existentially
quantified literal in C. All universally quantified literals xi ∈ C with y ≺ xi
can be eliminated from C without changing the truth value of Φ.

Definition 2.11 (Q-Resolution for PCNF). Let Φ = Q.φ be a QBF in
PCNF and let C1 and C2 be two clauses in φ. If there exists an existentially
quantified variable y ∈ var∃(Φ) such that y ∈ C1 and ¬y ∈ C2, we obtain
a Q-resolvent by resolving C1 and C2 on pivot variable y by applying the
following two steps.

1. Apply the universal-reduction rule on C1 and C2 and obtain the universal-
reduced clauses C ′1 and C ′2.

2. Resolve C ′1 and C ′2 on variable y and obtain the Q-resolvent
{C ′1 ∪ C ′2} \ {y,¬y}. If the resulting clause is a tautology, no Q-
resolvent is obtained.

Note that it is required to apply universal-reduction in each Q-resolution
step, otherwise Q-resolution would not be refutation complete [11].

For quantified Boolean formulas in PDNF, the Q-resolution rule is anal-
ogously defined to Definition 2.11 and Proposition 2.2 for PCNF.

Proposition 2.3 (Existential-Reduction [1]). Let Φ = Q.φ be a QBF in
PDNF and let C be a cube in φ. Let x be the innermost universally quantified
literal in C. All existentially quantified literals yi ∈ C with x ≺ yi can be
eliminated from C without changing the truth value of Φ.
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Definition 2.12 (Q-Resolution for PDNF). Let Φ = Q.φ be a QBF in
PDNF and let C1 and C2 be two cubes in φ. If there exists an universally
quantified variable x ∈ var∀(Φ) such that x ∈ C1 and ¬x ∈ C2, we obtain
a Q-resolvent by resolving C1 and C2 on pivot variable x by applying the
following two steps.

1. Apply the existential-reduction rule on C1 and C2 and obtain the ex-
istential-reduced cubes C ′1 and C ′2.

2. Resolve C ′1 and C ′2 on variable x and obtain the Q-resolvent
{C ′1 ∪ C ′2} \ {x,¬x}. If the resulting cube is a contradiction, no Q-
resolvent is obtained.

In the following, we refer to Q-resolution for PCNF (resp. PDNF) as clause
(resp. cube) resolution. Further, we use qres(C1 ,C2 ) for denoting clause
resolution (resp. cube resolution) over C1 and C2, which we also refer to as
a clause (resp. cube) resolution step. To indicate the application of universal-
(resp. existential-) reduction to a clause (resp. cube) C we use red(C ). We
further use constraint for denoting a clause resp. cube.

2.1.4 Q-Resolution Proofs

Both clause and cube resolution are sound and complete proof systems for
evaluating quantified Boolean formulas in PCNF resp. PDNF [12, 18].

Theorem 2.1 ([12]). A QBF in PCNF is unsatisfiable if and only if there
exists a clause resolution sequence leading to the empty clause.

Theorem 2.2 ([18]). A QBF in PDNF is satisfiable if and only if there
exists a cube resolution sequence leading to the empty cube.

A clause (resp. cube) resolution sequence leading to the empty clause (resp.
cube) contains all original clauses (resp. initial cubes) and Q-resolution steps
that are required for the derivation of the empty clause (resp. empty cube)
and is referred to as Q-resolution proof. As cube resolution is not directly
applicable to quantified Boolean formulas in PCNF, a possible solution is to
transform the formula into PDNF while risking an exponential increase in
the size of the formula. However, this transformation is not required as there
exists a technique to extract cube resolution proofs for satisfiable quantified
Boolean formulas in PCNF [18]. Resolution proofs can be interpreted as
directed acyclic graphs (DAG) and are defined similar to [2] as follows.

Definition 2.13. Let Π be a clause (resp. cube) resolution sequence. Let
GΠ = {VΠ, EΠ} be a directed acyclic graph representing Π. GΠ consists
of the set of vertices VΠ and the set of directed edges EΠ ⊆ VΠ × VΠ.
A vertex v ∈ VΠ corresponds to a clause (resp. cube) in Π, whereas an
edge (u, v) ∈ EΠ from antecedent u to vertex v indicates that v is obtained
by either resolution or reduction.
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Example 2.3. We consider the satisfiable QBF in PCNF given as Formula 2.3
and transform it into PDNF by applying the distributive law and subsump-
tion rule, resulting in Formula 2.5.

∃y1∀x1x2∃y2. (¬y1 ∧ y2 ∧ ¬x1)︸ ︷︷ ︸
c1

∨ (¬y1 ∧ y2 ∧ ¬x2)︸ ︷︷ ︸
c2

∨

(x1 ∧ ¬y2 ∧ x2)︸ ︷︷ ︸
c3

∨ (x1 ∧ y2 ∧ ¬x2)︸ ︷︷ ︸
c4

(2.5)

A valid cube resolution proof for Formula 2.5 deriving the empty cube is,
e.g., Π = {c1, c3, c4, c5 = qres(c3 , c4 ), c6 = qres(c1 , c5 )}. The corresponding
DAG of Π is depicted in Figure 2.1, where cubes are represented in set
notation. Further, for the sake of simplicity, reduction and resolution of Q-
resolution are treated separately and represented explicitly as vertices with
one and two incoming edges, respectively.

∅

{¬y1}c6

{x1}c5

{x1, x2}c3′ {x1,¬x2}c4′

{x1,¬y2, x2}c3 {x1, y2,¬x2}c4

{¬y1,¬x1}c1′

{¬y1, y2,¬x1}c1

Figure 2.1: DAG of cube resolution proof for Formula 2.5.

Note that c2 of Formula 2.5 is not required to derive the empty cube and is
thus not part of the resolution proof.

In the following, we treat vertices in a proof DAG and the constraints they
represent equally, i.e., we use the terminology interchangeably in the context
of proof DAGs.
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Negation Conjunction Disjunction Implication Equivalence

¬x x ∧ y x ∨ y x→ y x↔ y

x
yx yx yx

yx

¬x x ∧ y ¬(¬x ∧ ¬y) ¬(x ∧ ¬y)
¬(x ∧ ¬y)∧
¬(¬x ∧ y)

Table 2.1: Basic logical connectives represented as and-inverter graphs.

2.2 And-Inverter Graphs

And-inverter graphs (AIG) [28, 29] are directed acyclic graphs commonly
used for representing combinational logic and are implemented in several
logic synthesis and verification systems such as ABC [46] and MVSIS [47].
AIGs are a representation of Boolean formulas, where the set of logical
connectives is restricted to conjunction (∧) and negation (¬), which form a
complete set of connectives in that all others can be expressed [15].

Definition 2.14 (And-Inverter Graph). An and-inverter graph is a directed
acyclic graph representing primary inputs, primary outputs and two-input
AND-gates as vertices with either 0 or 2 incoming edges, and 0 or more
outgoing edges. A primary input is represented by a vertex with no incom-
ing edges and can be either a Boolean variable or the Boolean constant ⊥.
Vertices with two incoming edges represent two-input AND-gates, whereas
vertices with no outgoing edges are primary outputs. Negation is indicated
by a complemented edge.

In general, and-inverter graphs are non-canonical, i.e., there is no unique
representation of a Boolean formula as an AIG. In most cases, and-inverter
graphs show a high degree of redundancy, which can be reduced considerably
by sharing isomorphic vertices and subgraphs. Several optimization tech-
niques have been proposed for minimizing the overall size of and-inverter
graphs such as structural and functional hashing [29, 33, 8], which can be
applied during AIG construction.

Table 2.1 shows the equivalent two-input AIG representation of the most
common logical connectives, where AND-gates are denoted by circles and
negations by dots.
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2.3 Skolemization and Skolem Functions

Skolemization is a technique originating from the domain of first-order logic
for eliminating existential quantifiers from any first-order logic formula and
is also applicable to quantified Boolean formulas [3]. By applying Skolem-
ization to a QBF Φ in PNF, we obtain a QBF ΦS in so-called Skolem normal
form, which has the following two properties: first, ΦS contains no existential
quantifiers and second, ΦS and Φ are equisatisfiable, i.e., ΦS is satisfiable
if and only if Φ is satisfiable (and vice versa). Existential quantifiers are
eliminated by replacing all existentially quantified variables with so-called
Skolem functions [43], which are defined as follows.

Definition 2.15 (Skolem Function). Let Φ be a closed QBF in PNF with
var∃(Φ) = {y1, . . . , yk}. A Skolem function fyi of an existentially quantified
variable yi ∈ var∃(Φ) is defined as fyi = f(x1, . . . , xn) over all xj with
xj ≺ yi and xj ∈ var∀(Φ). We further say that fyi is of arity n as it is
defined over n variables. If a Skolem function is of arity zero, we replace
the corresponding existentially quantified variable with a so-called Skolem
constant, which in the case of QBF is either the Boolean constant > or ⊥.

Note that Skolem functions are not in the language of QBF, where function
symbols are not allowed. However, it is possible to obtain a valid QBF with-
out function symbols by substituting each Skolem function by the formula
it represents.

Definition 2.16 (Skolemization). Let Φ = Q.φ be a closed QBF in PNF.
Starting with the outermost quantifier in the prefix, the Skolemization of
Φ is obtained by repeatedly applying the following transformation until all
existential quantifiers are eliminated.

∀x1, . . . , xn∃y,Q′︸ ︷︷ ︸
Q

.φ ∀x1, . . . , xn, Q
′︸ ︷︷ ︸

Q\{y}

.φ[y/fy(x1, . . . , xn)]

The resulting formula ΦS contains only universally quantified variables and
is in Skolem normal form.

Example 2.4. As an example, we consider Formula 2.6 with matrix φ defined
over the variables x1, x2, x3, y1, y2, y3.

∃y1∀x1x2∃y2∀x3∃y3.φ(y1, x1, x2, y2, x3, y3) (2.6)

We start with the outermost existential quantifier, replace y1 with a Skolem
constant cy1 , as y1 is not dependent on preceding universal variables, and
obtain Formula 2.7.

∀x1x2∃y2∀x3∃y3.φ(cy1 , x1, x2, y2, x3, y3) (2.7)
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We continue with the next existential quantifier and replace y2 with its
Skolem function fy2 resulting in Formula 2.8.

∀x1x2x3∃y3.φ(cy1 , x1, x2, fy2(x1, x2), x3, y3) (2.8)

Finally, we introduce fy3 and obtain Formula 2.9 in Skolem normal form.

∀x1x2x3.φ(cy1 , x1, x2, fy2(x1, x2), x3, fy3(x1, x2, x3)) (2.9)

2.3.1 Herbrandization and Herbrand Functions

Herbrandization is dual to Skolemization and is a technique for universal
quantifier elimination. A formula ΦH , obtained by applying Herbrandization
to formula Φ, is in so-called Herbrand normal form and contains—dual to
Skolem normal form—no universal quantifiers. Further, the transformation
into Herbrand normal form is validity preserving, i.e., ΦH is valid if and
only if Φ is valid (and vice versa). Universal quantifiers are eliminated by
replacing all universally quantified variables with Herbrand functions, which
are dually defined to Skolem functions.

Example 2.5. By applying Herbrandization to Formula 2.6, we obtain For-
mula 2.10 in Herbrand normal form.

∃y1y2y3.φ(y1, fx1(y1), fx2(y1), y2, fx3(y1, y2), y3) (2.10)

Note that we introduced new Skolem (resp. Herbrand) functions for all ex-
istentially (resp. universally) quantified variables without further specifying
the structure of the functions. In Section 3.2, we describe how we obtain
Skolem (resp. Herbrand) functions for the purpose of QBF certificate ex-
traction in more detail.



Chapter 3

QBF Certificates

The term certificate refers to any means of providing evidence of the (un)satis-
fiability of a given SAT resp. QBF problem. A certificate can be used to
verify the correctness of a solver’s result and further provides valuable in-
formation on the solution of a solved problem, which, for instance, can be
exploited to provide counter-examples in model checking.

In case of SAT, a certificate of satisfiability is represented by a satisfying
assignment of truth values to the variables of a formula, which can be easily
extracted from a SAT solver. Verifying the satisfiability of a propositional
formula is straightforward as we simply have to check whether every clause
of the formula is satisfied by at least one of its literals under given satisfying
assignment. In contrast, showing that a formula is unsatisfiable requires a
clause resolution sequence leading to the empty clause. However, in case of
SAT validating certificates of satisfiability and unsatisfiability can be done
by means of efficient polynomial-time proof checkers [25].

