unversitar unz | JKU

TNF

Faculty of Engineering
and Natural Sciences

Extracting Hardware Circuits from CNF
Formulas

Master's Thesis

submitted in partial fulfillment of the requirements

for the academic degree
Diplom-Ingenieur
in the in the Master's Program

Computer Science

Submitted by:

Harald Seltner

At the:

Institute for Formal Models and Verification

Advisor:

Univ.-Prof. Dr. Armin Biere

Linz, July 2014

Abstract

SAT solvers can solve the Boolean satisfiability problem efficiently. For example,
they are used for formal verification and other tasks in the field of Electronic Design
Automation. Most solvers require input to be in conjunctive normal form (CNF).
Logic circuits can be encoded in CNF efficiently using Tseitin transformation.
Such a conversion usually causes information loss. The logic paths and gates are
lost. Therefore, algorithms have been proposed that aim at reconstructing circuit
structures from CNF. Using these techniques might allow to apply circuit-SAT
techniques to arbitrary CNF's.

In this work we present the tool cnf2aig that can reconstruct circuits from CNF's
and outputs them as and-inverter graphs. We give efficient algorithms for detecting
the most common hardware gates in CNF'. Further we have implemented a solution
for the partial MAX-SAT problem that guarantees that the reconstructed circuit
is maximal with respect to the gates our algorithms can detect. We show how we
use a circuit fuzzer to test our tool. Concluding we give detailed benchmark results
using the SAT competition 2013 application benchmarks.

Contents

1. Introduction

1.1. Previous Work
1.2. Outline of cnf2aig

2. Basic Definitions

2.1. SAT Problem
2.2. And-Inverter Graphs

3. Reverse Tseitin Transformation

3.1. Tseitin Transformation
3.2. CNF Signatures
3.3. Detecting CNF Signatures

3.3.1. Detect AND, NAND, OR and NOR gates

3.3.2. Detect Buffers and Inverters
3.3.3. Detect XOR and XNOR Gates
3.3.4. Detect Majority-of-Three Gates
3.3.5. Detect If-then-else Gates

4. Construction of a Maximum Acyclic Cover

4.1. Maximizing the Cover
4.1.1. Encoding a Parallel Counter
4.1.2. Encoding a Comparator

4.2. Enforcing the Acyclic Property

4.3. Algorithm to Create the Maximum Acyclic Cover

4.3.1. Reducing Relaxation Variables

5. Generate AIGER Output

5.1. Create AIGs From Matches
5.1.1. AND, NAND, OR and NOR
5.1.2. XOR and XNOR
5.1.3. Majority-of-3 Gates
5.1.4. If-then-else Gates
5.1.5. Buffers and Inverters

i

5.2. Dealing With Unmatched Clauses

. Testing

6.1. A Circuit Fuzzer
6.2. Finding a Factor for the Number of 3-Clauses

. Evaluation

7.1. Comparison to the Implementation by Fu and Malik

7.2. Evaluation on SAT Competition 2013 Benchmarks
7.2.1. Reducing Relaxation Variables
7.2.2. Number of Clauses Added
7.2.3. Reducing the Number of Clauses Added
7.2.4. Blocking Strongly Connected Components

7.2.5. Allow Melting Literals

. Conclusion and Future Work

. Abbreviations for SAT Competition 2013 Benchmarks

. Benchmark Results

il

44
44
46

49
49
52
93
o4
25
26
o7

60
61

67

1. Introduction

Thanks to their efficiency in solving the Boolean satisfiablity problems SAT solvers
have become a standard tool in many applications. Despite the Boolean satisfia-
bility problem being NP-compelete, SAT solvers can solve practical problems of
interest within a reasonable amount of time. Although not restricted to this field
SAT solvers can be used for formal verification in tasks in the area of electronic
design automation (EDA).

Most modern SAT solvers expect input to be in conjunctive normal form (CNF).
It is possible to transform an electronic circuit into a CNF encoding in linear
time. This process is called Tseitin transformation [T'se83]. However, during the
transformation of a circuit to CNF certain information is lost. This information
can be useful for a SAT solver taking benefit of the circuit structure. Solvers have
been implemented that use the circuit from which a CNF was derived and runtime
has been decreased considerably.

This work is about extracting circuit structure from CNF. As mentioned above
this information could be used to speed up SAT solvers. Ideally the SAT solver
would simply use the circuit from which the CNF has been encoded but this circuit
may not always be available. This is the case for most benchmarks used in SAT
solver competitions. Also we might find circuit structures in CNFs which have not
been encoded from electronic circuits.

1.1. Previous Work

In general information loss is unavoidable when encoding a circuit to CNF. Maybe
due to this consideration there has only been little effort in extracting circuit
structure from CNF. There have been works that extract equivalences [Li00] and
simple AND and OR gates [OGMS02]. Roy et al. were the first to our knowledge
who explicitly extract logic gates from CNF [RMO04]. They introduce the notion of
a CNF signature which basically is the CNF encoding of a logic gate. More recent

work in this topic was done by Zhaohui Fu and Sharad Malik [FMO07] who not
only extract logic gates but also guarantee to extract the biggest acyclic circuit
possible.

Roy et al. use a generic graph matcher. Gates in a CNF are found based on
sub-graph isomorphism. They do not give much detail about their implementation
and they focus on finding (N)AND, (N)OR and NOT gates. They place strong
restrictions on the occurences of XOR gates in order to extract them. Fu and Malik
provide a more flexible approach. It is based on a gate library which describes the
gates to extract. This makes the approach more flexible but less efficient than
pattern matching that is specific to gate types. They further guarantee to extract
a maximum acyclic circuit. For this purpose they use a SAT solver.

1.2. OQOutline of cnf2aig

This work is strongly based on the work by Fu and Malik [FM07]. We will provide
a tool cnf2aig that is similar to the tool cnf2ckt developed by Fu and Malik.
However their tool is not available and our implementation has several differences.
In this work we will compare the results of the tools and run cnf2aig on new
benchmarks from the SAT competition 2013.

The basic workflow of cnf2aig is shown in Figure 1.1. After giving basic defi-
nitions in Chapter 2 we will describe each step in the workflow in its own chapter.
Starting in Chapter 3 we describe how to find gates encoded in a CNF. We give
the CNF signatures for the most common gate types and algorithms to find them.
We call this process reverse Tseitin transformation in reference to the process of
encoding gates in CNF called Tseitin transformation. The result of this step is a
set of potential gates found in the CNF, called matches. In Chapter 4 we describe
how a SAT solver is used to find a subset of these matches that form a biggest
acyclic circuit. As result we obtain a set of matches — a maximum cover. This
representation of a logic circuit is then written as an and-inverter graph (AIG) as
discussed in Chapter 5. We could have used another output format for the circuit.
One of the reason to use an AIG is that it allows testing as shown in Chapter 6.
Finally we present detailed benchmark results in Chapter 7.

[pattern matching}

’ Set of matches ‘

Set of matches forming the maximum acyclic cover

[transform matches to AIG]

i [ﬁnd maximum cover using SAT solver} 3

,,

Figure 1.1.: Workflow of cnf2aig.

2. Basic Definitions

Before talking about the implementation of cnf2aig this chapter explains some
concepts used in the rest of this thesis. In this chapter we define the problem of
Boolean satisfiability (SAT) and introduce and-inverter graphs. We show what a
SAT solver is and give some examples. Readers familiar with those concepts can
skip this chapter.

2.1. SAT Problem

Colloquially speaking the Boolean satisfiability problem — also called propositional
satisfiablity problem, usually simply denoted as SAT — is about deciding whether
an assignment exists such that a propositional formula evaluates to true. In this
section we give a formal definition of its concepts. Note that we use the terms
propositional and Boolean synonymical.

Definition 1 (Boolean formula) Let P be the set of all propositional variables.
Then the set of Boolean formulas is defined by the following:

1. T and L are Boolean formulas.

2. If z is a variable of P, then z is a Boolean formula.

3. If ®; and P, are Boolean formulas, then (&1 A @5), (P71 V Dy), (P = Py)
and (@, < ®,) are Boolean formulas.

4. If ® is a Boolean formula, then also =® is a Boolean formula.

The symbols T and L are called truth values, where T can be read as true and
1 as false.

A literal is a variable or a negated variable. We say that a literal [is positive if
[is a variable and negative otherwise, i.e. if it is a negated variable. The negative

literal that is the negated varialbe v is written as —wv. Instead of writing -/ we can
also use [. This allows more compact representations.

The set of all variables in a Boolean formual ® is denoted as Var(®). An as-
signment of a Boolean formula ® is a mapping a : Var(®) — {T, L}. It maps the
variables in ® to truth values.

Definition 2 (Evaluation) The value of a Boolean formula ® under an assign-
ment a is written as ®lal. It is the truth value to which ® evaluates under the
assignment a. It is defined by the following:

1. If @ is T then ®[a] is T.

2. If ®is L then ®[a] is L.

3. If ® is a propositional variable, then ®[a] is a(®P).
4. —-1lis T and =T is L.

5. If @ is =P’ then ®[a] is =P'[a].

6. If @ is &1 A ®y then Pla] is T if both ®4[a] and Py[a] are T. Otherwise ® is
1.

7. If ®is 1V Py then Pla] is T if at least one of ®4[a] or Pyfa] is T. Otherwise
dis 1.

8. If ® is &; = ¥y then P[a] is ~Py[a] V D2[a]

9. If ® is ¢; & Dy then Pla] is (Py]a] = Pafa]) A (P3]a] = Py[a])

If a Boolean formula ® evaluates to T under an assignment a then a is a model
of ®. A Boolean formula is called satisfiable if there exists a model for it. Otherwise
it is unsatisfiable. Let A be the set of all assignments of ®; and ®,. Two Boolean
formulas ®; and &, are called logically equivalent (Py =) if Va € A : $1]a] &
®5[a] holds. Two Boolean formulas ®; and ®, are called equisatisfiable if and only
if (®,is satisfiable < ®,is satisfiable)

A clause is a disjunction of literals. The clause with n literals lq,...,1, is [V
ly vV --- VI, Note that the empty clause containing no literals evaluates to T. A
Boolean formula that is a conjunction of clauses is in Conjunctive Normal Form
(CNF). For simplicity we simply call a Boolean formula that is in CNF a CNF.

A SAT solver takes a Boolean formula as input and computes whether the
output is satisfiable or not. In addition most SAT solvers print the model found if
the input is satisfiable. Most solvers take a CNF as input. Although this problem
has been shown to be NP-complete modern SAT solvers are able to solve these
problems for many interesting inputs.

2.2. And-Inverter Graphs

An and-inverter graph (AIG) can represent Boolean formulas. They are described
in [KPKG02, KGP01]. We will use it to represent the logic circuit constructed by
cnf2aig. An AIG is a directed acyclic graph. It consists of input nodes, conjunc-
tion nodes, outputs and edges. Each input node represents a Boolean variable. A
conjunction node is connected to two child nodes with one edge each. An edge
connects a conjunction node with an input node or a conjunction node. Each edge
has one additional attribute that specifies whether the value of the child node
connected is negated. Graphically this is represented by a dot on the edge. A con-
junction node represents the conjunction of its two children. An output is similar
to an edge to a node. Like an edge it can be negated. Figure 2.1 shows two exam-
ples of AIGs. In both cases y is the only output, a and b are input nodes and there
is one conjunction node. Figure 2.1b shows how a disjunction is represented in an
AIG. It uses the equivalence a V b < —(—a A —b).

(a) y=aAnb (b)yy=aVd

Figure 2.1.: Examples for and-inverter graphs.

3. Reverse Tseitin Transformation

Tseitin transformation can be used to convert a circuit into a CNF. In this chapter
we show how the gates of the original circuit can be found in the created CNF.
For this purpose we will introduce the CNF' signatures of the most common gate
types. Further we present algorithms for each of them that find such signatures in

a CNF.

3.1. Tseitin Transformation

A lot of SAT instances are fully or partially derived from circuit encoded problems.
The technique used for this purpose is called Tseitin transformation. It was first
described by G.S. Tseitin in 1983 [Tse83]. It creates a CNF with size linear in
the size of the circuit. This procedure allows to encode a circuit in CNF and add
constraints. A SAT solver can then verify that the constraints are always respected.

Tseitin transformation works by adding an auxiliary variable — further called
Tseitin variable — for each gate in the circuit. The Tseitin variable is then set
equal to the logic function of the gate over the inputs. The resulting formula is
then transformed to CNF.

An optimization to this technique exists. Plaisted and Greenbaum have shown
that it suffices to consider one direction of the equivalence between the Tseitin
variable and the logic function of the gate in [PG86]. Gates encoded using this
technique are out of the scope of this work and will not be detected by cnf2aig.
Recent work that deals with this problem is [GB13] by A. Goultiaeva and F. Bac-
chus. They deal with Quantified Boolean Formulas but the principle can be applied
to Boolean formulas.

3.2. CNF Signatures

The clauses created from a gate by applying Tseitin transformation is called CNF
signature. The term is introduced in [RM04] where some of the following CNF
signatures are given too. Deriving the CNF signature of a gate is straight forward.
The Tseitin variable of the gate is set equal to the logic function of the gate over
its inputs. We will elaborate the derivation on the example of an OR gate with
the inputs x; and the Tseitin variable z:

s\ o=
(z = \/x) /\Z(\/ T = 2) =
(~z V \Z‘/xi) A (zlv /\ ;) =
(ﬁzvl\/xi) A (/\;vﬁxi)

For a 2-input OR gate with the Tseitin variable z and the input a and b this gives
the following CNF signature.

(mzVaVbA
(z V =a)A
(zV —b)

Using the same technique it is simple to deduce the following CNF signatures
[RMO4]:

2z and(zy, ..., 1,) = z\/\/—azz) (/n\ —|z\/xi)> (3.1)
2 nand(zy, ..., 2,) = —|z\/\/ﬁxi>/\</n\z\/$l>

z s or(xy,. .. x) = ﬁzv\/:ci) (/Tl\zvﬁ@) (3.3)
z & nor(zy,...,1,) = zv\T}xi)A<;\ﬂzvﬂmz>

The cnf2aig tool also matches buffer and inverter gates. The CNF signatures of
them are simple. Equation (3.5) shows the CNF signature of a buffer and Equation
(3.6) for an inverter.

z < buffer(z) =z <«

(mzVaz)A(zVx) (3.5)

z < invert(z) = z & —w (zVa)A(—zV-x) (3.6)

The CNF signature of XOR and XNOR gates is less simple because encoding
the zor function over n inputs in CNF requires 2" ! clauses. For an XOR gate
each clause contains an even number of negative literals. The following shows this
for n = 3.

xor(a,b,c) = (aVbVe)A(maV-bVe)A(maVbV-ce)A(aV—bV —c)

To derive the CNF signature of XOR gates we consider the equality of the Tseitin
variable z with the zor function over its inputs and derive the following:

z < xor(xy, ..., o,) =
(z = xor(z1,...,2,)) A (xor(21, ..., 2,) = 2) =
(mz Vxor(zy,...,x,)) A (2V oxor(zy,...,2,)) =
—XOI (21, ..oy Ty, 2)

Thus the CNF signatures for XOR and XNOR are the following. Recall that the
CNF representation of the XOR function contains 2"~ ! clauses. Each clause con-
tains exactly n literals. An even number of them is negative. Thus the CNF sig-
nature of an XOR gate with n inputs contains 2" clauses each containing all n 41
literals. An odd number of the literals is negative. The CNF signature of an XNOR
gate also contains 2" clauses. Each clause contains n + 1 literals, The difference
to the signature of an XOR gate is that an even number of literals is negative in
each clause.

2z & xor(ry, ..., 2,) = 2xor(Ty, ..., Ty, 2) (3.7)

z < xnor(zy, ..., xT,) = X0r(T1, ..., Ty, 2) (3.8

A majority-of-three gate (MAJ3) is a gate type that is also frequently used, e.g.
for the carry out in a full adder circuit. To be able to compare our results to [FMO07]
cnf2aig implements its detection. The output of such a gate is true if at least two
of its inputs are true. The logic function of a MAJ3 gate is shown in Equation (3.9)
which requires at least two inputs to be true. Similarly the negation is defined in

Equation (3.10) which requires that at least two of the inputs are false.

maj3(a,b,c) = (aVb)A(aVec)A(DVe) (3.9)
—maj3(a,b,c) = (@Vb)A@ve)A(bVe) (3.10)

Using this representations it is easy to deduce the CNF signature of a MAJ3
gate:

z < maj3(a,b, c) =
(z = maj3(a,b,c)) A (maj3(a,b,c) = z) =
(-2 Vmaj3(a,b,c)) A (2 V-maj3(a,b,c)) =
ZVaVvbAEVaVe)AEZVbV)A(zVaVvVb A(zvVave A(zVbVe)

Thus the CNF signature of a MAJ3 gate is the following as also given in [RM04]:

z < majd(a,b,c) = (-zVaVb A(—mzVaVe)A(mzVbVe)A
(zV=-aV=b)A(zV-aV-—e)A(zV-bV-e) (3.11)

Note that the majority-of-three gate is different from all other gate types de-
scribed so far in that its CNF signature has no clause that contains all of the inputs
and the Tseitin variable. This has to be considered in the next chapter where we
will present an algorithm for detecting gates in CNF formulas.

A gate that also has this property is the if-then-else (ITE) gate. It has three
inputs ¢ (condition), ¢ (then) and e (else). It encodes the function “if ¢ then ¢ else
e”. Note that this gate is the only one discussed in this work where the order of
the inputs matters. To derive the CNF signature of the ITE gate we construct
a truth table as shown in Table 3.1. To construct the CNF representation from
the truth table the lines where the rightmost column is 0 are considered. The
literals of each line are negated forming a clause of the CNF representation. This
CNF is minimized using the Karnaugh map shown in Figure 3.1. Note that two
of the implicants are optional, they are marked by a dashed border. They are
optional clauses in the CNF-representation of an I'TE gate. The CNF signature is
the following where the clauses in the brackets are optional:

z & ite(e,t,e) =
(meVatVz)A(meViEV —z)A(eV=eVz)A(eVeV —z)
NtV —eVz)A(tVeV-z) (3.12)

10

z < ite(e, t, €)

Z

ite(c, t, e)

(¢

t

1

0

0

Table 3.1.: Truth table of an ITE gate.

00 01 11 10

€z

ct

00
01

11
10

Figure 3.1.: Karnaugh map for the CNF of z < ite(c, t, e).

11

3.3. Detecting CNF Signatures

So far we have seen what the CNF signatures of the most common gate types
look like. We have identified two different approaches in the literature to find such
signatures. [RMO04] uses a generic graph matcher VFLib to find sub-graph isomor-
phisms. This has the drawback that the inputs are not treated as an unordered
set. This results in n! matches for a gate with n inputs even if the sequence of the
inputs does not matter. Recall that if-then-else gates are the only type of gates
considered in this work where the input sequence matters. [FMO7] provides an
approach that does not suffer from this problem. Instead a library that specifies
the CNF signatures to look for is used with a custom algorithm.

We present custom algorithms for detecting each gate type. This allows to op-
timize each algorithm based on the CNF signature it detects. Similar to [FMO7]
the algorithms are based on the observation that most CNF signatures contain
a clause that contains all the input variables and the output variable, known as
the key clause. For example for an AND gate the key clause is a clause with at
least three literals where exactly one literal is positive and all others are nega-
tive. Further we can see that all clauses in a CNF signatures contain the output
variable.

3.3.1. Detect AND, NAND, OR and NOR gates

Detecting AND, NAND, OR and NOR gates is straight forward because we can
easily identify a unique key clause for each of them. Recall the CNF signatures
given in Equations (3.1), (3.2), (3.3) and (3.4). We observe that each of these
CNF signatures has a key clause that contains all inputs and the output. We can
determine the type of gate depending on the number of negative literals in the key
clause. Let n be the number of literals and p be the number of positive literals in
the key clause. We can then determine the gate type depending on p:

p | Gate Type f | Tseitin Variable Example for z < f(z1, 29, x3)
1| AND the only positive literal | z VT, V Ty V T3
0 | NAND cannot be determined ZVT VTV T3
n—1|O0R the only negative literal | ZV x1 V 25 V 23
n | NOR cannot be determined zVx1Va Vs

Table 3.2.: Associating a key clause to AND, NAND, OR and NOR gates.

12

0 3 O Ui~ W N

W W W W W WK NDNDDNDDNDDNDDNNDNDN = === =
QL W NP O OO0 Ui WNEFE O WO O Uk WwNhH—~O©o

find_and_or_nand_nor () :
foreach Clause ¢ that has at least 2 literals:
int z
GateType g
check_key_clause(c, out z, out g)
switch g
case AND, OR:
if find_all_binary_clauses(c, z)
record match
case NAND, NOR:
foreach lit in c:
if find_all_binary_clauses(c, lit)
record match
break

check _key_clause (Clause ¢, out int z, out GateType g):
switch (number of pos. literals in c¢):

case 1:
z = the one positive literal in c
g = AND
case 0:
= NAND
case c.length — 1:
z = the one negative literal in c¢
g = OR
case c.length:
g = NOR
default :
g = NONE

find_binary_clauses (Clause ¢, int z):
foreach lit in ¢ where ¢ # z:
if !find_clause(—1lit, —z):
return false
return true

Listing 3.1: Algorithm to detect (N)AND and (N)OR gates

13

N O O~ W N~

The table also shows what the key clause looks like when z is the Tseitin variable
of the gate and the inputs are x1, x5, x3. Based on this observation it is easy to
write a function check key_clause that takes a clause ¢ and outputs a gate type
if ¢ is the key clause of an AND, NOR, OR or NOR gate. In case of OR and AND
gates it also outputs the Tseitin variable z. The algorithm for detecting these gate
types is given in Listing 3.1. It iterates over all the clauses in the CNF. For each
clause ¢ check key_clause is invoked. If ¢ is a key clause the other clauses of the
CNF signature have to be found. In case of AND and OR gates the Tseitin variable
is fixed at this point. For NAND and NOR gates each literal in ¢ may represent
the Tseitin variable. Thus the algorithm loops over all literals in ¢ (line 11). If all
the binary clauses are found a match is recorded.

The find binary_clauses function is simple. It takes the key clause and the
Tseitin variable as input. Note that each CNF signature of a gate with ¢ inputs
consists out of the key clause and ¢ binary clauses each containing the Tseitin
variable and one of the inputs. Both of these literals need to have the opposite
phase than they have in the key clause.