In the context of QBF, both representation and validation of certificates
is significantly more complex due to the inherently tree-like structure of QBF
models. A certificate of satisfiability may be either represented as cube res-
olution proof or as a set of Skolem functions, which represent assignments to
the existentially quantified variables with respect to their preceding univer-
sal variables. In case of unsatisfiable formulas, certification is usually done
via clause resolution proofs. In addition to the verification of the correct-
ness of the result of a QBF solver, QBF certificates also provide means to
identify so-called strategies, which are a crucial piece of information in most
game-like scenarios as well as other applications of QBF. Hence, certificates
are highly requested for practical applications of QBF, e.g., in the field of
formal verification, model checking, and artificial intelligence.

13
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3.1 Related Work

Several approaches and tools for generating and validating certificates for
QBF have been presented over the last 10 years [4, 50, 25, 35]. In most
cases, certificates of satisfiability were either represented as cube resolution
proofs or as sets of Skolem functions, whereas clause resolution proofs usually
represented certificates of unsatisfiability.

sKizzo/ozziKs In [4], the Skolemization-based QBF solver sKizzo is instru-
mented to generate a so-called inference log, which contains all information
necessary to reproduce each step performed by the solver. An inference log of
sKizzo represents a list of instantiations of satisfiability-preserving transfor-
mations like variable assignment, variable substitution, variable elimination
and clause resolution. Once an inference log is generated, it is evaluated
using a reconstruction tool called ozziKs as follows. In case given prob-
lem is satisfiable, ozziKs extracts a model by applying an inductive model
reconstruction procedure while reading the inference log backwards. The
resulting model is represented by a set of Skolem functions and encoded
into a Binary Decision Diagram [9] based certificate of satisfiability. If given
problem is unsatisfiable, ozziKs extracts a so-called unsatisfiable core, i.e., a
subset of the original set of clauses of the unsatisfiable input formula that
is still unsatisfiable.

Squolem/QBV The Skolemization-based QBF solver Squolem [25] repre-
sents certificates of satisfiability with a set of Skolem functions, which are
constructed during the solving process. In case of unsatisfiable instances,
Squolem provides a clause resolution trace as certificate of unsatisfiability.
The certificates extracted by Squolem are validated by a tool called QBV
(Quantified Boolean Verifier). A certificate of satisfiability is incrementally
checked by loading the model into a SAT solver and adding the negation of
each clause of the input formula as assumption. If the result is unsatisfiable,
given certificate of satisfiability is valid.

yQuaffle In [50], the search-based QBF solver yQuaffle is instrumented to
record cube (resp. clause) resolution traces as certificates of satisfiability
(resp. unsatisfiability). Each time a cube (resp. clause) is learned during the
solving process, yQuaffle records all cubes (resp. clause) that were involved
in deriving the learned cube (resp. clause). The resulting trace contains
all cube (resp. clause) resolution sequences required for deriving the empty
cube (resp. empty clause). The traces extracted by yQuaffle are validated
with a verifier that implements a depth-first search and breadth-first search
verification algorithm as introduced in [50].
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EBDDRES/TraceCheck The BDD-based QBF solver EBDDRES [26, 42]
supports the extraction of both certificates of satisfiability and unsatisfiabil-
ity. In case of unsatisfiable instances, EBDDRES provides clause resolution
traces as certificates of unsatisfiability, whereas sets of Skolem functions
are extracted in case given instance is satisfiable [25]. Clause resolution
traces generated by EBDDRES can either be validated by TraceCheck [42] or
QBV [25]. Validation of certificates of satisfiability is done via QBV.

CheQ CheQ [35] is a proof-of-concept suite for extracting and validating
certificates of satisfiability and unsatisfiability built on top of the search-
based QBF solver QuBE. It consists of QuBE-cert, an extension of QuBE for
extracting certificates, and Checker, a tool for validating the certificates gen-
erated by QuBE-cert. Certificates of satisfiability (resp. unsatisfiability) are
represented with cube (resp. clause) resolution proofs, which are recorded
during the solving process of QuBE-cert. The resulting certificates are vali-
dated by Checker, which checks whether each cube (resp. clause) in the cube
(resp. clause) resolution proof has been derived correctly. Note that proofs
generated by QuBE-cert may contain long-distance resolution [51], which is
not supported by Checker and therefore cannot be validated.

Note that most of the tools described above are not maintained anymore.
Further, only the QBF solvers sKizzo, Squolem and EBDDRES with their
resp. tools provide sets of Skolem functions for satisfiable problems, which
can be employed as strategies. None of the described QBF solvers is able to
provide strategies for unsatisfiable instances.

A more recent approach is described in [21], where the circuit-based QBF
solver CirQit has been extended to produce clause resolution proofs for both
satisfiable and unsatisfiable instances by using a technique called dual propa-
gation. Due to the circuit representation of the input formula, CirQit is able
to solve the negated input formula without expensive transformation steps
involved. The resulting clause resolution proofs are validated by QBV and
are used to compute strategies by employing the algorithm presented in [21].
This approach allows dual treatment of certificates of (un)satisfiability but
cannot exploit its full strength on formulas in PCNF.

Another recent approach for extracting certificates is presented in [2],
where Skolem (resp. Herbrand) function-based certificates are extracted
from cube (resp. clause) resolution proofs. A prototype called ResQu was
implemented, which supports the extraction of certificates from Q-resolution
proofs provided by either QuBE-cert or Squolem (in case of unsatisfiable in-
stances). This approach enables dual treatment of certificates of (un)satis-
fiability and further allows the extraction of strategies from solvers that
employ the successful variant of DPLL style procedures for QBF.
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In [36], the state-of-the-art QBF solver DepQBF [30] was extended to pro-
vide Q-resolution traces, which in this thesis serve as a base to extract
Skolem/Herbrand function-based QBF certificates. In the following, we in-
troduce the theoretical background for extracting Skolem/Herbrand func-
tions from Q-resolution proofs as employed in QRPcert based on the ap-
proach presented in [2].

3.2 Skolem/Herbrand Function Extraction

Given a Q-resolution proof of satisfiability (resp. unsatisfiability), we extract
Skolem (resp. Herbrand) functions by traversing a proof DAG in topological
order with the restriction that a vertex may not be processed before all of
its antecedent vertices are processed. This restriction guarantees traversal
sequences in the proof DAG that comply to valid Q-resolution derivations,
i.e., a constraint c is not processed until all other constraints that are re-
quired for deriving c are processed. Therefore, we define a partial order
relation over the vertices of a proof DAG, which considers above restriction,
as follows.

Definition 3.1 (Partial Order of Vertices). Let G = (V,E) be a directed
acyclic graph with a set of vertices V and a set of directed edges E. A node
un is a successor of a node u1 (written as u1 < un) if there exists a sequence
of edges (u1, u2), . . . , (un−1, un) with (ui, ui+1) ∈ E and 1 ≤ i < n. Node v
is a direct successor of u if (u, v) ∈ E.

Given the partial order relation over the vertices of a proof DAG, we obtain
a valid topological order for extracting Skolem (resp. Herbrand) functions.
The processing order of the vertices can be efficiently obtained by employing
a depth-first search-like traversal of the proof DAG, which we describe in
Chapter 4 in more detail.

Example 3.1. Given the proof DAG in Figure 2.1, a partial order of its
vertices may be defined as the ordered set {c1, c

′
1, c3, c

′
3, c4, c

′
4, c5, c6, ∅}. Due

to the fact that the relation < only applies to vertices on a path, the order
of c1, c3 and c4 is not important as long as c1 < c′1 < c6, c3 < c′3 < c5 and
c4 < c′4 < c5 is not violated.

As in [2], we employ a specific formula structure for constructing Skolem
(resp. Herbrand) functions denoted as Right-First-And-Or (RFAO) formula,
which is defined as follows.

Definition 3.2 (RFAO construction rule [2]). The structure of a Right-
First-And-Or (RFAO) formula φ is recursively defined by

φ : clause | cube | clause ∧ (φ) | cube ∨ (φ) (3.1)

where ”|” denotes a selection of given expressions.
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In the following, we interpret RFAO formulas as ordered sets of constraints,
which are read in the following way:

φ = cube1 ∨ (clause1 ∧ (clause2 ∧ (cube2 ∨ (clause3))))

= {cube1, clause1, clause2, cube2, clause3}
(3.2)

We generalize the algorithm for extracting Skolem (resp. Herbrand) func-
tions from Q-resolution proofs as introduced in [2] as follows.

Definition 3.3 (Skolem Function Extraction). Let Φ be a satisfiable QBF
in PCNF with y ∈ var∃(Φ) and let Π be a cube resolution proof of Φ. Let
Cy = {red(c) | c ∈ Π ∧ y ∈ (c \ red(c))} and C¬y = {¬red(c) | c ∈ Π ∧
¬y ∈ (c\ red(c))} be a set of cubes and clauses, respectively. The RFAO for-
mula representing the Skolem function of y is defined by the set
Fy = Cy ∪ C¬y ordered by <. The Skolem function is obtained by applying
the construction rule of a RFAO formula to Fy as defined in Definition 3.2.

Note that set Cy contains all existentially reduced cubes c′ = red(c), where
literal y is one of the literals eliminated by applying existential reduction
to cube c. C¬y, on the other hand, contains the negated form of all cubes
(clauses) ¬c′ with c′ = red(c), where literal ¬y is one of the literals eliminated
by red(c).

Definition 3.4 (Herbrand Function Extraction). Let Φ be an unsatisfiable
QBF in PCNF with x ∈ var∀(Φ) and let Π be a clause resolution proof
of Φ. Let Cx = {red(c) | c ∈ Π ∧ x ∈ (c \ red(c))} and C¬x = {¬red(c) |
c ∈ Π ∧ ¬x ∈ (c \ red(c))} be a set of clauses and cubes, respectively. The
RFAO formula representing the Herbrand function of x is defined by the set
Gx = Cx∪C¬x ordered by <. The Herbrand function is obtained by applying
the construction rule of a RFAO formula to Gx as defined in Definition 3.2.

Given an unsatisfiable QBF Φ in PCNF and its clause resolution proof Π.
The constructed set of constraints Gx for the universally quantified variable
x ∈ var∀(Φ) obtained by Definition 3.4 contains all constraints that are
extracted by algorithm Countermodel construct introduced in [2]. The
construction of Fy in Definition 3.3 is dual to the construction of Gx in
Definition 3.4. The correctness of algorithm Countermodel construct is
shown in [2].

Example 3.2. Given the proof DAG of Figure 2.1 representing a cube reso-
lution proof of the satisfiable Formula 2.3, the Skolem functions extracted
for the existentially quantified variables y1 and y2 are obtained as follows.

Cy1 = {} C¬y1 = {¬∅} Fy1 = Cy1 ∪ C¬y1 = {¬∅}
Cy2 = {c′1, c′4} C¬y2 = {¬c′3} Fy2 = Cy2 ∪ C¬y2 = {c′1,¬c′3, c′4}
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By applying the construction rule of a RFAO formula to Fy1 and Fy2 , we
obtain the Skolem functions fy1 and fy2 as follows.

fy1 = ¬> = ⊥
fy2 = c′1 ∨ (¬c′3 ∧ (c′4)) = (¬y1 ∧ ¬x1) ∨ ((¬x1 ∨ ¬x2) ∧ (x1 ∧ ¬x2))

Note that Skolem function fy2 depends on the existentially quantified vari-
able y1. As we defined Skolem functions to be dependent on universally
quantified variables only, we eliminate y1 by substituting it with its Skolem
function fy1 , which results in:

fy2 = (¬fy1 ∧ ¬x1) ∨ ((¬x1 ∨ ¬x2) ∧ (x1 ∧ ¬x2)) = ¬x1 ∨ ¬x2

The Skolem functions fy1 and fy2 represent concrete assignments to the
variables y1 and y2, such that under all possible assignments of the variables
x1 and x2 Formula 2.3 is satisfiable. Table 3.1 shows that each clause of
Formula 2.3 is satisfied by at least one literal (columns 3-6) under all possible
assignments of x1 and x2 (columns 1 and 2).

Clauses of Formula 2.3

x1 x2 ¬fy1 ∨ x1 x1 ∨ ¬x2 ∨ fy2 ¬x1 ∨ ¬x2 ∨ ¬fy2 x2 ∨ fy2
⊥ ⊥ ¬fy1 ¬x2 ¬x1 fy2
⊥ > ¬fy1 fy2 ¬x1 x2

> ⊥ ¬fy1 x1 ¬x2 fy2
> > ¬fy1 x1 ¬fy2 x2

Table 3.1: Formula 2.3 satisfied by Skolem functions fy1 and fy2 .

Based on the theory discussed above, we implemented a tool for extracting
Skolem/Herbrand function-based QBF certificates. In the following chap-
ters, we describe the implementation of certificate extraction and validation
in more detail, and further provide an extensive evaluation on recent bench-
mark sets.



Chapter 4

QRPcert: Certificate
Extraction

QRPcert is a tool for extracting Skolem/Herbrand function-based QBF cer-
tificates of (un)satisfiability from Q-resolution proofs and traces based on
the algorithm introduced in [2]. In the following, we describe certificate
extraction as implemented in QRPcert in detail.

4.1 Overview

QRPcert extracts Skolem (resp. Herbrand) function-based QBF certificates
of satisfiability (resp. unsatisfiability) from clause (resp. cube) resolution
proofs and traces. It further provides the possibility to extract a subset
of Skolem (resp. Herbrand) functions for variables of interest. As input
format for Q-resolution proofs and traces, QRPcert currently supports the
QRP format [36], a lightweight and explicit format for representing clause
(resp. cube) resolution proofs and traces. QRPcert represents Skolem (resp.
Herbrand) functions as AIGs, which are simplified by common basic sim-
plification techniques such as structural sharing of isomorphic AND-gates
and Boolean constant propagation. A certificate generated by QRPcert is
represented as AIG in the ASCII version of the AIGER1 format.

In the following, we describe the general workflow of QRPcert and its
main steps for generating certificates from Q-resolution proofs of satisfiabil-
ity (resp. unsatisfiability) as depicted in Figure 4.1. Given a Q-resolution
proof (resp. trace) as input file, we construct the full Q-resolution proof
DAG data structure. After that, we prepare all vertices that are required
for deriving the empty constraint for the traversal of the proof DAG in the
extraction phase. We then construct the RFAO formulas for all required
existentially (resp. universally) quantified variables by traversing the proof

1http://fmv.jku.at/aiger/FORMAT.aiger
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Build Proof DAG
Input File

QRP

Prepare Vertices

Extract Functions

Simplify?

Simplify
Functions

Construct AIGs
Certificate

AIGER

Yes
No

Figure 4.1: General workflow of QRPcert.

DAG in topological order as defined in Definition 3.1. In case simplification
is enabled, we propagate Boolean constants derived during the extraction
phase in order to simplify the extracted Skolem (resp. Herbrand) functions.
Finally, we transform each Skolem (resp. Herbrand) function into an AIG
and export it into ASCII AIGER format. The resulting set of AIGs represent
the certificate of satisfiability (resp. unsatisfiability). In the following, we
describe each individual step of the workflow in more detail.
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4.2 Input File

QRPcert currently supports Q-resolution proofs and traces in QRP format,
which is based on the QDIMACS format for QBF and the tracecheck2 format
for SAT. Note that a Q-resolution trace contains all Q-resolution sequences
that were derived during the solving process of a QBF solver. Thus, it may
contain Q-resolution sequences that are not required for deriving the empty
constraint.

We introduce the QRP format with the example trace depicted in Fig-
ure 4.2b. The corresponding unsatisfiable input formula in QDIMACS format
is given in Figure 4.2a. Given a file in QRP format, the header line starts
with ”p qrp” and specifies the number of variables and the number of steps
given. In this example, the number of variables is 9 and the number of steps
is 13. The header line is followed by a set of quantified sets of variables,
which denotes the prefix of the input formula. A quantified set consists of a
quantifier (either universal (a) or existential (e)) and a list of variables ter-
minated by 0. For example, line ”a 1 2 0” defines a universally quantified
set that contains the variables 1 and 2.

The prefix definition is followed by a list of Q-resolution steps, which
are uniquely identified by their step id. Each step further consists of a
constraint (given as a list of literals) and its antecedents, separated by the
delimiter 0. Original clauses of the input formula (resp. initial cubes) do
not have any antecedents, whereas constraints obtained by resolution have
exactly two antecedents and constraints obtained by reduction have exactly
one antecedent. In our example, clauses 1 to 6 are original clauses of the
input formula in Figure 4.2a, whereas clauses 7 to 13 were obtained by
resolution. Further, clause 7 contains the literals -5, -7, and -8 and is
obtained by resolving clauses 2 and 3. Note that a negative number indicates
a negative occurrence of a variable.

The last line starting with ”r” is the result statement, which indicates
whether given Q-resolution proof is a proof of satisfiability (”r sat”) or
unsatisfiability (”r unsat”). In case that given file is a Q-resolution trace,
the result statement indicates if the trace contains a proof of satisfiability
or unsatisfiability. Note that the QRP format does not explicitly distinguish
between clauses and cubes and further allows that a trace may contain both
clause and cube resolution sequences. Therefore, it is important to consider
only those clause (resp. cube) resolution sequences that are required for
deriving the empty clause (resp. empty cube). The grammar of the QRP
format is provided in the appendix A.1, a more detailed introduction is given
in [36].

2http://fmv.jku.at/booleforce/README.tracecheck
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p cnf 9 6

a 1 2 0

e 3 0

a 4 0

e 5 6 0

a 7 0

e 8 9 0

4 5 -7 -8 0

6 -7 -8 0

-5 -6 7 0

-2 3 8 0

1 -3 -9 0

8 9 0

(a) Input formula

p qrp 9 13

a 1 2 0

e 3 0

a 4 0

e 5 6 0

a 7 0

e 8 9 0

1 4 5 -7 -8 0 0

2 6 -7 -8 0 0

3 -5 -6 7 0 0

4 -2 3 8 0 0

5 1 -3 -9 0 0

6 8 9 0 0

7 -5 -7 -8 0 2 3 0

8 -2 3 -5 0 7 4 0

9 4 -7 -8 0 1 7 0

10 4 -7 9 0 9 6 0

11 -2 3 0 9 4 0

12 1 -3 0 6 10 0

13 0 11 12 0

r unsat

(b) Clause resolution trace

Figure 4.2: Clause resolution trace (b) in QRP format of input formula (a)
given in QDIMACS format.

∅13

{−2, 3}11{1,−3}12

{4,−7, 9}10

{4,−7,−8}9

{−5,−7,−8}7

{6,−7,−8}2 {−5,−6, 7}3{4, 5,−7,−8}1{8, 9}6{1,−3,−9}5 {−2, 3, 8}4

{−2, 3,−5}8

Figure 4.3: Proof DAG of trace in Figure 4.2b as represented in QRPcert.
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4.3 Build Proof DAG

The first step is to process the input file and to build an internal represen-
tation of the set of Q-resolution steps given. QRPcert internally maintains
Q-resolution steps of proofs and traces as vertices in a proof DAG similar
to the representation introduced in Figure 2.1 except for two differences.
First, existential- (resp. universal-) reduction of Q-resolution steps is not
made explicit, i.e., we do not create an additional vertex that represents a
reduction step. However, if the input file contains an explicit reduction step,
we represent it in the proof DAG, accordingly. Second, the directed edges
are reversed, i.e., the proof DAG starts with the empty constraint and edges
point from parent vertices to its antecedents. In the following, we divide the
set of vertices of a proof DAG into two sets Vp and Vi, where Vp denotes the
set of vertices required for deriving the empty constraint and Vi represents
the set of irrelevant vertices.

QRPcert generates a total order over all variables by assigning consecu-
tive indices in the order of appearance in the prefix. Note that free variables
are not allowed. The new index is used for sorting the literals of a constraint,
which is important for AIG construction, which is discussed in Section 4.7 in
more detail. Note that QRPcert internally maintains variables and vertices
in arrays in order to provide fast access to their data structure via their
respective indices. Therefore, variable indices as well as vertex indices are
renumbered consecutively in order to avoid sparse arrays and thus, keep the
memory overhead as small as possible.

Figure 4.3 depicts the proof DAG representation of the clause resolution
trace in Figure 4.2b in QRPcert, where clauses are represented as sets of
literals with the corresponding vertex id as subscript. For the sake of sim-
plicity, the variables of given example are already consecutively indexed and
all literals in the clauses are sorted with respect to their index.

4.4 Prepare Vertices

For the extraction of Skolem (resp. Herbrand) functions it is important to
process the proof DAG in topological order as defined in Definition 3.1.
Therefore, in [2], the proof DAG is traversed starting with the original
clauses (resp. initial cubes) with the restriction that a vertex is processed
only after all of its antecedents are processed. We implemented a different
approach in QRPcert, where we traverse the proof DAG in depth-first search-
like order starting with the empty constraint. Our condition for processing a
vertex is that a vertex may not be processed before all of its parent vertices
have been processed. Hence, the vertices of the proof DAG are processed in
the reverse topological order defined in Definition 3.1. The advantage of the
approach implemented in QRPcert is that only vertices required for deriving
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1 function prepare_vertices ( )
2 {
3 STACK s

4 VERTEX v

5 push (s , empty_vertex )
6 while not is_empty (s )
7 {
8 v ← pop (s )
9 i f get_ref_cnt (v ) = 0

10 {
11 foreach a in get_antecedents (v )
12 push (s , a )
13 }
14 incr_ref_cnt (v )
15 }
16 }

Figure 4.4: Compute the reference counters of all required vertices.

the empty constraint are processed as the Q-resolution proof is extracted
on-the-fly and thus, processing Q-resolution traces does not affect the result
nor the performance of the extraction process.

QRPcert maintains reference counters for vertices to determine the num-
ber of parent vertices of a vertex. We use the reference counter of a vertex
to check if it has yet unvisited parent vertices that have to be processed
first. As we only process vertices in Vp, it is important that we consider
references from vertices in Vp only, i.e., we do not consider references from
vertices in Vi to vertices in Vp. Hence, we traverse all vertices in Vp and
compute their reference counters. Note that the reference counters cannot
be computed during the construction of the proof DAG as the vertices can
only be divided into Vp and Vi after the complete proof DAG is constructed.

Figure 4.4 describes the algorithm for computing the reference counters
of all vertices in Vp. Algorithm prepare vertices traverses the proof DAG
in depth-first search order starting with the empty vertex e in order to ensure
that only vertices in Vp are considered. Initially, the reference counters of
all vertices are set to 0. In case we that visit vertex v for the first time
(i.e., the reference counter of v is 0), we push the antecedents of v onto the
visit stack. Further, each time we visit vertex v, we increment its reference
counter by one. After the algorithm terminates, each vertex v ∈ Vp has been
visited n times, where n is the number of parent vertices of v. Note that
in case of the empty vertex, in order to avoid special treatment during the
extraction phase its reference counter is always set to 1 even though it is
not referenced by any other vertex.
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Figure 4.5 illustrates the reference counters (in parenthesis) of all vertices
(labeled with their resp. id) of the proof DAG in Figure 4.3 after algorithm
prepare vertices terminates. Note that vertex 8 is irrelevant for the proof,
hence its references to vertex 7 and 4 are not counted.

13 (1)

11 (1)12 (1)

10 (1)

9 (2)

7 (1)

2 (1) 3 (1)1 (1)6 (1)5 (1) 4 (1)

8 (0)

Figure 4.5: Reference counters of all vertices after prepare vertices.

4.5 Extract Skolem/Herbrand Functions

The extraction of Skolem (resp. Herbrand) functions is based on the algo-
rithm described in [2]. For all existentially (resp. universally) quantified
variables, QRPcert constructs so-called RFAO stacks, which represent the
partially ordered sets obtained by Definition 3.3 (resp. Definition 3.4) in re-
versed order. Unlike [2], in QRPcert we treat Skolem and Herbrand functions
dually, i.e., we employ one extraction algorithm for both cases. Further, for
constructing RFAO stacks we consider the vertices in Vp only.

QRPcert maintains two sets of literals Ls and Lr for representing a con-
straint C, where Ls is the set of literals that we obtain by red(C ). The set
of reduced literals Lr, on the contrary, contains all literals of C that are
eliminated via red(C ). This enables QRPcert to easily distinguish between
the literals of C that are obtained by resolution and the literals that are
eliminated by the subsequent application of red(C ).

Example 4.1. Given the proof DAG in Figure 4.3, consider the constraint
of vertex 3, where we divide the literals {-5, -6, 7} into Ls = {-5, -6} and
Lr = {7}. In contrast, vertex 11 with the literals {-2, 3} is divided into
Ls = {-2, 3} and Lr = {4, -7} as literals 4 and -7 are eliminated by universal-
reduction after resolving vertices 4 and 9.