3.3.2. Detect Buffers and Inverters

Buffer and inverter gates have very small CNF signatures that consist only of two
clauses. Each clause contains the input and the output variable. To detect inverter
gates we search for a clause which consists of exactly two positive literals. Then
we have to find a clause that has the same two literals but in negated form. If this
clause can be found too, two possible matches were found because each of the two
variables might be the output variable. The simple algorithm is shown below in
Listing 3.2.

find_inverter () :
foreach Clause c:

if c.length != 2 or c¢c[0] < 0 or c[1] < O:
continue

if !find_inverted_clause(c)
continue

record two inverter matches

Listing 3.2: Algorithm to detect inverter gates

Searching for buffer gates is very similar but one problem has to be solved. The
CNF signature does not contain one unique key clause. Both clauses contain one

14

—_ =

— O O© 00 1O Uik W N =

negative and one positive literal. To avoid detecting a buffer gate twice only the
clause where the variable that occurs as a negative literal is less than the positive
literal is treated as a key clause. Besides that the algorithm is the same as for
inverter gates. It also records two matches after it finishes, one for each variable
as the output. The algorithm is shown in Listing 3.3.

find _buffer ():
foreach Clause c:

if c.length != 2 or sign(c[0]) = sign(c[1]):
continue

int pos = the positive literal in c¢

int neg = the negative literal in c¢

if neg > pos:
continue

if !find_inverted_clause(c)
continue

record two buffer matches

Listing 3.3: Algorithm to detect buffer gates

3.3.3. Detect XOR and XNOR Gates

To develop an algorithm for detecting XOR gates let us recall what the CNF
signature looks like. As shown in equations (3.7) the CNF signature of an XOR
gate with inputs x1,...,z; and Tseitin variable z is = xor(xy,...,x;,2). This is a
set of 2¢ clauses. Each clause contains all inputs and the Tseitin variable. An odd
number of literals are negative. Consider the following example which shows the
CNF signature of a 3-input XOR gate with inputs a, b, c and Tseitin variable z.

15

CO 1O Ui Wi

As before, for better readability, an overbar is used instead of —.
(@)
()
()
()
(@av b VeV z)A
(@)
(@)
()

For an XOR gate the unique key clause is the clause that contains only one
positive literal. The CNF signature of an XNOR gate looks very similar. It contains
the same number of clauses but each contains an even number of negative literals.
The clause used as key clause contains zero negative literals.

find_xor_xnor ():
foreach Clause ¢ with at least 3 literals:
if ¢ contains exactly one neg. literal:
if ¢ already in XOR match: continue
find_other_xor_clauses (¢, XOR)
else if ¢ contains zero neg. literals:
find_other_xor_clauses (c, XNOR)

find other_xor_clauses (Clause ¢, GateType g):
unsigned bitmask = 0
unsigned bound = 1 << c.length
while bitmask < bound:
bitmask++
if bitmask has odd nr. of high bits: continue
Clause f = flip_clause(c, bitmask)
if !find_clause(f)
return
record c.length matches of type g

flip_clause (Clause ¢, unsigned bitmask):

Clause f
for (int i = 0; i < len; i++):

16

23
24
25
26
27
28

if bitmask & 1:

fli] = c[i] * —1
else:
fli] = c[i]
bitmask >>= 1
return f

Listing 3.4: Algorithm to detect X(N)OR gates

The algorithm described in 3.4 is implemented in Lingeling [Biel3] but we are
not aware of any description in the literature. The algorithm find_xor_xnor starts
by finding a key clause. In case of an XOR match we have to make sure that this
clause is not already part of an XOR match. For an XOR gate with n inputs there
are n + 1 possible key clauses that contain exactly one negative literal. This check
is done in line 4.

After a key clause is found we have to find the other clauses that are part of
the CNF signature. The while loop in find other xor_clauses produces all of
these clauses in the variable f. This is done by using an unsigned variable bitmask
that is incremented at each iteration of the while loop. The actual body of the
loop is only entered when bitmask contains an odd number of bits that are 1. To
produce f the key clause ¢ and the bitmask are passed to flip_clause. The bits
in bitmask define whether a literal in ¢ should be flipped, i.e. negated. The least
significant bit of bitmask specifies whether the first literal in ¢ is negated or not.
If this bit is 1 then the the first literal in ¢ is negated and added to f. The i*" least
significant bit in bitmask defines whether the i*" literal in ¢ should be flipped or
not. For example when cis (a VbV ¢V z) and bitmask is 5 which is 1001 in binary
representation, the resulting flipped clause is (@V bV eV Z).

The while loop ends when bitmask has been used to create all clauses in the
CNF signature except the key clause. This is the case when all bits in bitmask
that correspond to a literal in ¢ are zero and the next bit in bitmask is 1. If all
clauses have been found matches are recorded. It is important to note that one
match for each possible Tseitin variable is recorded.

Obviously this approach places restrictions on the size of X(N)OR gates that
can be detected. Assuming bitmask has 32 bits the algorithm can find X(N)OR
gates with up to 30 inputs. This number is big enough. A 30-input X(N)OR gate
has a CNF signature of 230 = 1073741824 clauses. Such a CNF should not occur
in practice.

17

DD U W N

3.3.4. Detect Majority-of-Three Gates

In contrast to all gate detection algorithms described above the detection of MAJ3
gates cannot rely on the fact that a key clause exists. Instead the fact that all
clauses in the CNF signature contain the Tseitin variable is used. The CNF sig-
nature is described in Equation (3.11). The following listing assigns all clauses of
the CNF signature to variables.

cl = a b —z
c2 = a ¢ —z
¢cd = b ¢ —z
cd = —-a -b =z
ch =—a —c z
c6 = —-b —c =z

These variables are used in the algorithm to find MAJ3 gates given in Listing 3.5.
It iterates over all variables z in the CNF. For each of these variables it iterates
over the clauses where it occurs as a negative literal. Then it checks if this clause
may be cl. If not, it continues with the next clause where —z occurs. After this
step the variables a, b and z are fixed. Then it tries to find ¢4 because it is the
only clause besides ¢l that does not contain c. Again, it can continue with the
next clause if it is not found. Then the algorithm tries to find ¢2 and c¢. This is
done by iterating over all clauses where a occurs. For each of this clauses v it is
checked whether v can be ¢2. If so we have also found c¢. Now all of the variables
in the CNF signature are assigned to an actual variable of the CNF. If v cannot
be ¢2 or one of the other clauses cannot be found it continues with the next v. If
all clauses of the CNF signature can be found the match is recorded.

Note that after finding c1 and ¢2 it suffices to search for ¢2. If we cannot find a
variable ¢ such that the clause (a V ¢V —z) is in the CNF one could assume that
we have to search for the clause (bV ¢V —z) and use this as ¢. Then we could go
on and search for ¢3, ¢5 and ¢6. This is not necessary because switching a and b
in the CNF signature results in exactly the same clauses.

3.3.5. Detect If-then-else Gates

Finding if-then-else gates in a CNF is a similar challenge to finding majority-of-
three gates. The CNF signature is given in Equation (3.12). The following listing

18

0O 1 O Ol i W N

W W W W W WWWWhNNNDNDDNDDDNDDNDNDNDN R = === =
CO IO Ul W HFE O WO Ul WNHFE O WO O Utk WwNh+—~O o

find_maj3 () :
foreach Variable z:

foreach Clause u where —z occurs:

int a, b, ¢

if lis_cl(u, z, out a, out b): continue
if !find_clause(—a,

—b, z):

continue

//
//

foreach Clause v where a occurs:

if lis_c2(v, a,

if !find_clause(
if !find_clause(
if !find_clause(

record match

b, z, out c¢):
b, ¢, —z):
—a, —¢, z):
-b

, —C, 7):

continue //

continue //
continue //
continue //

boolean is_c1l(Clause ¢, int z, out int a, out int

if c.length != 3:
return false
a =120
b=20
for (int i
if cli]
continue
if c[i] > O:
b =a
cli]

0;

—Z:

a:
return a

boolean is_c2(Clause ¢, int a, int b int z, out int c¢):

if c.length != 3:
return false
boolean found_a
boolean found_z

1< 3;

i4+4):

= 0 and b 1= 0

false
false

0; i < 3; i++):

for (int i =
switch c[i]:
case a:
case —7z:
case b:
default :

return c¢c > 0

found_a = true
found_z = true
return false

c =cli]

and found_a and found-

Z

cl
c4

c2
c3
ch
cb

Listing 3.5: Algorithm to detect majority-of-three gates

19

Y T W N~

CO 1O Ui W N

assigns all clauses of the CNF signature to variables. These variables are used in
the algorithm below.

cl = a ¢ —z
c2 =—a -b =z
c3 = a—c z
c4d =—a b —z
¢cb =—-b —c z (optional)

¢c6 = b ¢ —z (optional)

The algorithm is shown in Listing 3.6. It iterates over all the variables and for
each of them over all clauses u where the negated literal occurs. It first searches for
c4. This is because a and b occur in different phases in this clause. If the clause u is
a possible ¢4 we have fixed a and b. Then the algorithm searches for ¢2 which only
contains variables that are fixed at this point. Next it searches for ¢l by iterating
over all clauses v where a occurs. After it has found ¢l and c it searches for ¢3. If
it cannot be found it proceeds with the next clause. If c1, ¢2, ¢3 and ¢4 have been
found it continues to search for ¢b and ¢6. These are optional clauses. If they are
found they are added to the match.

find_ite():
foreach Variable z:
foreach Clause u where —z occurs:
int a, b, ¢
if lis_c4(u, z, out a, out b): continue // c4
if !find_clause(—a, —b, z): continue // c2
foreach Clause v where a occurs:
if lis_cl(v, a, b, z, out ¢): continue // cl

if !find_clause(a, —c, z): continue // ¢3
find_clause(=b, —c, z) // ¢b
find_clause(b, ¢, —z) // c6

record match

Listing 3.6: Algorithm to detect if-then-else gates

20

4. Construction of a Maximum
Acyclic Cover

In the previous chapter we have shown how to find CNF-signatures in a CNF
formula. The result of this is a set of matches M. Each match m consists out of
the following:

e A set of clauses clauses(m) forming the CNF-signature of the match.

e A set of variables in(m) that are input signals of the match. Note that in
the case of ITE gates the set is ordered.

e A variable out(m) that is the Tseitin variable of the match.
e A gate type gate(m).

As mentioned in the previous chapter not all of these matches can be used
to reconstruct the logic circuit. Think about the detection of XOR gates with n
inputs. The XOR detection algorithm produces n+1 matches but only one of them
actually occurs in the original circuit. To construct a maximum set of matches —
the cover M. — we further restrict the circuit to be acyclic as most circuits used in
verification tasks are acyclic. Let C' denote the set of all clauses in the input CNF
formula and V' the set of variables in the CNF. S(c) is the set of matches where
clause ¢ is involved. [FMO7] proposes four constraints on M,:

1. Every signal in the circuit can be output of at most one match in the cover.

Yo € V,my € M.,me € M, : v = out(my) A v = out(ms) = my = my

2. Each clause can be involved in at most one match in the cover.

Ve e C,my € My, mo € M, : ¢ € clauses(my) A ¢ € clauses(ms) = my = my

3. Every matched clause has to be involved in at least one match in the cover.

Vee C:3m e M, : S(c) #0 = m e M,

21

4. The logic circuit formed by the matches in M, has to be acyclic.

Note that constraint 2 and 3 are competing. Instead of enforcing constraint 3 we
will maximize the number of matched clauses used in the cover. Similar to [FMO7]
cnf2aig uses a SAT solver to enforce these constraints. To avoid mixing up the
two CNFs we will further call the CNF we try to extract circuits from the original
CNF and the newly created CNF to enforce the constraint will be called W. In W
we use boolean variables to denote whether a match is used in the cover or not. In
this CNF we encode the constraints described above. If and only if the SAT solver
assigns a variable to true the according match is part of the cover.

Constraint 1 and 2 can be encoded in a straight forward way. To enforce that
only one of n matches can be true we have to add all possible clauses that contain
two of the matches as negated literals. For example if the matches mq, mo and ms
share the same output variable we add the clauses (—my V —mg) A (—my V —mg) A
(=ms V —ms3) to W. In general this adds (}) = (n — 1)n/2 clauses. The cnf2aig
tool has an option to enable a more efficient encoding that is also used to encode
constraint 3. This encoding uses a parallel counter. It is described in Section 4.1.1.

4.1. Maximizing the Cover

As already mentioned the third constraint targets to maximize the result. However
in most cases we will not be able to use all matched clauses in the cover. Instead
we will try to maximize the number of matched clauses used in the cover. For this
we add clauses to W for each matched clause in the original CNF that contains
all the Boolean variables that represent the matches the clause occurs in. Since
we do not want to enforce all of these added clauses to be true, we introduce a
new variable for each of these clauses that we add to it. We call this variable a
relaxation variable. In the end we want as many relaxation variables to be false as
possible.

More formally this can be described as follows. For each clause ¢ in the original
CNF we define a new relaxation variable r(c) and add the clause \/ S(c) V r(c) to
W. If r(c) is false then one of the matches S(c) has to be used in the cover.

We now created the CNF W with a set of clauses that have to be satisfied
(constraint 1 and 2) and a set of clauses that are relazable (constraint 3). We want
to maximize the number of these relaxable clauses that are satisfied. This is known

as the partial MAX-SAT problem [FMO06]. We use a different approach than Fu

22

and Malik to solve the problem. As already mentioned we add a relaxation variable
to all relaxable clauses. We want to minimize the number of relaxation variables
that are assigned to true.

The first step is to set the SAT solver’s default decision of these variables to false.
That implies that when the SAT solver cannot decide that a relaxation variable
has to be true or false while traversing the search space, it will first try to satisfy
the formula by setting the relaxation variable to false. Nevertheless the SAT solver
may assign more relaxation variables to true than necessary.

The next step is to further decrease the number of true relaxation variable. We
do this by adding a cardinality constraint over the relaxation variables. When k
relaxation variables are assigned to true after the first call of the SAT solver we
add a set of clauses to W that enforces that only k£ — 1 variables may be true. If
this new CNF cannot be satisfied we have already found the maximum cover in
the SAT solver run before.

4.1.1. Encoding a Parallel Counter

The naive way to encode that only k out of n variables may be true in CNF needs
(kil) clauses. The approach is to create all combinations of k 4+ 1 variables and
for each of these encode that at least one of them has to be false. There exist
more efficient encodings of cardinality constraints. C. Sinz describes and compares
different encodings in [Sin05]. One of these strategies uses a parallel counter. It is

based on work of Muller and Preparata [MP75] and is implemented in cnf2aig.

The idea is to create a counter of these variables as a logic circuit. The output
of the counter is a binary representation of the number of true variables in the
input. This counter is then Tseitin transformed into CNF and added to W. Let m
denote the number of outputs of the counter. They are a binary representation of
the number of true variables in the input. Last we have to add a comparator that
is only satisfiable when the binary encoded number is less than or equal to k.

The maximum output of the counter with n inputs is n. This is the case when
all n input variables are true. To encode n as a binary number we need |logn|+1
bits. Since we defined that the output consists of m variables we now know that
m = |logn]| + 1. Let so,...,S,_1 denote the outputs of the counter. They form
the binary representation of the number of true variables in the n input variables.
so depicts the least significant bit, s,,_; the most significant.

23

L wvrmmrr e Tom—1_9 Togm—1_71 -« -« . Tn—2 Tpn-1

| | | |
v v v v

¢, : count(2mt — 1) ¢, : count(n — 2m~1)

Ym—2 -+ Yn | |Yn—1---- Yo Bh—1 v 20

count(n)

T P = =

Sm—1 Sm—2 e Sh Shl s So

Figure 4.1.: Recursive parallel counter. F' depicts a full adder, H a half adder and
count(t) a recursive parallel counter with ¢ inputs

Consider for example 7 inputs of the counter are true. Let the number of inputs
be 8. Then the number of outputs is [log8] + 1 = 4. The outputs of the counter
are: so =1, s1 = 1, so = 1 and s3 = 0 which represents 0111, = 7.

The implementation of the counter is a recursive parallel one. It is illustrated in
Figure 4.1. The n inputs are split in two halves. Both are recursively processed.
Both counters output a binary representation of the number of true input variables
in their input. These two numbers are summed up by full and half adders forming
the final output. To be more precise the inputs xg, ..., x,,_1 are split in three parts:

e The left half consists of exactly 27! — 1 inputs. It is recursively processed
by a counter ¢, and produces exactly m — 1 outputs yo, ..., Ym—o2.

e The right half consists of 0 to 2™~ ! — 1 inputs. It is recursively processed by
a counter ¢, and produces h outputs zg, ..., 2,_1 where 0 < h < m —1. Note
that there exists cases where this counter does not produce any outputs.

e The last input variable x,,_; is summed up together with the results of the
counters ¢, and c,.

The reason that the left half processes 2~ — 1 inputs is that it should produce
m—1 outputs. The maximum number that can be depicted in binary representation
by m — 1 bits is 2™~! — 1 which is the number of inputs ¢, processes. The right
counter ¢, processes the remaining inputs except the last one. The number of
inputs is n — 2™~1. It can be shown that this is always less or equal to the number

24

of inputs ¢, processes. There are two extreme cases when c, processes zero inputs
and where it processes as many inputs as c¢,. When n is a power of two, i.e.
|logn] = logn, ¢, processes zero inputs. When n is one less than a power of two,
i.e. |logn+ 1| =logn + 1, ¢, processes as many inputs as ¢,.

The outputs of ¢, and ¢, and z,_; are summed up by an m-bit adder using
conventional full and half adders. A half adder takes two inputs and outputs the
sum and a carry. A full adder takes three inputs and outputs a sum and a carry.
The first full adder has the inputs x,,_1, yo and zy. It produces the least significant
bit of the output sg. The carry of the full adder is input of the next full adder that
also has y; and z; as input. The last full adder has a carry and y,_; and z,_; as
inputs. If m — 1 > h, i.e. the left half has produced more outputs than the right
half, the variables yp, . .., ¥m_o are added using half adders. In the case where the
right half processes no inputs, the m-bit adder consist only of half adders. When
the right half processes as many inputs as the left half the adder consists only of
full adders.

Figure 4.1 shows the recursive parallel counter with both full and half adders.
[Sin05] shows that the number of full adders needed is n — m and the number
of half adders is at most |logn|. It further gives the equations for full and half
adders and their clauses resulting from Tseitin transformation. Note that Plaisted-
Greenbaum transformation is used. A half adder with the inputs @ and b and the
outputs ¢ (carry) and s (sum) adds the three clauses

(aV=bVs)A(—aV-bVe)A(-aVbVs) (4.1)

and a full adder adder with inputs a, b, ¢;, and outputs ¢ and s the following seven
clauses:

(@VbV=cym Vs)A(aV-bVcy Vs)A(maVbVeyVs)A
(maV =bV =, V)N (maV -bVe)A(—aV =, Ve)A(=bV e, Ve) (4.2)

Based on the idea described above a cardinality constraint generator has been
implemented. It takes an interface of a SAT solver at construction time. It provides
two functions: Create a counter over an array of variables and create a comparator
that ensures that the number of true variables in the counter’s input is less or
equal than some number k. Obviously the counter has to be created before any
comparator can be created. We now describe the algorithm to create the parallel
counter. The comparator will be shown in the next subsection.

Listing 4.1 shows the algorithm that creates a parallel counter. It takes an integer
pointer x that points to the sequence of input variables. The second parameter n

25

0 3 O Ui~ W N

W W W W W WK NDNDDNDDNDDNDDNNDNDN = === =
QL W NP O OO0 Ui WNEFE O WO O Uk WwNhH—~O©o

gen_par_count (int *x, int n, out int s0, out int m):

if n — 1:
sO = x[0]
m =
return

int yO, z0, my, h =20
m = floor log n

int ly =2 " m-— 1 // number of inputs for ¢,
int 1z =n — ly — 1 // number of inputs for ¢,
gen_par_count (x, ly, out y0, out m2)

assert (m_y = m)

if 1z > 0:

gen_par_count(x + ly, lz, out z0, out h)

int carry = x[n—1]
generate_adders(carry, yO, m, z0, h, out s0)

generate_adders(int c_in, int y, int m, int z, int h,

out int s0):
int carry = nextVar
nextVar +=m — 2 // reserve space for m — 2 carries
s0 = nextVar;

for i in [0...h—1]:
int sum = nextVar++
if carry = s0:
carry = nextVar++
gen_full_add(y0 + i, z0 + i, c_.in, sum, carry)
c_in = carry++
for i in [h...m—2]:
int sum = nextVar++
if carry = s0:
carry = nextVar++
gen_half_add(y0 + i, c_in, sum, carry)
c_.in = carry++

Listing 4.1: Algorithm to create a parallel counter

26

is the number of inputs. It outputs the first variable of the output sO and the
number of outputs m. The outputs are consecutive. Note that the listing uses the
same variable names as Figure 4.1. At first the function checks for the base case
where the number of inputs is one. In this case the output is trivial. The value of
So is set to the only input. The number of outputs m is one.

Then the inputs are split and x, ..., xom-1_9 are counted recursively on line 11.
It outputs yo and the number of outputs produced by ¢, which has to be equal
to m — 1. This is asserted in the next line. The output variables yo, ..., ¥.,_o are
consecutive. If ¢, is to process any inputs this is done on line 14.

Finally, the adder is generated. The generate_adders function takes x,,_; as the
first carry and generates an adder for the outputs of ¢, and c,. The function main-
tains the next variable that has not yet been used in the SAT solver in nextVar.
Since the outputs sg,...,s,_1 have to be consecutive it first reserves variables
that will be used for the internal carries of the full and half adders. There are
m — 2 internal carries. Note that the last carry is s,,_1. It then generates the full
adders for zg,..., 2,1 and yg,...,yp_1 in a for-loop on line 24. The next for-loop
adds the half adders of the remaining outputs of ¢,. Both for-loops have a special
handling of the last carry. When carry is the same as the first output variable s,
the last full or half adder will be added. In this case the carry of the adder is used
as the last output s,,_1. The function gen full add adds the seven clauses shown
in Figure 4.2 that encode a full adder. It takes the following inputs in order: a,
b, Cin, s, c. The function gen half add adds the three clauses shown in 4.1. The
inputs are: a, b, s, c.

C. Sinz shows that a parallel counter over n variables adds at most
™n —4|logn] — 7. (4.3)

clauses to the CNF [Sin05]. He further mentions that the SAT solver has to solve
the problem by search. We will see in the evaluation chapter that the problem
created can actually be rather hard to solve.

4.1.2. Encoding a Comparator

After initializing the cardinality constraint generator and creating a counter over

xg,...,T,—1 it can be used to define an upper limit & on the number of true
variables in xg,...,x,_1. Recall that sg,...,s,,_1 are a binary representation of
the number of true variables in x, . .., x,_1 Where sy represents the least significant

27

bit. A precondition to creating the comparator is that &£ can be expressed as an
m-bit binary number, i.e. £k < n.

In [Sin05] a recursive definition of an encoding of such a comparator is given.
Let s be the number that is represented by sg, ..., S,_1. We write this number
as Sym_1Sm—2 - .. So. Similarly we write k as k,,_1kn_o ... ko so that kg is the least
significant bit in k£ and k,,_; the most significant. Now we have to encode a com-
parator in a set of clauses that are only satisfiable when s < k. Note that when
we create the comparator we know the value of £ but not the value of s and thus
not the values of sq, ..., Su_1.

The comparison starts with the most significant bits k,,_1 and s,,_1. If k,,_1
is zero s,,_1 has to be zero too and further we have to ensure that s,,_1...s0 <
ky—1 ... ko. If k,,_1 is one we have to consider the value of s,,_;. If s,,_1 is zero the
comparison succeeded, i.e. s < k. If s,,_1 is one we have to continue and ensure
that s,,,_1...50 < ky_1 ... ko. Since the value of s,,_1 is not known we add —sg to
all clauses that will be added when comparing s,,_1...50 < k1. .. ko.