Figure 4.6 illustrates the algorithm for extracting Skolem (resp. Herbrand)
functions as implemented in QRPcert. Algorithm extract functions uses
the previously computed reference counters of a vertex v for indicating the
number of parent vertices that have to be visited before v can be processed.
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1 function extract_functions ( )
2 {
3 STACK s

4 VERTEX v

5 push (s , empty_vertex )
6

7 while not is_empty (s )
8 {
9 v ← pop (s )

10 decr_ref_cnt (v )
11

12 i f get_ref_cnt (v ) > 0
13 continue
14

15 vid ← get_id (v )
16 foreach l in get_reduced_literals (v )
17 {
18 var ← lit2var (l )
19 rfao ← get_rfao_stack ( var )
20

21 i f is_negated (l )
22 push (rfao , −vid )
23 else
24 push (rfao , vid )
25 }
26

27 foreach a in get_antecedents (v )
28 push (s , a )
29 }
30 }

Figure 4.6: Extract Skolem (resp. Herbrand) functions from proof DAG.

Therefore, each time vertex v is visited, one of its parent vertices has been
processed and hence, we decrement the reference counter of v by one and
check its state. If the reference counter is greater than 0, it indicates that
there are still parent vertices of vertex v yet to be processed, and we skip
v for now. In case the reference counter of v becomes 0, we know that all
parent vertices have been processed and thus, we are allowed to proceed
with vertex v. We then check for each literal l in Lr of vertex v (function
get reduced literals) if it is either a positive or negative occurrence of
variable var and based on that we push either the vertex id or its negation
onto the RFAO stack of var. Note that a negative vertex id indicates that
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the resp. constraint has to be negated when constructing the RFAO formula.

Finally, we push the antecedents of vertex v onto the visit stack s and
continue with the next vertex to be visited. Algorithm extract functions

terminates after all vertices in Vp have been processed. The resulting RFAO
stacks of the existentially (resp. universally) quantified variables correspond
to the partially ordered sets obtained by Definition 3.3 (resp. Definition 3.4),
but in reversed order.

In the following, we describe the extraction process applied to the ex-
ample proof DAG in Figure 4.3 step by step.

Example 4.2. Figure 4.7 illustrates the algorithm’s processing order of the
vertices, where processed vertices are denoted in black, and gray otherwise.
We start with the empty vertex (vertex 13) and decrement its reference
counter, which immediately becomes 0. We identify literals 1 and -2 to be
universally-reduced from vertex 13 after resolving vertex 12 and 11, and
push 13 and -13 onto the RFAO stacks of variables 1 and 2, respectively.
After that, we continue with the first antecedent of vertex 13 (vertex 12),
which we are allowed to process immediately as its single parent vertex is
already processed. Vertex 12 is obtained by resolving vertices 5 and 10,
and eliminating the literals 4 and -7 by applying universal-reduction to the
resolvent. Hence, we push vertex id 12 and -12 onto the RFAO stacks
of variables 4 and 7 respectively, and continue with vertex 10. Neither
vertex 10 nor its first antecedent (vertex 6) is universally-reduced and we
continue with its second antecedent (vertex 9). The reference counter of
vertex 9 does not become 0 because one of its parents (vertex 11) is not
yet processed and thus, for now we skip vertex 9 and continue with vertex
5, which is also not universally-reduced. In order to obtain vertex 11, the
literals 4 and -7 are eliminated after resolving vertex 9 and 4 and thus,
we push vertex id 11 and -11 onto the RFAO stacks of variables 4 and 7,
respectively. Vertex 4 is not universally-reduced and we continue with vertex
9. The reference counter of vertex 9 becomes 0 (as all parents of vertex 9
are processed) and we continue with its first antecedent (vertex 7) as vertex
9 is not universally-reduced. Vertex 7 is also not universally-reduced and we
proceed with vertex 3, where literal 7 is eliminated by universal-reduction
before resolving vertices 2 and 3. Hence, we push vertex id 3 onto the
RFAO stack of variable 7. After processing vertices 2 and 1, which are not
universally-reduced, the algorithm terminates.

The topological order in which the vertices of the proof DAG were tra-
versed is defined by the sequence (13, 12, 10, 6, 5, 11, 4, 9, 7, 3, 2, 1),
which complies to the reversed topological order of Definition 3.1. Table 4.1
illustrates the state of the RFAO stacks of all universally quantified vari-
ables during the extraction process of the example described above. Note
that steps, where the RFAO stacks of the variables are not modified, are
omitted.
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Step Vertex Reduced Literals
RFAO Stacks

1 2 4 7

1 13 1, -2 13 -13
2 12 4, -7 13 -13 12 -12
6 11 4, -7 13 -13 12, 11 -12, -11
10 3 7 13 -13 12, 11 -12, -11, 3

Table 4.1: State of the RFAO stacks during the extraction process.

Given the complete RFAO stack of a variable, we are able to construct the
corresponding RFAO formula, which represents the Skolem (resp. Herbrand)
function of the corresponding existentially (resp. universally) quantified vari-
able. For the construction of RFAO formulas, we consider only those literals
of a constraint that are not eliminated by universal- (resp. existential-) re-
duction.

Example 4.3. Given the RFAO stacks of the universally quantified variables
1, 2, 4 and 7, we are able to construct the corresponding Herbrand functions
by applying the construction rule of a RFAO formula as follows.

f1 = v13 = ⊥
f2 = ¬v13 = >
f4 = v11 ∧ v12 = (−2 ∨ 3) ∧ (1 ∨ −3)

f7 = v3 ∧ (¬v11 ∨ ¬v12) = (−5 ∨ −6) ∧ ((2 ∧ −3) ∨ (−1 ∧ 3))

Note that in contrast to Definition 3.4, the RFAO stacks are in reversed
order. Hence, we construct the corresponding RFAO formula starting with
the vertex on top of the RFAO stack.

In the following, we demonstrate what happens if we ignore the reference
counter of a vertex while traversing the proof DAG, i.e., we assume that the
reference counter of a vertex becomes 0 as soon as it is visited. Due to this
assumption, at step (3) in Figure 4.7 vertex 9 is not skipped after visiting
vertex 10. Thus, we continue with vertex 7, 3, 2 and 1 before vertex 6 is pro-
cessed. After algorithm extract functions terminates, the vertices of the
proof DAG were processed in the order (13, 12, 10, 9, 7, 3, 2, 1, 6, 5, 11, 4).
Hence, the order of the vertices on the RFAO stack of variable 7 changes
to (-12, 3, -11), where 11 < 3 violates the partial order relation defined
in Definition 3.1 as vertex 3 is not a successor of 11. Thus, the resulting
Herbrand function is invalid and not a correct representation of variable 7
and the validation of the certificate does not succeed. Therefore, it is im-
portant to process the vertices in a proof DAG in a valid topological order,
as otherwise the extracted Skolem (resp. Herbrand) functions may not be
correct.
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Figure 4.7: Proof DAG processing order in QRPcert.
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4.6 Simplify Skolem/Herbrand Functions

If simplification is enabled, QRPcert tries to minimize Skolem (resp. Her-
brand) functions by propagating Skolem (resp. Herbrand) constants that
were derived during the extraction process.

Each subformula on the RFAO stack has either the structure
(clause ∧ (φ)) or (cube ∨ (φ)), where the innermost subformula (φ) is a
constraint. Hence, there are two ways of simplifying a RFAO formula, con-
sidering that either the left part (clause resp. cube) or the right part (φ)
may be simplified to a Boolean constant.

The basic simplification workflow of algorithm simplify rfao is illus-
trated in Figure 4.8. The algorithm performs simplification on the RFAO
structure level, i.e., it exploits the specific structure of a RFAO formula for
eliminating certain parts of the formula.

Given a variable var, we traverse the vertices on its RFAO stack from
bottom to top, i.e., we start with the rightmost vertex of the RFAO formula
as current vertex v. We simplify v (Figure 4.9) and obtain its truth value
val, which is either >, ⊥ or undef. If function simplify vertex returns
undef, i.e., vertex v cannot be simplified to a constant and we skip v. Oth-
erwise, we negate val in case vertex v occurs negated on the RFAO stack.
We further check if v is the only vertex on the RFAO stack and if this is the
case, we terminate the algorithm and return val as truth value for var.

If the RFAO stack contains more than one vertex, we try to simplify the
formula in two phases. First, we consider the innermost subformula on the
RFAO stack and simplify it with respect to its rightmost vertex (line 15-30).
Second, in case the rightmost vertex of the innermost subformula cannot be
simplified to a constant, we continue with the simplification of each sub-
formula with respect to its leftmost vertex, starting with the innermost
subformula (line 31-40).

The structure of the innermost subformula is defined by the next vertex
of v (function get next vertex) i.e., the subformula left to v denoted by
v’. In case v’ is a clause, the structure of the innermost subformula is
defined as (v′ ∧ v). If the truth value of vertex v (val) is >, we eliminate
v from the RFAO stack, as the truth value of the subformula depends on
vertex v’ only, and continue the simplification with the next vertex on the
RFAO stack. Else, the truth value of the subformula depends on vertex v

only and thus, v’ is eliminated. We then repeat the simplification of the
innermost subformula with vertex v and the next vertex on the RFAO stack.
If vertex v’ is a cube, the structure of the innermost subformula is defined
as (v′ ∨ v). Hence, if val is >, we eliminate v’ and again continue with
vertex v in the next simplification iteration. In case val is ⊥, v can be
eliminated and we continue with the next vertex on the RFAO stack.

In case the truth value of the rightmost vertex is undef, we skip the
vertex and simplify the subformula with respect to its left part, which is
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1 function simplify_rfao ( VARIABLE var )
2 {
3 rfao ← get_rfao_stack ( var )
4 foreach v in rfao

5 {
6 val ← simplify_vertex (v )
7 i f val = undef
8 continue
9 i f is_negated (v )

10 val = ¬val
11 i f get_num_vertices ( rfao ) = 1
12 return val

13

14 /∗ s i m p l i f y innermost subformula ∗/
15 i f is_bottom_vertex (rfao , v )
16 {
17 v ’ = get_next_vertex ( rfao )
18 i f ( is_clause (v ’ ) and val = >) or
19 ( is_cube (v ’ ) and val = ⊥)
20 {
21 remove_vertex (rfao , v )
22 continue with v ’
23 }
24 e l i f ( is_clause (v ’ ) and val = ⊥) or
25 ( is_cube (v ’ ) and val = >)
26 {
27 remove_vertex (rfao , v ’ )
28 continue with v

29 }
30 }
31 i f is_true_clause (v ) or is_false_cube (v )
32 {
33 remove_vertex (rfao , v )
34 }
35 e l i f is_false_clause (v ) or is_true_cube (v )
36 {
37 remove_all_vertices_below (rfao , v )
38 continue with v

39 }
40 }
41 return undef
42 }

Figure 4.8: Simplify RFAO stack of a variable var.
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1 function simplify_vertex ( VERTEX v )
2 {
3 foreach lit in get_literals (v )
4 {
5 val ← evaluate_literal ( lit )
6

7 i f val = undef
8 continue
9 i f get_num_literals (v ) = 1

10 return val

11

12 i f is_clause (v ) and val = >
13 return >
14 e l i f is_cube (v ) and val = ⊥
15 return ⊥
16

17 remove_literal (v , lit )
18 }
19

20 i f get_num_literals (v ) = 0
21 {
22 i f is_clause (v )
23 return ⊥ /∗ empty c l a u s e ∗/
24 else
25 return > /∗ empty cube ∗/
26 }
27 return undef
28 }

Figure 4.9: Simplify and evaluate a vertex.

now denoted by vertex v. Based on the construction rule of a RFAO for-
mula, the structure of a subformula is either (v∧φ) or (v∨φ), depending on
whether vertex v is a clause or a cube, respectively. Formula φ denotes the
subformula constructed from the vertices on the RFAO stack below vertex v.
If v is a clause (resp. cube) evaluating to > (resp. ⊥), we eliminate v. How-
ever, if vertex v is a clause (resp. cube) evaluating to ⊥ (resp. >), we elim-
inate subformula φ (function remove all vertices below), which results
in a simplified innermost subformula with its rightmost vertex being v. We
then repeat simplification and start with the first phase. In case the simplifi-
cation of the RFAO stack of var was not successful, function simplify rfao

returns undef, which indicates that var is defined by a formula and not a
constant.
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The algorithm for simplifying vertices is illustrated in Figure 4.9. Given
a vertex v, we traverse over all of its literals and evaluate each literal lit
(function evaluate literal). We obtain the truth value val of lit, which
is either >, ⊥ or undef. If val is undef, we skip lit and continue with the
next literal of v. Else, in case that given vertex v only contains one literal,
the truth value of v depends on lit only and hence, we return val.