The idea described above can be extended to a formal recursive definition of the
comparator that ensures that s < k. Let L(7) be the boolean formula that encodes
Si...S0 < ki...ky. It can be defined as:

L(O) _ S0 lf k‘[) =0
true if kg =1

si=Lt—1) ifky=1

This representation can be transformed to CNF directly. The implication s, =
L(i— 1) can be thought of as adding —sq to all clauses produced by L(i — 1). The
algorithm to encode s < k is shown in Listing 4.2. It takes the first output of the
counter sg, the number of outputs m and k as input. The algorithm traverses the
bits of k starting with the most significant bit k,,_;. On line 5 ki is assigned to
k;. “>> (1-1)” represents a bit shift to the right by ¢ — 1 bits. “&” is a bitwise or.
ki is either zero or one. si represents s;. If ki is zero —si is added to the clause

premises. If ki is zero the clause which is the union of —s; and premises is added
to W.

28

—_ =

— O © 00 3O ULk W -

gen_less_than_comparator (int sO, int m, int k):
Clause premises = {}
for i in m—1 ... 0]:
int si = s0 + 1
int ki = (k> (i —-1)) &1
if ki = 0:
Clause ¢ = {—si} U premises
add_clause_to_sat (c)
else: // ki is 1
premises = {—si} U premises
k <<= 1;

Listing 4.2: Algorithm to create a binary comparator

4.2. Enforcing the Acyclic Property

We have so far shown how cnf2aig enforces the constraints one and two defined in
the beginning of this chapter. Further we have shown how it maximises the third
constraint. The last constraint enforces the result to be acyclic. This is necessary
because we cannot determine the direction of XOR, XNOR, inverter and buffer
gates. Consider the circuit shown in Figure 4.2 which is a simplified example
from [FMO7]. The inverter gate drawn with dashed lines has not been part of the
original circuit. Instead the clauses (y V x) A (-y V —x) have been added as a
constraint to the CNF. Then x and y are the outputs of the XOR gates connected
by the inverter. This constraint is recognized as an inverter by cnf2aig. The
actual outputs of the XOR gates a and b are x and y respectively as shown in
Figure 4.2. However cnf2aig detects three possible XOR gates for each single
XOR gate because it cannot determine which signal is the output. Thus a cycle
may be formed. This cycle is marked in thick lines in the circuit.

Figure 4.2.: XOR chain that may form a cycle.

To ensure the result is acyclic cnf2aig implements the same strategy used in

29

[FMO7]. If the result proposed by the SAT solver is cyclic we add a blocking
clause [McMO02] to W. For example let m,, m;, and m; be the matches that form the
circuit shown in Figure 4.2. To avoid this cycle we add the clause (—m,V—m;V—-m;)
to W. This inhibits that all three matches are selected by the next invocation of

the SAT solver.

To detect cycles in the result of the SAT solver a simple depth first search
(DFS) is used. Once a cycle is found the search ends and the blocking clause is
added. This search is done in linear time. The downside is that only one of possibly
many cycles is found. Therefore cnf2aig implements Tarjan’s algorithm to find
all strongly connected components [Tar72]. It finds all strongly components in the
result. Each strongly connected component contains at least one cycle. Further
each cycle is contained in a strongly connected component. By forbidding strongly
components in the result we will eventually end up with a result that contains no
cycle.

4.3. Algorithm to Create the Maximum Acyclic
Cover

The techniques described above are used to construct the maximum acyclic cover
using the matchings found in the CNF. The results respects the four constraints
described in the beginning of this chapter as far as possible. The algorithm that
creates the maximum cover is shown in Listing 4.3. It first creates a new instance
of a SAT solver. The SAT solver used in this work is lingeling [Biel3]. It then
adds clauses that encode constraints one and two as shown above. To maximize
constraint 3 it adds clauses that enforce that all matched clauses are used in the
cover but adds a relaxation variable to each of them (line 10).

Then the main loop starts. First the SAT solver is called to solve the formula. At
the first invocation the result will always be satisfiable. Then it is checked whether
the result contains any cycles. If it does a blocking clause is added. This ensures
constraint four. If the result does not contain a cycle the cardinality constraint over
the relaxation variables is reduced by one. For this the number of true relaxation
variables in the result is counted. Let k£ be this number. Then the constraint that
the number of true relaxation variables has to be less or equal than k — 1 is added.
This targets maximizing constraint 3.

Note that W is always satisfiable until the last call when it becomes unsatisfiable.

30

This approach is dual to the implementation in [FMO7]. It has the advantage that
the incremental features of the SAT solver can be exploited. An incremental re-
laxation strategy like implemented in [FMO07] cannot keep learned clauses between
calls to the SAT solver. The disadvantage of our approach is that the counter
adds a considerable amount of clauses to W which makes it hard to solve as our
experiments will show. It may appear that the approach is inefficient because the
cardinality constraint is only decreased by one after each invocation. However ex-
periments show that this is not the case. It is important that the default decision
of the relaxation variables used by the SAT solver is false. Thus the SAT solver
will first try to set the relaxation variables to false which leads to a small number
of true relaxation variables after the first invocation of the SAT solver.

4.3.1. Reducing Relaxation Variables

In cnf2aig we implemented a small optimization to reduce the number of relax-
ation variables. When a set of clauses ¢y, ..., c¢,11 forms the CNF signature of an
n-input AND gate and none of the clauses is involved in any other gate cnf2aig
will find one match m. For constraint 3 it will add the following n + 1 clauses to
the CNF:

n+1
/\ mVr;
i=1
This adds n+ 1 relaxation variables rq, ..., r,.1 to the CNF. If a clause is involved

in only one match we do not have to do this. Instead we simply add —m as input
of the counter n + 1 times. This optimization can be triggered by passing the
--no-single-relax option to cnf2aig.

We have now shown how to obtain a maximum acyclic cover out of all matches
found in the CNF. The variables in the SAT solver which correspond to matches
and are to true in the final satisfying assignment represent the matches that are
part of the cover. These matches can now be written to a hardware circuit.

31

CO 1O Ul W N

W W WK NDNDDNDDNDDNDDNDDNDNDN - === =
N — O O 00 ~JO Ul WP O OO Ui WwWwhh—~O©o

create_cover ():
W = new SatSolver
add constraint 1 to W
add constraint 2 to W
foreach Clause ¢ in the original CNF:
Clause b = {}
foreach Match m that contains c:

b=Db U {m}
int relax_var = nextVar++
b =b U {relax_var}
add b to W

int k = number of relaxation variables
boolean satisfiable = true
while satisfiable:
satisfiable = solve (W)
if satisfiable:
find cycle and add blocking clause
if cycle found:
continue
k = number of true relaxation variables
if no relaxation variables are true:
current solution is final solution
remember current solution
decrement_cardinality_constraint (W, k — 1)

last remembered solution is the final solution

decrement_cardinality_constraint (SatSolver W, int k):
if counter has not been created:
add counter over relaxation variables to W
add comparator to enforce that number of true
relaxation variables is < k

Listing 4.3: Algorithm to create a the maximum acyclic cover.

32

5. Generate AIGER Output

The result of the previous chapter is a set of matches that form an acyclic cover.
These matches represent a logic circuit that is encoded by the matched part of the
CNF. By the matched part we mean the clauses in the CNF that are used in the
matches in the cover. There may be unmatched clauses in the CNF which have to
be dealt with. The final goal of cnf2aig is to transform the input (a CNF) into a
different format (an AIG) preserving the truth value.

We have chosen the final output to be represented as an and-inverter-graph
(AIG). The file format used is AIGER [Bie]. Compared to other formats this has
the minor disadvantage that we cannot directly represent the gates like XOR in
the output. However it is common to use AIGs to represent arbitrary circuits. It
is easy to convert the gates detected by cnf2aig to AIGs as we will show in this
chapter. Advantages are the tools that are provided to handle the AIGER format.
We will use tools from the AIGER library for testing in Chapter 6.

An and-inverter-graph is a directed acyclic graph. Each node in an AIG has two
ancestors and represents a conjunction of them. Edges in an AIG may be marked
with a dot to indicate negation. We have given a more detailed definition of an
AIG in Section 2.2.

5.1. Create AlIGs From Matches

We will now show how cnf2aig transforms a match to an AIG. Recall that a
match consists of a gate type, inputs and one output. In the algorithms shown in
the next subsections m will represent the match. A match has n inputs g, . .., 7,_1.
The output is represented by o.

For each match in the cover cnf2aig creates an AIG. Since cnf2aig iterates
over all matches and creates AIGs for them we have to take special care of the
output of such an AIG. Consider a match that represents a 2-input OR gate. The

33

(a) Circuit (b) OR AIG (¢) Overall AIG

Figure 5.1.: AIG created from circuit.

output of this AIG is negated. This means that if the output of the AIG node is
used as input in e.g. an AND gate, we have to use it negated. The situation is
illustrated in Figure 5.1. Note that the output y is never really added to the AIG.
Instead cnf2aig has to remember that when node v is used as input it has to be
used negated.

In cnf2aig each variable is represented by an integer. For a positive literal this
integer is positive. The negated literal is represented by a negative integer. In the
AIGER library each AIG node is also represented by an integer. In the pseudo
code used in this chapter we abstract the AIGER library to accept such integers
to create AIG nodes. The AIGER API is shown in Listing 5.1. aiger_and takes an
integer that represents an AIG node and the integers representing its children as
input. The given AIG node has to be greater than 0. The children may be negative
integers which denotes a negated edge to the child. For example, to add an AIG
with the output 7 and the inputs 1 and 2 we call the function aiger_and(7, 1,
2). As you can see a variable v represented by the integer n in the original CNF
is also represented by the integer n in the final AIG.

aiger_and (int aig_node, int left , int right)
aiger_add_output (int output)

Listing 5.1: Abstraction of the AIGER API.

To remember which AIG nodes have to be connected with a negated edge when
used as input cnf2aig maintains a map w. Technically it maps an integer to an
integer. Functionally it maps each variable used in a match to the AIG node that
should be used as input when this variable is used as input. If a variable is mapped
to a negative integer it means that it has to be connected with a negated edge

34

Figure 5.2.: AIG representing n-input OR gate.

when used as input.

5.1.1. AND, NAND, OR and NOR

Converting an AND match to an AIG is trivial. The only question is whether we
want to create a balanced tree or not. To keep the algorithms as simple as possible
the tree is not balanced. The AIG for an OR gate is given in Figure 5.2. The OR
AIG is based on the following simple equivalence (De Morgan’s law):

ik & =(\ —ix)

Obviously the only difference to the AIG representing NOR is that the output
z is not negated. Similarly the AIG for an AND gate would contain no negated
edges and for a NAND gate only the edge to the output would be negated.

It is easy to see that the only difference for AIGs representing one of the gate
types AND, NAND, OR or NOR is whether the edges from inputs and outputs are
negated. Table 5.1 shows which gate has which edges negated when transformed
to an AIG. When creating an AIG we do not care about whether the output has
to be negated. As mentioned above this is only important when the AIG is used
as input for something else.