If vertex v contains more than one literal, we check if v evaluates to
> (resp. ⊥) under given truth value of val. Hence, we return > (resp. ⊥)
if v is a clause (resp. cube) and the truth value of lit is > (resp. ⊥).
If both cases do not apply, we can eliminate lit from vertex v, as lit is ⊥
(resp. >) and v is a clause (resp. cube). After evaluating all literals of
vertex v, we finally check if v was simplified to an empty clause (resp.
empty cube) and return ⊥ (resp. >) if this is the case.

Note that simplification in QRPcert is optional and is disabled by default
due to the fact that it is time-consuming and not considered beneficial in its
current implementation. For further details please refer to the experiments
in Section 6.4.

Example 4.4. Given the RFAO stacks of variables 4 and 7 of Example 4.3,
by applying simplification we obtain the following simplified Herbrand func-
tions.

f4 = (��−2 ∨ 3) ∧ (�1 ∨ −3) = 3 ∧ −3

f7 = (−5 ∨ −6) ∧ ((�2 ∧ −3) ∨ (��−1 ∧ 3)) = (−5 ∨ −6) ∧ (−3 ∨ 3)

Note that simplification only propagates constants of variables and thus,
subformulas like (−3 ∨ 3) as in f7 are not further simplified.

4.7 Construct And-Inverter Graphs

A certificate generated by QRPcert consists of a set of AIGs (cf. Section 2.2),
which represent the Skolem (resp. Herbrand) functions of the corresponding
variables. Hence, we transform each RFAO formula that we obtained dur-
ing the extraction phase into an AIG. For that purpose, we implemented
a lightweight AIG library, which employs structural hashing of two-input
AND-gates, and currently supports the ASCII AIGER format.

By default, QRPcert maintains all constructed AIGs in memory in or-
der to share isomorphic AND-gates among all of them, which considerably
reduces the overall number of AND-gates of a certificate (cf. Section 6.3).
Optionally, in case that not enough memory is available, QRPcert supports
incremental AIG construction, where the constructed AIGs are immediately
written to the output file if they exceed a given size limit. Note that incre-
mental AIG construction may increase the size of the resulting certificate,
as isomorphic AND-gates are only shared among AIGs that are kept in
memory.
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1 function rfao_to_aig ( VARIABLE var )
2 {
3 rfao ← get_rfao_stack ( var )
4 v ← remove_bottom_vertex ( rfao )
5 aig ← vertex_to_aig (v )
6

7 foreach v in rfao

8 {
9 i f is_clause (v )

10 {
11 aig ← aig_and ( vertex_to_aig (v ) , aig )
12 }
13 else
14 {
15 aig ← aig_and ( aig_not ( vertex_to_aig (v ) ) ,
16 aig_not ( aig ) )
17 aig ← aig_not ( aig )
18 }
19 }
20 return aig

21 }

Figure 4.10: Construct AIG from RFAO stack of var.

Figure 4.10 describes the top-level algorithm for constructing AIGs from
the RFAO stack of a variable. Given a variable var, we construct an AIG
starting from the innermost subformula of the RFAO stack and initially start
with the rightmost vertex v of the RFAO formula. We translate vertex v

into an AIG aig and traverse the remaining vertices on the RFAO stack
from bottom to top. The structure of each subformula depends on whether
vertex v is a clause or a cube. Hence, in case v is a clause, we first translate
v into an AIG and then create a new AND-gate with v and aig as inputs.
However, if vertex v is a cube, we have to apply De Morgan’s law in order
to express the resulting subformula (v∨aig) with AND-gates and negations
only. Therefore, we translate vertex v into an AIG and create a new AND-
gate with both inputs v and aig negated. We negate the resulting aig and
continue with the next vertex on the RFAO stack. If all vertices on the
RFAO stack are processed, function rfao to aig terminates and returns
the AIG representing the Skolem (resp. Herbrand) function of variable var.

The algorithm for constructing AIGs from vertices is depicted in Fig-
ure 4.11. Given a vertex v, we consider its existentially- (resp. universally-)
reduced form only. Hence, we use only the literals of the set Ls of vertex v

(function get static literals) for constructing an AIG. In case vertex v
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1 function vertex_to_aig ( VERTEX v )
2 {
3 aig ← init_aig ( )
4

5 foreach lit in get_static_literals (v )
6 {
7 i f is_clause (v )
8 lit = aig_not ( lit )
9

10 i f is_first_literal ( lit )
11 aig ← lit

12 else
13 aig ← aig_and (lit , aig )
14 }
15

16 i f is_clause (v )
17 return aig_not ( aig )
18

19 return aig

20 }

Figure 4.11: Construct AIG from vertex v.

is a clause, we have to apply De Morgan’s law and thus, we negate lit.
If lit is the first literal to be processed, we initialize aig with lit and
continue with the next literal. Else, we create a new AND-gate with the
inputs lit and aig. After all literals are processed, we negate the resulting
aig in case v is a clause (De Morgan) and return it. In case v is a cube, we
return aig as-is.

The order of the literals of a vertex is important for constructing AIGs as it
has an impact on the number of AND-gates shared, which we demonstrate
with the following example.

Example 4.5. We consider the propositional formulas φ1 and φ2, which are
defined as follows.

φ1 = c ∨ b ∨ ¬d ∨ ¬e
φ2 = ¬d ∨ c ∨ a ∨ b

If we construct an AIG for both formulas, we obtain two separate AIGs
(Figure 4.12a) that do not share any AND-gate even though they have
literals b, c and ¬d in common. However, if we sort the literals of φ1 and φ2

with respect to some predefined variable order (e.g., a < b < c < d < e)
and construct an AIG for both formulas, we obtain the AIG depicted in
Figure 4.12b, where we are able to share two AND-gates among φ1 and φ2.
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(a) φ1 and φ2 unsorted
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φ2 φ1

(b) φ1 and φ2 sorted

Figure 4.12: Impact of literals order on AND-gate sharing.

As illustrated in Figure 4.12, a suboptimal order of the literals may con-
siderably affect the overall number of AND-gates shared. Hence, QRPcert
sorts all literals of a vertex by their internal variable index while building
the proof DAG.

After the AIGs of all Skolem (resp. Herbrand) functions are constructed, the
certificate of satisfiability (resp. unsatisfiability) is complete and we write its
ASCII AIGER representation to the output file. Each primary output of the
certificate AIG corresponds to a Skolem (resp. Herbrand) function, whereas
the primary inputs are universally (resp. existentially) quantified variables.

f1 f2

f4

f7

⊥

35 6

(a) Not simplified

f1 f2

f4

⊥

f7

3 5 6

(b) Simplified

Figure 4.13: AIG representation of the certificate extracted by QRPcert from
the example clause resolution trace in Figure 4.2b, without (a) and with (b)
simplification applied.
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Example 4.6. Given the Herbrand functions (not simplified) of variables 1,
2, 4 and 7 from Example 4.3, the resulting certificate AIG is depicted in
Figure 4.13a. The certificate AIG with the simplified Herbrand functions is
illustrated in 4.13b.

The representations of the AIGs in Figure 4.13a and 4.13b in ASCII AIGER
format are depicted in Figure 4.14a and 4.14b, respectively. The first line
of the file starts with format identifier string aag, which indicates that the
file is in ASCII AIGER format. The subsequent five integers denote the
maximum variable index, the number of inputs, the number of latches, the
number of outputs and the number of AND-gates used. The header line
is followed by the definitions of inputs, latches, outputs and AND-gates in
the same order as defined in the header with one definition per line. Each
AND-gate is defined by a triple of literals with the first literal denoting the
output and the second and third denoting the two inputs of the AND-gate.
In the AIGER format, a variable is transformed into a literal by multiplying
it by two. In case a literal is negated its least significant bit is flipped to
one. The Boolean constants> and⊥ are represented as 1 and 0, respectively.

aag 12 5 0 4 7

6

10

12

16

18

2

4

8

14

2 1 0

4 1 1
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(b) Simplified

Figure 4.14: Certificate of unsatisfiability generated by QRPcert for the
example input formula in Figure 4.2a in ASCII AIGER format, without (a)
and with (b) simplification applied.
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a cb d

¬cc

(a) Sharing clause c

a cb d

¬c′c′

(b) Sharing cube c′

Figure 4.15: Clause (resp. cube) sharing in AIGs.

Example 4.7. The AIG in Figure 4.14a has a maximum variable index of
12 and further has five inputs, no latches, four outputs and a total of seven
AND-gates. The first five lines after the header (lines 2-6) define the in-
put literals denoting the existentially quantified variables 3, 5, 6, 8 and 9,
respectively. The primary outputs of the AIG are defined by the output lit-
erals 2, 4, 8 and 14 (lines 7-10), which represent the Herbrand functions of
variables 1, 2, 4 and 7, respectively. The structure of the Herbrand functions
is defined by the two-input AND-gates defined in lines 11-17.

Note that one advantage of employing AIGs with structural hashing to rep-
resent RFAO formulas is the fact that a vertex has to be constructed only
once (if the certificate AIG is not constructed incrementally), even if the
vertex occurs negated. This is due to the fact, that the AIG representations
of a vertex and its negation share the same AIG structure except that the
output of the latter is negated.

Example 4.8. Given a clause c and a cube c′, which are defined as follows.

c = a ∨ b ∨ ¬c ∨ d
c′ = a ∧ b ∧ ¬c ∧ d

The AIG representation of c and ¬c (resp. c′ and ¬c′) share the same AIG
structure, which is illustrated in Figure 4.15a (resp. 4.15b).

In this chapter, we presented QRPcert, a tool for extracting Skolem/Her-
brand function-based QBF certificates from Q-resolution proofs in QRP for-
mat. We represent the extracted set of Skolem (resp. Herbrand) functions as
AIGs, which are simplified by employing structural hashing. The generated
certificates are represented in ASCII AIGER format. In the following, we
describe the process of certificate validation in more detail.



Chapter 5

CertCheck: Certificate
Validation

CertCheck is a tool that transforms a given input formula in QDIMACS for-
mat into an AIG and merges the result with the corresponding certificate in
ASCII AIGER format extracted by QRPcert. The resulting AIG is translated
into a propositional formula in CNF via Tseitin transformation [48], which
is then used for validating the correctness of the certificate. In the following,
we describe the tool CertCheck and the certificate validation process in more
detail.

5.1 Overview

CertCheck requires two different kinds of input: an input formula in
QDIMACS format and its certificate of (un)satisfiability in ASCII AIGER
format as extracted by QRPcert. The input formula is transformed into an
AIG and then merged with given certificate by substituting each existentially
(resp. universally) quantified input variable with its Skolem (resp. Herbrand)
function. The resulting AIG is constructed from universally (resp. existen-
tially) quantified input variables only. The correctness of a certificate of
satisfiability (resp. unsatisfiability) is validated by checking if the resulting
AIG is tautological (resp. unsatisfiable). Hence, we transform the AIG into
a propositional formula in CNF using Tseitin transformation, write it to an
output file in DIMACS1 format, and check with a SAT solver if the formula
is unsatisfiable. Note that in case of a certificate of satisfiability, we have to
check if the merged AIG generated by CertCheck is tautological. In order to
show that a formula φ is tautological, we check if its negation ¬φ is unsat-
isfiable. Hence, we negate the output of the merged AIG and translate it
into a propositional formula in CNF.

1www.satlib.org/Benchmarks/SAT/satformat.ps
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1 function cnf_to_aig ( MATRIX m )
2 {
3 aig ← init_aig ( )
4

5 foreach c in get_clauses (m )
6 {
7 i f is_first_clause (c )
8 aig ← clause_to_aig (c )
9 else

10 aig ← aig_and ( clause_to_aig (c ) , aig )
11 }
12

13 i f is_sat_cerificate ( )
14 return aig_not ( aig )
15

16 return aig

17 }

Figure 5.1: Transform matrix m in CNF into an AIG.

The top-level algorithm for transforming the input formula into an AIG is
depicted in Figure 5.1. Given the matrix m of a QBF in PCNF, algorithm
cnf to aig transforms each clause c into an AIG (function clause to aig)
by applying De Morgan’s law (as in algorithm vertex to aig in Figure 4.11).
In case clause c is the first clause to be processed, we initialize aig with the
AIG of c. Else, we create a new AND-gate with both the AIG of c and
the AIG built so far (aig) as inputs. After all clauses are processed and if
a certificate of satisfiability is given, we negate the output of the resulting
AIG aig and return it. In case of a certificate of unsatisfiability, we return
aig as-is.