The algorithm for converting these gate types is shown in Listing 5.2. It takes
the inputs ¢, the number of inputs n and the output o as input. It further takes

35

CO 1O Ul W N

[el e el e e e
S O 00 JO Ui W~ OO

Gate Type | invert input invert output
AND no no
NAND no invert

OR invert invert
NOR invert no

Table 5.1.: Inversion of edges for AND, NAND, OR, NOR AIGs.

a pointer to a function as argument, which in turn takes an integer and returns
an integer. This function is applied to the inputs of the match when adding them
to the AIG. As shown in Figure 5.1 we have to pass a function that negates the
integer for OR and NOR gates. For AND and NAND gates the identity function
is passed.

and_or_nor_to_aig(intx i, int n, int o):
and_nand_or_nor_to_aig(i, n, o, invert)

and_and_nand_to_aig(int* i, int n, int o):
and _nand_or_nor_to_aig (i, n, o, ident)

and_nand_or_nor_to_aig(int* i, int n, int o,
int (xinv_edge_input)(int)):
int t = inv_edge_input (i[0])
for k in [1..n — 2]:
int aig_node = nextNode++
aiger_and (aig_node, t, inv_edge_input(i[k]))
t = aig_node
aiger_and (o, t, inv_edge_input (i[k]))

int invert(int x):
return —x

int ident(int x):
return x

Listing 5.2: Algorithm to create AIG for AND, NAND, OR, NOR gates.

Note that the algorithm maintains a state in the variable nextNode. In the
beginning it is the minimum integer that is not used in the original CNF.

36

5.1.2. XOR and XNOR

Constructing AIGs for XOR and XNOR gates is not that straight forward. The
AIG for a 2-input XOR is given by the following equivalence:

a®dbs (aVb)A(—-aV-b)=-(-aA-b)A-(aAb).

It is easy to see that this encoding needs two additional AIG nodes. In general
for an n-input XOR gate 2(n — 1) + 1 AIG nodes are added. The AIG constructed
for a 2-input XOR gate is shown in Figure 5.3. The algorithm to construct AIGs
representing XOR gates with an arbitrary number of inputs is shown in Listing 5.3.
Just as Listing 5.2 it uses nextNode which is initialized with the minimum integer
not used in the original CNF.

Note that XOR can be presented differently with an AIG using only 3 conjunc-
tion nodes. It uses the equivalence

a®b<s (maNb)V(aN-b)=-(=(-aAb)A—(aA—b)).

This representation uses a negated output. It is simpler to use the former rep-
resentation which does not have a negated output. Further the tree created by
Listing 5.3 is not balanced.

Figure 5.3.: AIG representing a 2-input XOR gate.

37

0 3 O O i W N

— = = = =
B wWw N — O O

binary _xor_to_aig(int a, int b, int o):
int 1 = nextNodet++
aiger_and (1, —a, —b)
int r = nextNode++
aiger_and (r, a, b)
aiger_and (o, 1, r)

xor_to_aig(intx i, int n, int o):
int t = i[0]
for k in [1..n — 2]:
int aig_.node = nextNode++
binary_xor_to_aig(t, i[k], aig_-node)
t = aig_node
binary_xor_to_aig(t, i[k], o)

Listing 5.3: Algorithm to create AIG for XOR gates.

5.1.3. Majority-of-3 Gates

A majority-of-3 gate with the output z and inputs a, b and ¢ can be represented
by an AIG using the following formula.

maj3(a,b,c) < (aANb)V(aNc)V(bAc) < (=(aAb)A=(aANc)AN=(bAc))

The AIG is shown in Figure 5.4. The AIG nodes are named so that the reference
to Listing 5.4 is easy to see. As you can see in the listing adding this AIG using
the AIGER API is simple.

O © 00 IO Uik Wi =

—_

maj3_to_aig(intx i, int n, int o):
int r = nextNode++
int s = nextNodet+
int t = nextNodet++
int u = nextNode++
aiger_and (r , a, b)
aiger_and (s, a, c)
aiger_and (t, b, ¢)
aiger_and (u, —r, —s)
aiger_and (o, u, —t)

Listing 5.4: Constucting an AIG representing a MAJ3 gate.

38

Figure 5.4.: AIG representing a MAJ3 gate.

5.1.4. If-then-else Gates

ITE gates are also easy to represent as an AIG. The equation is
ite(c,t,e) & (cAt)V (mcAe) < a(=(cAt) AN=(—cAe)).

The AIG is shown in Figure 5.5. As the figure shows the AIG needs two additional
nodes. The output is negated, cnf2aig has to store this information in the mapping
w as described above.

Figure 5.5.: AIG representing an if-then-else gate.

39

(a) Buffer circuit (b) Created AIG

Figure 5.6.: AIG created for buffer and inverter gates.

5.1.5. Buffers and Inverters

The way cnf2aig handles buffer and inverter gates is totally different from all
other gate types. Instead of adding an AIG node the buffer’s (resp. inverter’s)
input is used instead. In a preprocessing phase cnf2aig creates the mapping w
as mentioned above that maps each variable to the AIG node to use when the
variable is used as input somewhere. Obviously we can just map a buffer gate to
its only input to achieve this.

Figure 5.6 shows an example of what AIG is creates for buffer and inverter
gates. The circuit is shown in (a) and the created AIG in (b). You can see that
the buffers and inverters are not directly reflected in the created AIG. Listing 5.5
shows the whole preprocessing step that creates the map w as described above.
The algorithm can be seen as a variant of the union find algorithm described by
R. E. Tarjan [Tar75].

The preprocessing first initializes w with 0 for each variable. This value is not
a valid AIG node and will be set to a different value for all variables after pre-
processing. For OR, NAND, XNOR, ITE and MAJ3 gates v will get mapped to
—uv on line 27. Outputs of these gates have to be used with a negated edge when
connected to further AIG nodes. For buffers v can in most cases be mapped to
the input of the buffer gate. However this does not work if multiple buffers or
inverters are chained. In this case we want to map v to the input of the first buffer
or inverter in the chain.

The first input of a buffer-inverter chain is returned by find_aig_out. The func-
tion takes the output o of a match m as input and returns the AIG node that
should be used instead of this node. For AND, NOR and XOR gate this is o.
Outputs of these matches are used as-is. For OR, NAND, XNOR, ITE and MAJ3
it returns —o. Outputs of AIGs representing these gates have to be used with a

40

O 1 O O W N

DD DN DD DN DN NN NN === == = = = ==
© 0T UHE WO OO W R OO

preprocess () :
Map <int , int> w
foreach variable v in the CNF:
w.put(v, 0)
foreach Match m in the cover:
w.put (v, find_aig_out (m.inputs|[0]))
foreach variable v in the CNF:
if w.get(v) = 0:
w.put(v, v)

int find_aig_out (int o):
Match m = the Match in the cover where o is output
switch m. type:

case BUFFER:
if w.get(m.inputs[0]) != 0:
return w.get (m.inputs [0])
int a = find_aig_out (m.inputs[0])
w.put(o, a)
return a
case INVERTER:
if w.get(m.inputs[0]) != 0:
return w.get (m.inputs [0])
int a = —find_aig_out (m.inputs[0])
w.put(o, a)
return a

case OR, NAND, XNOR, ITE, MAJ3:
return —o

default:
return o

Listing 5.5: Preprocessing phase to build w.

41

negated edge. For buffer and inverter gates the function proceeds recursively. The
function find_aig_out is called with the only input as parameter. In the case of
a buffer the result of this call is returned. With an inverter the result is returned
negated. A small optimization is added that stops the recursive search when a
buffer or inverter is found that has already been processed. In this case the output
of the buffer or inverter is not longer mapped to 0 and the result of w.get(o) can
be used as the result.

5.2. Dealing With Unmatched Clauses

We have now transformed all matches in the cover to an and-inverter graph. How-
ever we may have only covered a subset of the clauses in the original CNF. In most
CNFs of interest we will have to deal with clauses that are unmatched. Even if the
CNF was constructed from a hardware circuit and all these gates were detected the
CNF will probably contain clauses that place constraints on the hardware circuit.
After all this is the use case that a hardware circuit is encoded in CNF. These
clauses will likely not form the signature of a gate. Figure 4.2 shows an example
where this situation occurs.

In order to maintain satisfiability we have to add all unmatched clauses to the
AIG. For this we have to create an AIG representing an OR for each unmatched
clause. The literals of the clause are the input of the OR AIG. We have already
shown how to construct an OR AIG in Section 5.1.1.

The algorithm for adding the unmatched clauses and the final output to the
AIG is shown in Listing 5.6. It first iterates over all unmatched clauses and creates
a list outputs of integers. This list represents the AIG nodes which are the outputs
of the OR AIGs of each clause. If there are unmatched unit clauses the literal in
the clause is directly added to outputs without creating an OR AIG (line 5). For
all other clauses it creates an OR AIG using the function add_aig_or which is not
shown in the listing (line 8). It simply adds an OR AIG over all the literals in the
clause as shown in Section 5.1.1. Finally an AND AIG is created with all outputs
as input (line 16). The output of this AIG is also the only final output of the AIG
created by cnf2aig.

There are two special cases to handle. When there is no unmatched clause the
output TRUE is added. This means that the original CNF was fully transformed to
an acyclic circuit. Since there are no constraints the formula is always satisfiable.
The other case is when there is exactly one unmatched clause. In this case the

42

CO 1O Ul W N

add_unmatched_clauses () :

List <int> outputs
foreach clause ¢ NOT in the cover:
if c.length = 1:
outputs.add(c[0])
else:
int output = nextNode++
add_aig_or (clause , output)
outputs.add(—output)
if outputs.isEmpty():
aiger_add_output (TRUE)
else if outputs.size = 1:
aiger_add_output (outputs [0])
else:
int final_output = nextNodet++
add_aig_and (outputs, final_output)
aiger_add_output (final_output)

Listing 5.6: Add unmatched clauses and output to AIG.

output of the OR AIG is the final output of the AIG.

43

6. Testing

The cnf2aig tool takes a CNF as input and produces an output in the AIGER
format that represents the CNF. Before using the tool for evaluations we want to
make sure that it produces AIGER output that actually represents the CNF given.
For this purpose we developed “cnfcktfuzz” that fuzzes a circuit and produces
CNF output by doing simple Tseitin transformations. Then cnf2aig is invoked
with this CNF as input. The output is then transformed into CNF again by apply-
ing Tseitin transformations. The aigtocnf tool from the AIGER library is used
for this purpose. If the fuzzed CNF and the CNF produced by aigtocnf are not
equisatisfiable an error in the implementation of one of the tools has been found.
The workflow is described in Figure 6.1.

This testing strategy is implemented in a simple script that executes a number
of tests. The workflow starting with the first CNF is implemented in a script itself
that takes the fuzzed CNF as argument. When an error is found this script can be
used with a delta debugger like cnfdd [BLB10].

6.1. A Circuit Fuzzer

For creating a CNF input that consists out of many gates a fuzzer cnfcktfuzz
(CNF Circuit Fuzzer) has been implemented. It creates a rectangular grid of gates
which are then connected randomly as will be described in this section. To produce
a realistic SAT instance the final outputs of the circuit are randomly connected in
clauses consisting of three literals (3-clauses).

[cnfcktfuzzH CNF cnfaig

\J equisatisfiable? |

S

Figure 6.1.: Workflow of testing using cnfcktfuzz

44

level
T oo - O height — 1
height
o o - O 1
L O ad O 0
} width |

Figure 6.2.: The grid created by cnfcktfuzz

The fuzzer takes the width and the height of the grid of gates to create as
parameters. Figure 6.2 shows the created grid which contains exactly widthxheight
gates. Each position in the grid is randomly assigned to a gate type. The type of
gates produced are:

e AND, NAND

e OR, NOR

e XOR, XNOR

e ITE (if-then-else)

e Buffer

e Inverter

e MAJ3 (majority-of-3)

When filling the grid with gates the fuzzer starts at level 0. All inputs of gates
at this level are inputs of the circuit. Then the next level is processed. Each gate
is assigned a number of inputs. This number is fixed for some types of gates (ITE,
Buffer, Inverter, MAJ3) and is random for all other types. The number of inputs
depends on the level the gate is in and the width of the grid. After finding the
number of inputs the inputs of a gate at level n where n > 0 are connected to the
outputs of gates at lower levels.