Figure 5.2 illustrates the AIG that is obtained by transforming the ex-
ample input formula in Figure 4.2a into an AIG and merging it with the
simplified certificate AIG in Figure 4.13b. The dashed edges in the AIG
indicate that an universally quantified input variable is substituted by its
Herbrand function in the certificate. Note that we did not reuse inputs 3,
5 and 6 of the input formula AIG in the certificate AIG, which is for illus-
tration purpose only. The representation of the AIG in Figure 5.2 in ASCII
AIGER format is depicted in Figure 5.3a.

We translate the merged AIG into a propositional formula in CNF via
the standard Tseitin encoding and yet do not support optimizations like
Plaisted-Greenbaum [37]. Hence, each AND-gate of the merged AIG with
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f1f2f4 f7

13254 76 98

3 5 6 ⊥

Figure 5.2: Merging AIG of input formula (Figure 4.2a) with certificate AIG
(Figure 4.13b).
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an output out and two inputs in1 and in2 is encoded as follows.

out = in1 ∧ in2

≡ out↔ (in1 ∧ in2)

≡ (out→ (in1 ∧ in2)) ∧ ((in1 ∧ in2)→ out)

≡ (¬out ∨ (in1 ∧ in2)) ∧ (¬in1 ∨ ¬in2 ∨ out)
≡ (¬out ∨ in1) ∧ (¬out ∨ in2) ∧ (¬in1 ∨ ¬in2 ∨ out)

The output of the merged AIG is encoded as a single clause with a single
literal, which is negated in case that the output of the AIG is negated.
Further, the Boolean constant > is also encoded as a single clause with a
single literal.

The Tseitin encoding of the AIG in Figure 5.2 in DIMACS format is illus-
trated in Figure 5.3b, where each AND-gate in Figure 5.3a is encoded with
three clauses. As an example, consider line ”14 39 9” in Figure 5.3a, which
represents the AND-gate 7 = (¬19 ∧ ¬4). By applying the transformation
described above, we obtain the three clauses ”-7 -19 0”, ”-7 -4 0” and
”7 19 4 0” in Figure 5.3b, respectively. Further, clause ”37 0” and ”36 0”
represent the Boolean constant > and the output of the AIG, respectively.

5.2 Certificate Validation

We validate the correctness of a certificate of satisfiability (resp. unsatisfia-
bility) by checking if the Skolemization (resp. Herbrandization) of the input
formula is tautological (resp. unsatisfiable). The AIG that we obtain by
merging an input formula Φ with its certificate of satisfiability (resp. un-
satisfiability) represents the Skolemization (resp. Herbrandization) of Φ and
is denoted as ΦS (resp. ΦH). Note that ΦS (resp. ΦH) contains universal
(resp. existential) variables only.

In case of a certificate of satisfiability, we have to check if the extracted
Skolem functions represent valid assignments to the existentially quantified
variables. Therefore, we check if ΦS is satisfiable under all possible assign-
ments, which is only the case if ΦS is tautological as it contains universally
quantified variables only. Hence, we negate the output of the AIG represent-
ing ΦS and translate it into a propositional formula in CNF. If the resulting
CNF is unsatisfiable, we conclude that ΦS is tautological and given certifi-
cate of satisfiability is valid. Otherwise, it is invalid.

In case of a certificate of unsatisfiability, we have to check if the ex-
tracted Herbrand functions yield an assignment to the universal variables
such that Φ evaluates to false for any assignment to the existential vari-
ables. Formula Φ is unsatisfiable if and only if ΦH is unsatisfiable. Hence,
we translate the AIG representing ΦH into a propositional formula in CNF.
We conclude that given certificate of unsatisfiability is valid if the resulting
CNF is unsatisfiable, and invalid otherwise.
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p cnf 37 68

-1 -37 0 -26 25 0
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-19 5 0 -29 3 0

-19 6 0 29 1 -3 0

19 -5 -6 0 -30 9 0

-7 -19 0 -30 29 0

-7 -4 0 30 -9 -29 0

7 19 4 0 -31 -9 0

-20 -5 0 -31 -8 0

-20 -4 0 31 9 8 0

20 5 4 0 -32 -24 0

-21 7 0 -32 -22 0

-21 20 0 32 24 22 0

21 -7 -20 0 -33 -26 0

-22 8 0 -33 32 0

-22 21 0 33 26 -32 0

22 -8 -21 0 -34 -28 0

-23 -6 0 -34 33 0

-23 7 0 34 28 -33 0

23 6 -7 0 -35 -30 0

-24 8 0 -35 34 0

-24 23 0 35 30 -34 0

24 -8 -23 0 -36 -31 0

-25 5 0 -36 35 0

-25 6 0 36 31 -35 0

25 -5 -6 0 37 0

-26 -7 0 36 0

(b)

Figure 5.3: Merged AIG represented in ASCII AIGER format (a) and trans-
lated into CNF in DIMACS format (b).



44 CHAPTER 5. CERTCHECK: CERTIFICATE VALIDATION

Note that during the whole certification process, i.e., from certificate extrac-
tion to the generation of the propositional formula, all variables of the input
formula are preserved and thus, retraceable. This can be helpful for tracking
down the cause of incorrect certificates, as a SAT solver may provide a sat-
isfying assignment, which can be used to analyze the extracted certificate.

In this chapter, we discussed the process of certificate validation, where
we used CertCheck to merge the input formula with the corresponding cer-
tificate extracted by QRPcert. The correctness of the certificate is validated
by checking with a SAT solver if the resulting propositional formula is un-
satisfiable.



Chapter 6

Experimental Results

We implemented a framework to certify and validate the results of DepQBF,
a dependency-aware search-based QBF solver for QBF in PCNF. It consists
of a chain of loosely coupled stand-alone tools on top of DepQBF, which
support proof extraction and checking (QRPcheck [36]) as well as certifi-
cate extraction (QRPcert) and validation (CertCheck and PicoSAT [6]). The
workflow of the certification framework is illustrated in Figure 6.1.

Given a QBF in QDIMACS format, DepQBF records a trace of all Q-
resolution sequences that are derived during the solving process, which is
described in [36] in more detail. The resulting trace in QRP format is used
by QRPcheck to extract and check the corresponding Q-resolution proof
of satisfiability (resp. unsatisfiability). The extracted Q-resolution proof is
used by QRPcert to generate a QBF certificate in AIGER format, as described
in Chapter 4. We then use CertCheck to merge the certificate with the input
formula in order to generate a propositional formula in CNF for validating
the correctness of the certificate (Chapter 5). Finally, we employ the SAT
solver PicoSAT to check if the resulting propositional formula is unsatisfiable.

In the following experiments, we focus on certification and validation
only and therefore do not consider the results of QRPcheck. An in-depth
evaluation of the results of QRPcheck is done in [36].

6.1 Overview

We conducted our experiments on the benchmark sets of the QBF com-
petitions 2008 (QBFEVAL’08) and 2010 (QBFEVAL’10), which consist of
3326 and 568 formulas, respectively1. We applied the certification frame-
work on those 1228 and 362 formulas of the benchmark sets that were solved
by DepQBF (with tracing) within 900 seconds with advanced dependency
schemes disabled. All experiments were performed on 2.83 GHz Intel Core
2 Quad machines each equipped with 8 GB of main memory and running

1Available at http://www.qbflib.org/index_eval.php
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Figure 6.1: Certification workflow for experiments.
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Family
Instances Time Solv. [s] Time Cert. [s]

sv ex va total avg. med. total avg. med.

Abduction 48 48 48 48.3 1.0 0.0 14.4 0.3 0.0

Adder 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

blackb*-01X-* 43 36 36 531.3 14.8 0.2 56.9 1.6 0.2

blackb* design 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

Blocks 4 3 3 11.4 3.8 0.1 305.7 101.9 0.0

BMC 12 12 12 34.4 2.9 0.5 55.6 4.6 2.6

Chain 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

circuits 2 2 2 30.2 15.1 15.1 0.2 0.1 0.1

conformant 5 3 3 24.7 8.2 0.1 118.9 39.6 0.2

Connect4 8 8 8 40.8 5.1 0.1 7.4 0.9 0.8

Counter 2 2 2 229.6 114.8 114.8 4.9 2.5 2.5

Debug 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

evader-pursuer 10 9 9 719.5 79.9 0.7 89.0 9.9 1.0

FPGA*FAST 2 2 2 0.2 0.1 0.1 0.5 0.2 0.2

FPGA*SLOW 1 1 0 0.0 0.0 0.0 0.0 0.0 0.0

Impl 1 1 1 0.0 0.0 0.0 0.0 0.0 0.0

jmc quant 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

mqm 128 121 70 1227.0 17.5 0.6 8.0 0.1 0.1

pan 24 21 14 1785.3 127.5 9.0 3014.4 215.3 0.7

Rintanen 1 1 1 12.8 12.8 12.8 1.7 1.7 1.7

Sakallah 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

Scholl-Becker 11 10 10 30.4 3.0 0.2 15.1 1.5 0.5

Sorting net 6 5 4 187.4 46.9 3.7 89.7 22.4 18.2

SzymanskiP 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

tipdiam 3 1 1 0.0 0.0 0.0 0.0 0.0 0.0

tipfixpoint 9 9 9 2.2 0.2 0.1 3.5 0.4 0.3

Toilet 40 40 38 23.2 0.6 0.0 682.1 18.0 0.0

VonNeumann 2 2 2 4.9 2.5 2.5 21.9 11.0 11.0

total 362 337 275 4944 18.0 0.2 4490 16.3 0.1

Table 6.1: QBFEVAL’10 family overview of certification workflow.

Ubuntu 9.04. The time and memory limits for the whole certification work-
flow were set to 1800 seconds and 7 GB, respectively. Note that for the
following experiments, we did not enable simplification in QRPcert. How-
ever, the results with simplification enabled are summarized in Section 6.4.

Table 6.2 and 6.1 show the aggregated results of the QBFEVAL’08 and
QBFEVAL’10 benchmark set grouped by family (column 1). Columns 2-4
contain the number of instances solved by DepQBF (”sv”), the number of
certificates extracted by QRPcert (”ex”), and the number of certificates val-
idated by PicoSAT (”va”). We omit the number of CNFs generated by
CertCheck as it equals the number of certificates extracted. Columns 5-7
resp. columns 8-10 indicate the runtime required for solving and certifying
all instances that were successfully validated by PicoSAT within given time
and memory constraints. Note that the time required for solving includes
tracing (DepQBF), whereas the runtime of certification includes certificate
extraction (QRPcert) and certificate validation (CertCheck and PicoSAT).
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Family
Instances Time Solv. [s] Time Cert. [s]

sv ex va total avg. med. total avg. med.

Abduction 284 283 283 562.4 2.0 0.1 916.0 3.2 0.1

Adder 5 5 5 1.4 0.3 0.0 5.8 1.2 0.3

blackb*-01X-* 314 279 279 3377.7 12.1 0.1 410.4 1.5 0.1

blackb* design 1 1 1 0.4 0.4 0.4 0.3 0.3 0.3

Blocks 11 10 10 129.0 12.9 0.7 1511.1 151.1 0.1

BMC 81 80 80 3277.6 41.0 0.4 256.1 3.2 0.5

Chain 10 6 3 6.9 2.3 1.9 1637.6 545.9 259.0

circuits 5 4 4 3.0 0.8 0.6 0.0 0.0 0.0

conformant 11 9 8 197.0 24.6 2.2 97.9 12.2 0.4

Counter 10 10 10 130.9 13.1 0.0 4.6 0.5 0.0

Debug 1 1 0 0.0 0.0 0.0 0.0 0.0 0.0

DFlipFlop 10 10 10 1.9 0.2 0.1 5.4 0.5 0.2

evader-pursuer 16 14 14 332.8 23.8 0.2 23.9 1.7 1.1

FPGA*FAST 5 5 5 0.7 0.1 0.1 2.7 0.5 0.1

FPGA*SLOW 3 3 1 9.1 9.1 9.1 0.1 0.1 0.1

Impl 10 10 10 0.0 0.0 0.0 0.0 0.0 0.0

irqlkeapclte 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

jmc quant 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

MutexP 3 3 2 0.1 0.0 0.0 9.1 4.6 4.6

pan 162 152 114 3289.7 28.9 0.4 7893.2 69.2 0.0

Rintanen 2 2 2 39.3 19.6 19.6 7.7 3.9 3.9

Sakallah 1 1 1 0.1 0.1 0.1 1.5 1.5 1.5

Scholl-Becker 38 35 35 183.4 5.2 0.1 714.7 20.4 0.0

Sorting net 49 44 33 1069.8 32.4 1.8 1238.7 37.5 0.4

SzymanskiP 2 2 2 0.0 0.0 0.0 0.0 0.0 0.0

terminator 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

tipdiam 78 73 59 10.3 0.2 0.0 1848.0 31.3 0.0

tipfixpoint 73 69 68 707.6 10.4 0.1 290.0 4.3 0.3

Toilet 8 7 6 28.6 4.8 0.4 206.6 34.4 0.0

Tree 12 10 6 0.4 0.1 0.0 420.6 70.1 0.3

uclid 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

VonNeumann 10 10 10 6.5 0.6 0.4 34.8 3.5 2.2

wmiforward 13 11 9 0.0 0.0 0.0 0.0 0.0 0.0

total 1228 1149 1070 13367 12.5 0.1 17537 16.4 0.1

Table 6.2: QBFEVAL’08 family overview of certification workflow.

QRPcheck QRPcert CertCheck PicoSAT

mem. time mem. time mem. time mem. time

2008

sat 18 0 12 0 0 0 12 55

unsat 44 0 5 0 0 0 0 12

total 62 0 17 0 0 0 12 67

2010

sat 4 0 10 0 0 0 45 12

unsat 10 0 1 0 0 0 0 5

total 14 0 11 0 0 0 45 17

Table 6.3: Number of instances lost due to given memory resp. time limit.
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Out of 362 (1228) solved instances of the QBFEVAL’10 (QBFEVAL’08)
benchmark set, we were able to extract 337 (1149) certificates, of which
275 (1070) were validated successfully. DepQBF required almost 5000 (13400)
seconds for solving and tracing the 275 (1070) instances that were vali-
dated by PicoSAT, whereas certification of those instances was done in about
4500 (17500) seconds.

Table 6.3 provides an overview of the number of instances that were
not successfully processed by QRPcheck, QRPcert, CertCheck and PicoSAT
due to given memory and time limits. On 14 (62) instances, QRPcheck ran
out of memory as the traces produced by DepQBF were 16 GB (18 GB) on
average, with a maximum of 27 GB (52 GB). QRPcert ran out of memory on
11 (17) proofs with an average file size of 3.5 GB (3.6 GB) and a maximum
of 5.9 GB (5.5 GB). By far the most instances were lost during the validation
process with PicoSAT, where 17 (67) instances timed out and 45 (12) ran
out of memory. The CNFs generated by CertCheck for the 17 (67) instances
that timed out had an average of 8 (6) million variables and 25 (18) million
clauses, whereas the 45 (12) instances that ran out of memory had 60 (49)
million variables and 179 (147) million clauses on average. From the 62
instances of the QBFEVAL’10 benchmark set that were not validated by
PicoSAT, 51 instances are members of the ’mqm’ family, which consists of
a total of 128 formulas with 70 unsatisfiable instances and 58 satisfiable
instances. PicoSAT was able to validate all 70 unsatisfiable instances, but
did not succeed in validating any of the satisfiable instances. Similarly,
almost half of the instances (34) of the QBFEVAL’08 benchmark set that
were not validated by PicoSAT are part of the ’pan’ family, where 32 (resp. 2)
instances are satisfiable (resp. unsatisfiable). In total, 57 (67) instances out
of the 62 (79) instances of the QBFEVAL’10 (QBFEVAL’08) benchmark set
that were not validated by PicoSAT are satisfiable. This is due to the fact
that certificates of satisfiability tend to grow much larger than certificates of
unsatisfiability, mostly because of the size of the initial cubes in the proofs.
For example, the proofs of the 51 instances of the ’mqm’ family that were
not validated by PicoSAT have 40000 initial cubes on average, where each
cube has an average size of 970 literals. The corresponding certificates have
52 million AND-gates on average, whereas the resulting CNFs generated by
CertCheck have 52 million variables and 156 million clauses on average.

Table 6.4 shows a comparison of the average and median size of the
generated proofs, AIGs and CNFs in terms of number of vertices and literals,
number of AND-gates, and number of variables and clauses, respectively.
The comparison shows that the generated files for satisfiable instances are a
multiple times larger on average compared to files generated for unsatisfiable
instances. Proofs of satisfiability for the instances of the QBFEVAL’10
(QBFEVAL’08) benchmark set have 8 (1.5) times the number of literals
compared to proofs of unsatisfiability. The largest proof of satisfiability has
a maximum of 3 (5) million vertices with 1.2 (1.4) billion literals, whereas
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Proof AIG CNF

vertices literals AND-gates variables clauses

avg. med. avg. med. avg. med. avg. med. avg. med.

2008

sat 127k 119 33M 32k 2M 4k 2M 19k 6M 51k

unsat 155k 1k 19M 58k 68k 58 164k 19k 409k 40k

total 144k 747 25M 43k 872k 197 953k 19k 3M 45k

2010

sat 308k 1k 117M 626k 20M 24k 20M 62k 59M 183k

unsat 135k 2k 14M 146k 170k 193 336k 23k 846k 55k

total 211k 2k 60M 175k 8M 369 8M 28k 25M 71k

Table 6.4: Comparison of generated proofs, AIGs and CNFs.

Proof AIG CNF

avg. med. avg. med. avg. med.

2008

sat 145.1 MB 154.4 kB 49.2 MB 68.5 kB 133.7 MB 779.0 kB

unsat 89.8 MB 351.5 kB 1.5 MB 14.9 kB 7.4 MB 626.1 kB

total 112.4 MB 272.5 kB 20.7 MB 26.5 kB 58.4 MB 675.0 kB

2010

sat 518.4 MB 2.8 MB 449.4 MB 378.9 kB 1.2 GB 2.8 MB

unsat 66.7 MB 729.9 kB 3.6 MB 13.8 kB 15.5 MB 874.7 kB

total 265.3 MB 1.0 MB 192.7 MB 23.6 kB 524.2 MB 1.1 MB

Table 6.5: File size comparison of generated proofs, AIGs and CNFs.

the largest proof of unsatisfiability consists of 8 (7.5) million vertices with
1.3 (1.2) billion literals. Further, certificates of satisfiability are 117 (30)
times the size of certificates of unsatisfiability in terms of number of AND-
gates on average. The size of CNFs generated for validating certificates of
satisfiability compared to certificates of unsatisfiability in terms of clauses
is up to 70 (29) times larger on average. The maximum number of clauses
for CNFs generated for satisfiable (resp. unsatisfiable) instances is 441 (350)
million (resp. 30 (43) million) clauses. A comparison of the actual file size
of the generated files is given in Table 6.5, where the file sizes for satisfiable
(resp. unsatisfiable) instances correlate with the ratios discussed in Table 6.4.

6.2 Runtime Comparison

We evaluated the runtime of each tool in the framework with respect to the
275 (1070) instances that were validated by PicoSAT. First, we compared
the time required by DepQBF for solving and tracing to the aggregated time
needed by QRPcert, CertCheck and PicoSAT for certification. The compar-
ison of solving (incl. tracing) and certification on the QBFEVAL’10 (QBF-
EVAL’08) instances is given in Figure 6.2a (6.3a), where all instances that
were solved by DepQBF in median solving time (0.2 (0.1) seconds) and above
are considered. In total, a few instances require most of the certification run-
time. In fact, 5 (8) instances out of 275 (1070) require over 85% (51%) of
total certification runtime, where DepQBF requires only a fraction for solv-
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ing those instances. The five most time-consuming instances in terms of
certification are given in Table 6.6.

Certification (”Cert.”) requires by far more time than DepQBF needs for
solving and tracing (”Solv.”). Interestingly, PicoSAT requires over 99% of
certification runtime for validating (Valid.) those instances. Conversely, the
five most time-consuming instances in terms of solving and tracing are given
in Table 6.7. An interesting fact is that the instances that are hard to certify
require less time for being solved, whereas the instances that required most
time for being solved are certified in a fraction of solving time.

Figure 6.2b shows the comparison of the runtime of DepQBF, QRPcert,
CertCheck, and PicoSAT on the 275 validated instances of the QBFEVAL’10
benchmark set. It clearly shows that validating certificates with PicoSAT
is the most time-consuming task of the certification process. In fact, over
96% of total certification runtime are required for validation, whereas cer-
tificate extraction and CNF conversion takes approximately 3% and 1%,
respectively. Similar results were obtained on the QBFEVAL’08 benchmark
set (Figure 6.3b), where 94% of total certification runtime is required for

Instance Time [s]

Name Result Cert. Solv. Valid.

2008

BLOCKS4ii.6.3 unsat 1475.6 83.3 1464.3

k ph n-15 sat 1471.1 41.5 1464.7

CHAIN14v.15 sat 1300.7 4.3 1293.4

eijk.S953.S-d3 sat 1136.1 1.7 1133.5

k branch n-3 sat 1106.7 1.6 1105.1

2010

k ph n-15-shuffled sat 1619.3 96.7 1613.3

k ph n-14-shuffled sat 1053.6 42.5 1049.6

toilet c 08 01.13-shuffled unsat 624.5 1.7 623.3

BLOCKS3i.5.3-shuffled unsat 305.7 11.3 303.2

k ph n-13-shuffled sat 299.4 16.1 296.7

Table 6.6: Top 5 time-consuming instances for certification.

Instance Time [s]

Name Result Solv. Cert. Valid.

2008

c5 BMC p1 k8 sat 768.2 1.5 0.8

c5 BMC p2 k8 unsat 631.4 5.5 4.8

k path p-7 unsat 571.0 0.2 0.0

c3 BMC p1 k16 sat 556.6 6.3 5.4

k grz p-13 unsat 407.5 0.1 0.0

2010

k t4p p-4-shuffled unsat 721.9 0.3 0.0

k d4 p-6-shuffled unsat 536.6 1.1 0.0

ev-pr-6x6-13-5-0-1-2-lg-shuffled unsat 402.6 70.9 54.8

k grz p-10-shuffled unsat 269.8 0.2 0.0

counter r 8-shuffled sat 227.7 3.0 2.6

Table 6.7: Top 5 time-consuming instances for solving.
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Figure 6.2: QBFEVAL’10 runtime comparison, all instances with solving
time ≥0.2s considered.
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Instances Total Time [s]

sv ex va DepQBF QRPcert CertCheck PicoSAT

2008

sat 494 464 397 3502.9 95.3 38.4 13874.1

unsat 734 685 673 9863.7 831.8 57.4 2639.8

total 1228 1149 1070 13366.6 927.1 95.8 16513.9

2010

sat 157 143 86 701.8 30.9 6.4 3247.0

unsat 205 194 189 4241.9 86.8 28.9 1090.0

total 362 337 275 4943.7 117.6 35.4 4337.0

Table 6.8: QBFEVAL’10 and QBFEVAL’08 certification summary.

validation. Certificate extraction and CNF conversion took up 5% and 1%
of total certification runtime, respectively.

Table 6.8 summarizes the results of our framework applied to the QBF-
EVAL’10 and QBFEVAL’08 benchmark sets. It shows that certification
heavily depends on whether an instance is satisfiable or unsatisfiable, es-
pecially for certificate validation. From the 1070 validated instances of the
QBFEVAL’08 benchmark set, 37% (397) were satisfiable instances, which
were validated in 79% of total certification time. Conversely, validating the
673 (63%) unsatisfiable instances required 15% of total certification time.
Similarly, on the QBFEVAL’10 benchmark set, validation of the 86 (31%)
satisfiable instances required 72% of total certification runtime, whereas val-
idating 189 (69%) unsatisfiable instances took only 24% of total certification
runtime. Hence, we conclude that validation of certificates of satisfiability
is most time-consuming.

6.3 Certificate Statistics

We further evaluated the certificates extracted by QRPcert with respect to
the structure of the constructed AIGs. The AIG library we employed sup-
ports structural hashing of two-input AND-gates, which has the advantage
that each AND-gate in the certificate is unique with respect to its two in-
puts. The results based on the 337 (1149) extracted certificates of the QBF-
EVAL’10 (QBFEVAL’08) are given in Table 6.9. Certificates of satisfiability
have 117 (30) times the number of AND-gates on average compared to cer-
tificates of unsatisfiability. The maximum number of AND-gates used for
representing a certificate of satisfiability and unsatisfiability are 147 (116)
and 10 (14) million AND-gates, respectively. In case of certificates of sat-
isfiability, we are able to share an average of 65.2% (70.7%) of the overall
number of AND-gates constructed. In contrast, only 23% (7.8%) of the
AND-gates in certificates of unsatisfiability can be shared. The high degree
of AND-gate sharing in certificates of satisfiability is due to the fact that
initial cubes themselves share a large number of literals. The results show
that representing certificates as AIGs is beneficial in case structural hashing
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Figure 6.3: QBFEVAL’08 runtime comparison, all instances with solving
time ≥0.1s considered.
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In Out AND-gates AND-gates shared

avg. avg. max. avg. med. avg.% med.% avg. med.