45

The number of inputs assigned to level [is

21

+d
[+1

where ¢ is the number of remaining inputs and d is a random deviation. The
value of d depends on the width of the grid. Without using a random deviation
this results in a linear distribution of the inputs of a gate g at level n with ¢ inputs
where 2i/n gates of level n — 1 are inputs of g and 0 gates at level 0 are inputs of

g.

6.2. Finding a Factor for the Number of 3-Clauses

The fuzzer should produce an equal amount of satisfiable and unsatisfiable CNF's. If
it would only produce on kind of CNF's then cnf2aig could pass the tests by always
producing this kind of output. To ensure an equal distribution of fuzzed satisfiable
and unsatisfiable CNFs a number of random 3-clauses over the final outputs of
the circuit is added. This number of 3-clauses added is the number of outputs
multiplied by factor. This factor is configurable. Experiments have shown that
for random 3-SAT instances this factor is approximately 4.3 [MSL92] for entirely
random CNFs. However since the fuzzed circuit encodes relations of the variables
used in the random 3-SAT clauses created the resulting CNF is much more likely to
become unsatisfiable. Table 6.1 shows experiments with different values for factor.
For each factor 100 circuits have been created and the percentage of satisfiable
CNFs is determined. Figure 6.3 is created from Table 6.1b. It shows that with a
factor of 0.8 an equal amount of satisfiable and unsatisfiable CNFs is produced.

46

factor | sat | unsat | %sat || factor | sat | unsat | %sat
01| 97 31 97.00 0] 97 31 97.00
0.1 97 31 97.00 0.1] 96 41 96.00
0.2 1] 90 10 | 90.00 0.2 90 10 | 90.00
03] 73 27 1 73.00 03] 79 21 | 79.00
04| 64 36 | 64.00 04| 76 24 1 76.00
0.5 | 62 38 | 62.00 05| 72 28 | 72.00
0.6 | 58 42 | 58.00 0.6 | 62 38 | 62.00
0.7 54 46 | 54.00 0.7 | 60 40 | 60.00
0.8 | 42 58 | 42.00 0.8 39 61 | 39.00
09| 44 56 | 44.00 0.9 | 46 54 | 46.00

11 35 65 | 35.00 1| 36 64 | 36.00
1.1] 38 62 | 38.00 1.1] 33 67 | 33.00
1.2 | 22 78 | 22.00 1.2 | 23 77| 23.00
1.3 | 28 72 | 28.00 1.3] 25 75 | 25.00
1.4 | 20 80 | 20.00 1.4 | 16 84 | 16.00
1.5 | 15 85 | 15.00 1.5 17 83 | 17.00
1.6 | 25 75 | 25.00 1.6] 15 85 | 15.00
1.7 6 94 | 6.00 1.7 14 86 | 14.00
1.8 8 92 | 8.00 1.8 7 93| 7.00
1.9 | 10 90 | 10.00 1.9 9 91 | 9.00

2 1 99 | 1.00 2 6 94 | 6.00

(a) grid size 10 % 10 (b) grid size 100 * 100

Table 6.1.: Satisfiability of CNFs produced by cnfcktfuzz with different grid sizes

47

Ysat

100
80
80
70
60
50

40
30
20
10

Factaor

Figure 6.3.: Percentage of satisfiable CNFs produced by cnfcktfuzz

48

7. Evaluation

To evaluate our implementation we have run cnf2aig on several benchmarks. In
this chapter we will show our results and give some interpretation. We will further
see how different options can influence the behaviour and will give detailed results
on run times and the number of gates detected in each benchmark. All benchmarks
have been done on an Intel Core i7-2600 processor with 3.4 GHz. The timeout has
been set to one hour and the memory limit to 10 GB.

At first we will compare our implementation to the results from [FMO07]. Unfor-
tunately the authors give only a few benchmark results and their implementation
is not available.

7.1. Comparison to the Implementation by Fu and
Malik

We have already outlined the different approach of our implementation compared
to [FMO7] in Section 4.1. We were able to find some of the benchmarks that have
been used in their work and tested our implementation of them. The results are
in Table 7.1. We have configured cnf2aig to search for the same gates as Fu and
Malik did which are the following gates: AND, NAND, OR, NOR up to 10 inputs;
XOR, XNOR up to 4 inputs; buffer, inverter and MAJ3 gates.

The first column gives the benchmark name. The second column lists the number
of variables and clauses in the benchmark. To save space some columns contain
two values on seperate lines. The third column lists the number of found matches
in the first line and the number of matches used in the cover in the second line.
The abbreviation “() Iter.” stands for “Cyclic Iterations”. This number represents
how many times the SAT solver returned satisfiable and a cycle was found in the
solution. “< Tter.” depicts the number of times the cardinality constraint was
hardened, i.e. the SAT solver returned satisfiable and no cycle was found in the
solution but the number of true relaxation variables was greater than 0. All timings

49

Results of cnf2aig

Results of [FMO07]

Benchmark Variables | Matches .Clauses O TIter. Exec. T. | Matches .Clauses O Iter.

Clauses | in Cover in Cover < Iter. Match T. | in Cover in Cover > Iter.
T I R B 1 B R R
menn | TS0 O
e TSR0 e, O
e ST B0 e, O
e | SO0 |
e M |0 g
s 0 B0 aml o,
mgen | wW o om e wwr
o o | e S B
s | gy 0w wm g
S L TR T
N A I B
A A
dmonptaze M| 1820 Lm0
simon/Mat317 :gégg 71476 - (1] 08;’; fgg?g 64263 8
s S| g w w0
ot 26| 0 | mm oy, 0
wormimie M| M2 8O eot |2 o6

Table 7.1.: Results of cnf2aig run on benchmarks from [FMO7].

20

are given in seconds. “Match T.” is the time needed to find the matches. “Exec.
T.” is the overall execution time. Benchmarks that timed out are marked with
“oot” (out of time). For comparison we give some of the results from [FMO07] in
the table. “> Iter.” is the number of times the cardinality constraint is relaxed.

Fu and Malik do not give actual timings of the overall process. They mention
that some of their benchmarks timed out but they do not state the amount of time
given. Unfortunately cnf2aig is not able to solve all benchmarks that have been
solved by their implementation within the timeout of one hour. By looking at the
timings one can see that nearly the whole time is spent in the SAT solver. The
problem is that the CNF created is hard to solve. The majority of the CNF results
from the clauses added to maximize constraint 3, i.e. the counter. The maximum
number of relaxation variables added is 6754842 in the clauses-10 benchmark.
Applying Equation (4.3) we obtain 47283799 as an upper bound for the number
of clauses added to encode the counter. Actually 47283772 clauses are added to
encode the counter.

Compared to [FMO07] our approach on solving the MAX-SAT problem is an
under-approximation. We want to minimize the number of true relaxation var-
ialbes. Fu and Malik assure this by first allowing zero of them to be true and
iteratively loosening this constraint if the formula is unsolveable. Our approach is
to allow all of the relaxation variables to be true in the beginning. However we
set the default value for a relaxation variable to false. This results in a low num-
ber of true relaxation variables after the first iteration. We then only harden the
constraint by allowing one less relaxation variable to be true. This approach turns
out to only need a few iterations until the minimum number of true relaxation
variables is hit.

As expected our matching time is much lower. Consider for example the bench-
mark clauses-2. Our implementation takes 35 ps versus Fu and Malik’s imple-
mentation that takes 2.61 seconds.

Although our approach is different we expected the exact same results in which
gates are extracted. However our results differ considerably. In the clauses-2
benchmark we were able to extract more matches and use more clauses in the cover.
On the other hand the hanoi6 benchmark we extracted less matches and covered
less clauses. Unfortunately we do not have an explanation for these variances.
Although cnf2aig outputs more detailed numbers of what gate types are extracted
we cannot compare these numbers to the results by Fu and Malik as they do not
provide their implementation or more detailed statistics.

51

7.2. Evaluation on SAT Competition 2013
Benchmarks

We have run cnf2aig on application benchmarks from the SAT Competition 2013
[BBHJ]. In order to display compact tables we have numbered the benchmarks.
The numbering is given in Table A.1. Table 7.2 shows some of the results of running
cnf2aig on the benchmarks with the following options:

e Maximum number of X(N)OR inputs: 4
e Maximum number of (N)AND and (N)OR inputs: 10
The whole results are given in the appendix in Table B.1

Out of the 300 benchmarks 97 timed out within the timeout of 1000 seconds.
We can see that nearly the whole time is spent in the SAT solver. In 241 of the
benchmarks matches were found. The average percentage of clauses used in the
cover is 13.43%. In most cases only a few iterations are needed. The maximum

Bench- Variables Matches Clauses Cyclic It. Relaxation = Matching Exec. Time
mark Clauses in Cover in Cover Cardin. It. Variables Time SAT Time
005 4;2322 73232 50688 8 50688 0.066 Zggg
aesd 2222 1?&2 1616 12 1616 0.001 }g?g
aes6 2?28 1ggg 2000 18 2000 0.001 8822
A
bivl 52;2 6737 44571 5182 0.009 oot
biv2 52;; 6979 4271? 5193 0.009 oot
osa 13842706 0 oom
53616734 0
gril 2323?512 1800 1042 9900 0.051 oot
hitl 233?@ 2323 5324 3? 5324 0.002 }gigg
hit2 333;1) 28?2 5154 2} 5154 0.003 1;222
hwa 190800 TTRNT 9335951 0 2335251 0.331 e
md51 2?22?3 235919 368 257320 0.106 oot

Table 7.2.: Examples of cnf2aig run on SAT Competition 2013 benchmars.

52

number of cardinality iterations is 7. The number of cyclic iterations varies largely
depending on the benchmarks. While the majority of the benchmarks cause zero
cyclic iterations there exist benchmark types that need more of them. Examples are
the AProVEOT*, bivium-*, grid-strips-grid-y-*, gss-*, hitag2-* and md5_* bench-
marks. Some of these benchmarks timed out so the number of cyclic iterations
would probably rise if we increased the timeout.

The coverage varies largely. Most clauses are covered in the hw* benchmarks
with up to 98% in hwj. Three of the benchmarks ran out of memory which was
limited to 10 Gigabytes.

7.2.1. Reducing Relaxation Variables

In Section 4.3.1 we have described an approach to reduce the number of clauses
added by constraint 3. Table B.2 shows the results of the benchmarks that did not

1000

100

10

Execution time in seconds with --no-single-relax

0.1 1 10 100 1000

Execution time in seconds

Figure 7.1.: Scatter plot of running cnf2aig with and without the
--no-single-relax option.

23

time out. As in the benchmarks described above cnf2aig is set to find (N)AND
and (N)OR gates with up to 10 inputs and X(N)OR gates with up to 4 inputs.
Additionally “--no-single-relax” is passed. Figure 7.1 shows a scatter plot of
the result. As you can see the results vary.

The column “Counter Inputs” lists the number of relaxation variables. Note that
in the optimized version directly uses matches as counter inputs if possible. The
column “Clauses Saved” lists how many clauses have not been added by constraint
3 because the match is directly used in the counter. This is also the number of
how many new variables less are used in the CNF. “Exec. Time” is the overall
execution time of the non optimized version and “Optimized Exec. Time” the
overall execution time using the -—no-single-relax option.

The approach reduces the size of the created CNF. Less variables and clauses
are used. This causes a speedup of 1.50 in average. Using the optimization two
additional benchmarks could be run within the timeout of 1000 seconds. Since
there is no drawback in using this optimization it is the preferred way to use
cnflaig.