2008

sat 75 6k 116M 2M 4k 70.7 80.0 8M 16k

unsat 13k 72 14M 68k 58 7.8 0.0 64k 0

total 8k 2k 116M 872k 197 33.2 12.1 3M 11

2010

sat 125 3k 147M 20M 24k 65.2 66.8 23M 190k

unsat 20k 95 10M 170k 193 23.0 23.7 64k 22

total 12k 1k 147M 8M 369 40.9 46.6 10M 327

Table 6.9: Overview of total (shared) number of AND-gates of certificates.

Functions (avg.) Proof (avg.) Vertex util.

func. d.c. vert. lit. red. vert. red. lit. avg. med.

2008

sat 6k 49 6M 3M 19k 6M 4418 467

unsat 72 24 16k 119k 3k 16k 83 43

total 2k 34 3M 1M 10k 3M 2142 100

2010

sat 3k 67 18M 24M 72k 18M 1761 255

unsat 95 40 25k 213k 4k 25k 42 33

total 1k 51 8M 10M 33k 8M 806 58

Table 6.10: Certificate overview of Skolem/Herbrand functions.

is employed, especially in the case of certificates of satisfiability.

We also evaluated the certificates with respect to the extracted Skolem
(resp. Herbrand) functions, which is given in Table 6.10. Column ”func.” in-
dicates the average number of Skolem (resp. Herbrand) functions extracted,
whereas column ”d.c.” denotes the average number of don’t care variables
in a certificate. A variable is denoted as don’t care if its RFAO stack is
empty, i.e., the variable is not required for showing that a formula is sat-
isfiable (resp. unsatisfiable). Column ”vert.” refers to the average number
of pushed vertices on the RFAO stacks of the extracted Skolem (resp. Her-
brand) functions, whereas column ”lit.” denotes the average number of liter-
als of the pushed vertices (with duplicate vertices not considered). Columns
”red. vert.” and ”red. lit.” denote the average number of vertices that are
reduced via existential- (resp. universal-) reduction and the average number
of literals that are reduced in a proof, respectively. ”Vertex util.” indicates
how often a vertex is reused in the Skolem (resp. Herbrand) functions on
average. The results show that a certificate of satisfiability consists of an
average of 3k (6k) Skolem functions, which are composed of 18 (6) million
vertices with 24 (3) million literals on average. In contrast, certificates of
unsatisfiability consist of 95 (72) Herbrand functions with 25k (16k) vertices
and 213k (119k) literals on average. Further, we extracted Skolem functions
for 98% (97%) of the existentially quantified variables on average, where
the remaining 2% (3%) were don’t care variables and thus not required. In
case of certificates of unsatisfiability, we extracted Herbrand functions for
75% (70%) of the universally quantified variables on average. An interest-
ing figure is the vertex utilization (”Vertex util.”), which states how often a
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reduced vertex is pushed onto the RFAO stacks and thus, how many literals
are reduced on average via existential- (resp. universal-) reduction from a
vertex. For example, given a proof of satisfiability, an average of 1761 (4418)
literals is eliminated via existential-reduction from a cube, whereas an av-
erage of 42 (83) literals are eliminated via universal-reduction from a clause
in a proof of unsatisfiability.

6.4 Simplification Results

We enabled simplification in QRPcert (as described in Section 4.6) and rerun
the experiments on the QBFEVAL’08 and QBFEVAL’10 benchmark sets.
A summary of the results is given in Table 6.11, where we compare the run
with simplification enabled (”simpl.”) to the previous run without simplifi-
cation enabled (”no simpl.”). Note that the runtime comparison considers
only those instances of the QBFEVAL’10 (QBFEVAL’08) benchmark set
that were validated in both test runs (”simpl.” and ”no simpl.”), which are
274 (1068) instances in total. With simplification enabled, QRPcert timed
out on two instances from the QBFEVAL’08 benchmark set, which were
previously extracted in 7 and 15 seconds, respectively. Further, QRPcert
required almost four times the runtime of the previous run (”no simpl.”)
for simplifying and extracting the 1068 validated certificates, whereas val-
idation of those instances was 1100 seconds faster. On the QBFEVAL’10
benchmark set, QRPcert extracted all certificates that were extracted in the
previous run, but also required almost four times the runtime. The time
required for validation did not change significantly. Considering validated
instances only, simplification eliminated an average of 2700 (3300) AND-
gates from certificates of satisfiability, which have a total of 22000 (28000)
AND-gates on average. Certificates of unsatisfiability were reduced by a
mere 70 (60) AND-gates on average resulting in certificates with an aver-
age of 4300 (2300) AND-gates in total. Simplification of the 337 (1147)
extracted certificates reduced the total number of AND-gates by less than
0.7%, while the runtime of QRPcert increased by a factor of 4. Hence, we

Instances Total Time [s]

no simpl. simpl. no simpl. simpl.

ex va ex va QRPcert PicoSAT QRPcert PicoSAT

2008

sat 464 397 462 395 67.5 12378.7 2586.0 11085.3

unsat 685 673 685 673 831.8 2639.8 857.0 2772.7

total 1149 1070 1147 1068 899.3 15018.5 3443.0 13858.0

2010

sat 143 86 143 85 25.8 1633.7 337.6 1747.9

unsat 194 189 194 189 86.8 1090.0 87.1 1004.3

total 337 275 337 274 112.5 2723.7 424.7 2752.2

Table 6.11: Comparison of certification with (”simpl.”) and without
(”no simpl.”) simplification enabled.
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conclude that simplification in its current implementation is time-consuming
and not considered to be beneficial for the certification workflow.

6.5 Increasing the Memory Limit

We analyzed the 14 and 11 instances of the QBFEVAL’10 benchmark set,
where QRPcheck and QRPcert ran out of memory due to given memory limit
of 7 GB. For that purpose, we lifted the previous memory limit to 80 GB
and set the time limit to 3600 seconds. We performed the experiments on a
2.4 GHz Intel Xeon hexa-core machine with 96 GB of main memory, running
Ubuntu 11.10.

First, we rerun the experiments on the 14 instances (4 sat., 10 unsat.),
where QRPcheck previously ran out of memory. As a result, we were able
to obtain all 14 proofs of which QRPcert was able to extract 14 certificates.
Further, PicoSAT was able to validate 12 out of 14 certificates, but timed
out on 2 instances (1 sat. and 1 unsat.) while validating CNFs with 30
and 3 million clauses, respectively. Not considering the runtime required by
QRPcheck, the runtime required for certifying the 12 instances was 175 sec-
onds on average, whereas DepQBF required an average of 645 seconds for
solving them. The average (median) memory usage for the whole certifica-
tion workflow was 19 GB (18 GB) with a maximum of 28 GB.

Finally, we rerun the experiments on the 11 instances (10 sat., 1 unsat.)
on which QRPcert previously ran out of memory. We were able to extract
certificates for all 11 instances, but we did not succeed in validating any given
instance with PicoSAT. Two instances ran out of memory, whereas the re-
maining nine timed out. The extracted certificates had an average (median)
of 176 (154) million AND-gates, which approximately results in CNFs with
an average of 528 (162) million clauses. As an extreme case, the certificates
of the satisfiable instances Core1108 tbm 02.tex.moduleQ3.2S.000077 and
Core1108 tbm 02.tex.moduleQ3.2S.000007 had over 310 and 320 million
AND-gates, respectively. The average (median) memory usage of the whole
certification workflow for the timed out instances was 40 GB (38 GB) with
a maximum of 60 GB.

By lifting the memory limit we were able to extract certificates for 100%
of the solved instances of the QBFEVAL’10 benchmark set. However, we
were only able to validate 12 out of 25 certificates with PicoSAT, where 11
instances timed out and the remaining two ran out of memory. In the next
chapter, we discuss some ideas that might improve the validation process.
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Chapter 7

Conclusion

In this thesis, we presented QRPcert, a tool for extracting Skolem/Herbrand
function-based certificates of (un)satisfiability based on the algorithm pre-
sented in [2]. Certificates are extracted from Q-resolution proofs and traces
in QRP format, a novel text-based and explicit format for representing Q-
resolution proofs and traces introduced in [36]. The extracted sets of Skolem
(resp. Herbrand) functions are represented as AIGs, which we simplify by
common basic simplification techniques such as structural hashing and con-
stant propagation. The certificates generated by QRPcert are represented in
the ASCII version of the AIGER format.

We further presented the tool CertCheck, which we used for transforming
the input formula into an AIG and merging the result with the corresponding
certificate extracted by QRPcert. We then transformed the resulting AIG
into a propositional formula and validated the correctness of the result of
DepQBF by means of the SAT solver PicoSAT.

We performed an extensive evaluation on the benchmark sets of the QBF
competitions 2008 and 2010. The results showed that QRPcert was able to
extract certificates for over 90% of the instances solved by DepQBF. We
also showed that by lifting the memory limit of 7 GB, QRPcert was able to
extract certificates for 100% of the solved instances. Further, we were able
to validate over 80% of the extracted certificates, which all were proved to
be correct by PicoSAT. Most of the instances that were not validated were
satisfiable instances, which turned out to be much harder to validate than
unsatisfiable instances. Our runtime comparison showed that certificate ex-
traction with QRPcert requires only a fraction of the runtime needed for
solving instances with DepQBF. In contrast, the runtime required for certifi-
cate validation with PicoSAT heavily depended on whether given instance
was satisfiable or unsatisfiable. Further, employing AIGs with structural
hashing for representing the certificates extracted by QRPcert proved to be
beneficial. Our results show that even basic simplification techniques like
structural hashing of two-input AND-gates reduced over 65% of the AND-
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gates required for representing certificates of satisfiability on average. We
also showed that simplification as currently implemented in QRPcert is not
beneficial as the number of AND-gates reduced does not justify the resulting
increase in runtime.

However, the extraction of Skolem/Herbrand function-based QBF cer-
tificates from Q-resolution proofs is a promising approach, which, we believe,
will enable many applications of QBF solving in practice.

7.1 Future Work

Our experiments have shown that the validation of the certificates is a bot-
tleneck in the current certification framework. A possible enhancement of
CertCheck would be the integration of an incremental SAT solver in or-
der to validate a certificate incrementally, as suggested in [4]. Another en-
hancement of CertCheck would be to improve AIG to CNF translation by
allowing multi-input AND-gates and employing optimizations like Plaisted-
Greenbaum.

Further, extending our AIG library to support more advanced simplifi-
cation techniques may further reduce the size of the certificates extracted
by QRPcert. Another idea would be to employ tools like ABC [46] in order
to reduce the overall size of the certificates.

A desirable property of QRPcert would be to support advanced depen-
dency schemes as employed in DepQBF. Hence, it would be interesting to
add this extension to QRPcert in order to observe the impact of advanced
dependency schemes on Skolem/Herbrand function-based certificates. An-
other useful extension would be to add support for more input and output
formats in QRPcert.

One of the most interesting topics would be the extension of DepQBF
to support the direct extraction of Skolem/Herbrand function-based certifi-
cates, which would require to maintain Q-resolution proofs within DepQBF.

QRPcert and CertCheck are available at http://fmv.jku.at/cdepqbf/.

http://fmv.jku.at/cdepqbf/
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Appendix A

Appendix

A.1 QRP format

trace = preamble { quant_set } { step } result EOF.

preamble = { comment } header.

comment = "#" text EOL.

header = "p qrp" pnum pnum EOL.

quant_set = quantifier { var } "0".

quantifier = "a" | "e".

var = pnum.

step = idx literals antecedents.

idx = pnum.

literals = { lit } "0".

lit = ["-"] var.

antecedents = [idx [idx]] "0".

result = "r " sat EOL.

sat = "sat" | "unsat".

text = ? a sequence of non-special ASCII chars ?.

pnum = ? a 32-bit signed integer > 0 ?.

EOL = ? end-of-line marker ?.

EOF = ? end-of-file marker ?.

Figure A.1: The QRP format in Extended Backus-Naur Form (EBNF) [36].
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