7.2.2. Number of Clauses Added

Since some of the benchmarks timed out it is interesting to investigate where the
time is spent when extracting the hardware circuit. As mentioned before nearly
the whole time is spent in the SAT solver. There are 4 reasons that may infect the
size and hardness of the created CNF:

e Constraint 1 adds clauses to encode that at most one out of some variables
may be true.

e Constraint 2 adds clauses to encode that at most one out of some variables
may be true.

e Constraint 3 adds clauses in multiple steps:

— For each clause involved in a match, add a clause to encode that at
least one of these matches is true and add a relaxation variable to each
clause.

— If the best solution is not found immediately, add a counter over the
relaxation variables.

o4

— For each iteration add a comparator
e For each cycle found add a blocking clause.

To examine which of the items mentioned above we consider which clauses are
added when executing the benchmarks. Table B.3 shows how many clauses are
added for which constraints. In average the distribution of which item above adds
how many clauses is given in the following table:

Constraint 1 | 8.45 %
Constraint 2 | 40.44 %
Constraint 3 | 6.79 %
Counter 44.32 %
Cycles 0.79 %

Obviously constraint 2 and the counter added add the most clauses. Recall that
constraint 2 is a cardinality constraint that is encoded in the naive way here. As
described in Chapter 4 this ecnoding needs () = (n—1)n/2 clauses. On the other
hand it is fast to decide by the SAT solver. By looking at the timed out benchmarks
in Table B.3 we can identify two main problems: The number of cycles found and
a huge counter encoding. Each cycle found leads to a new invocation of the SAT
solver. When the counter is huge it is often the case that the first invocation of

the SAT solver after adding the counter times out.

7.2.3. Reducing the Number of Clauses Added

The benchmarks above use a naive encoding for the at-most-one constraints 1
and 2. Since cnf2aig already implements a parallel counter to encode cardinality
constraint we implemented the option --ccg that uses this cardinality constraint
generator to encode constraints 1 and 2. Since we want to reduce the number of
clauses this approach is only used when the number of matches involved in the at-
most-one contraint succeeds a threshold ¢. For values less than ¢ the naive encoding
is used. Let n be the number of matches involved in the at-most-one constraint.

The naive encoding adds
n (n—1)n
= 1
(5) =5 7.1)

clauses. The parallel counter and a comparator add

™n — 3|logn] — 6 (7.2)

95

without --ccg with --ccg

Bench- Cycl. Card. Clauses Clauses Exec. Cycl. Card. Clauses Clauses Exec.
mark Iter. Iter. Constr. 1 Constr. 2 time Iter. Iter. Constr. 1 Constr. 2 time
005 0 0 635584 11070720 7.692 89 1 384864 354740 oot
006 0 0 635584 11070720 7.516 89 1 384864 354740 oot
bivl 97269 0 49045 856074 oot | 44063 0 33254 oot
biv2 97726 0 51242 878104 oot | 32112 1 34943 36284 oot
bivd 95881 0 50134 915510 oot | 31007 1 33949 37198 oot
bivd 97265 0 50970 867644 oot | 38286 1 34315 36252 oot
bivs 96579 0 49811 901378 oot | 36198 1 33903 36788 oot
bivé 97781 0 49769 887340 oot | 43579 0 34081 oot
biv? 56476 1 48546 886756 oot | 37278 1 33242 36473 oot
biv8 97591 0 49533 878840 oot | 35624 1 33427 36267 oot
biv) 96635 1 47614 866174 oot | 32582 1 32895 36280 oot
hit5 34 1 1254 42572 14.303 30 1 1205 36866 9.512
hit15 39 1 1100 40826 15.076 37 1 1051 37286 10.044
hit19 30 1 1236 39532 13.768 29 1 1211 37286 10.113
md51 1133 0 37233626 10728886 oot 0 0 763049 oot
md52 1117 0 37080155 10726782 oot 0 0 762767 oot
md53 1103 0 37284641 10725786 oot 0 0 762932 oot
mdb4 1116 0 37353345 10733050 oot 0 0 763397 oot
mdb5 1051 0 38573167 10998612 oot 0 0 783365 oot
md56 1079 0 38416960 10996508 oot 0 0 783086 oot
md57 1057 0 38625094 10995512 oot 0 0 783245 oot
md58 1055 0 38695014 11002776 oot 0 0 783713 oot
md59 1052 0 38956497 11006716 oot 0 0 784190 oot

Table 7.3.: Evaluation of the --ccg option.

clauses. When more than 13 matches are involved in the constraint the latter ap-
proach adds less clauses. Since the naive encoding is more efficient to solve we have
decided to use the parallel counter encoding when n > 15. The results are given in
Table 7.3.Note that the benchmarks were run with the option -—-no-single-relax
switched on. Only benchmarks where the number of clauses added differs are
shown. This is only the case for 23 benchmarks. The results of the bechmarks
005 and 006 are very surprising. Using the —--ccg option causes cnf2aig to run
into a lot of cycles and the benchmarks time out. All benchmarks not shown here
produce the same results as when run without --ccg.

7.2.4. Blocking Strongly Connected Components

As described in Section 4.2 cnf2aig has an option --scc to block strongly con-
nected components instead of elementary cycles in the graph of matches. The com-
plete results of this approach are shown in Table B.4. Table 7.4 shows interesting
benchmarks.

We can see that with the —--scc option enabled cnf2aig can solve three ad-
ditional benchmarks within the timeout. These benchmarks are the grid-strips*

o6

Bench- Variables Matches Clauses Cyclic It. Cyclic It. (scc) Exec. Exec.

mark Clauses in Cover in Cover Cardin. It. Cardin. It. (scc) Time Time (scc)
aes6 2?25 1(;28 2000 62 18 2.747 0.099
aprl 22;2? lgggz 22004 1602 55? 472.610 413.695
OO0 s DO s e
o JOMO0 O I
gri3 Bg;;égg ?g(l)g 13020 6181 75? 116.440 oot
gre 1468821) 8 0 8 8 0.443 0.431
hitl 2333;) 252481 5280 22 3? 14.072 15.603
hit8 33222 2351)(2) 5179 1? 18 13.864 0.283

Table 7.4.: Examples of cnf2aig --scc run on SAT Competition 2013 benchmars.

benchmarks. They all need many cyclic iterations but less with the -—scc option
enabled. In general the option does not influence runtime much. There are cases
where the option causes a cardinality iteration. This increases runtime because the
counter is created. Although this option looks promising for some sort of bench-
marks it generally decreases performance. Considering only the benchmarks that
did not timeout in both cases the average runtime increased from 35.45 seconds
to 35.66. The average number of cyclic iterations increased from 6.96 to 12.74 and
the average number of cardinality iterations from 0.33 to 0.42.

7.2.5. Allow Melting Literals

One of the reasons that makes it hard for Lingeling to solve the SAT problem is that
nearly all variables in the CNF get freezed. We use the iterative feature of Lingeling.
When we call the SAT solver it can use knowledge about the problem that it
gathered in previous runs, e.g. learned clauses. However, since we may add blocking
clauses when a cycle has been found, we need to freeze all variables representing
matches in the CNF. This prevents Lingeling from removing the variable when it
realizes that it is not needed anymore. Note that nearly the whole CNF consists
of match variables. Only the internal variables of the counter do not have to be
freezed. The outputs of the counter do have to be freezed.

We could create a new instance of the SAT solver each time we call it. Then
freezing the match variables would not be necessary. However, this prevents Lin-
geling from learning across several invocations. We use a different approach. We

o7

CO 1O Ul W N

solve (SatSolver solver):

solver.solve ()

if (conflict limit hit):
SatSolver clone = lglclone (solver)
lglsetopt (clone, 7clim”, —1);
clone. meltall ()
clone.solve ()
unclone (clone , solver)

Listing 7.1: Algorithm using the clim option of Lingeling.

start Lingeling with a conflict limit set. If Lingeling cannot solve the problem be-
fore it reaches this limit of conflicts it returns. If so we create a clone the SAT
solver. We then tell the SAT solver that it may remove any variables (all variables
are melted) and invoce this clone. This clone may now be able to solve the prob-
lem much faster because it can do optimizations that the freezing of most of the
variables prevented.

In Chapter 4 we have shown the algorithm that uses the SAT solver to construct
an acyclic maximum cover (Listing 4.3). When the clim option is used two things
change. First the clim option is set on the SAT solver W. This causes the solver
to return when it hits the configured number of conflicts. Second, we have to alter
the solve function. In this function we create a clone of the solver if it hits the
conflict limit. The function is shown in Listing 7.1.

The results are given in Table 7.5. Note that the —no-single-relax option is used
to. The conflict limit is set to 100. The table only shows the 149 benchmarks where
the conflict limit was hit at least once. A lot of the benchmarks only hit the conflict
limit once. In nearly all cases this conflict limit is reached in the first call after the
counter has been added. As you can see the option provides no real benefit. Only
a few benchmarks, e.g. the F0* benchmarks, benefit from the option.

o8

Bench- Variables Clauses Clim hit Exec. Time Exec. Time

mark with clim 100 without clim
pip7 39434 887706 1 50.709 55.379
dlx1 106013 1598301 2 oot 977.825
aaal 25631 142227 4 347.034 105.582
aaa2 50277 283903 3 853.835 305.258
aaad 53919 308235 4 oot 312.359
aesd 708 2664 6 7.502 1.596
aesh 708 2664 6 7.428 1.594
aprl 6196 22741 15 oot 317.949
apr2 3114 10827 21 oot 75.503
aprb 7729 29194 8 oot 442.341
e01 15364 2210893 1 564.979 614.493
e02 15364 2133873 1 563.236 604.189
e03 10420 395383 1 213.021 229.699
e04 13574 1301188 1 400.315 434.716
e05 9044 295685 1 144.723 155.913
hitl 2260 29903 6 73.672 15.122
hit2 2271 30273 10 116.023 14.115
hit3 2255 29932 24 210.830 14.298
hit4 2249 29810 28 257.880 14.991
hits 2230 29319 10 121.843 14.303
hit6 2335 31221 6 75.914 14.437
hit9 2294 30374 9 116.060 15.807
hit10 2309 30899 7 85.114 14.135
hit11 2282 30268 12 136.364 15.632
hit12 2273 29849 12 154.172 14.690
hit13 2273 30142 1 12.196 13.690
hit14 2300 30362 11 127.218 13.241
hit15 2262 29727 28 252.866 15.076
hit16 2269 30014 18 210.902 15.564
hit17 2316 31013 8 103.547 14.829
hit18 2328 30885 3 37.928 14.423
hit19 2273 30117 5) 64.040 13.768
hit20 2295 30490 4 49.383 14.426
hit21 2331 31022 4 54.193 15.999
hw10 45662 133180 1 246.462 268.277
ndh1l 4020 466486 1 13.024 14.363
ndh2 4466 542457 1 15.921 16.972
pO1 30447 126201 2 6.738 3.792
pbb 81651 358063 2 68.181 36.732
pb6 140866 627295 1 17.878 21.874
pbl2 137600 614115 2 70.994 37.298
pbl3 144485 647355 1 38.210 41.231
pbl4 145862 654003 3 124.324 44.745
pbl6 145943 654778 2 189.733 109.058
pbl7 137243 614791 1 172.031 185.368
pbl8 145259 653473 2 297.939 173.217
pb19 146595 659920 1 123.817 134.998
pb20 247418 1134514 2 223.076 148.542
pb21 236292 1080258 3 88.367 32.275
pb22 239734 1096970 2 61.149 30.383
pb24 216460 988171 1 175.779 188.988
rbe 2220 148488 1 3.875 4.156
rpo 2384 177941 1 4.056 4.410
veld 96177 1814189 1 373.178 409.745

Table 7.5.: Examples of cnf2aig --clim 100 run on SAT Competition 2013
benchmars.

29

8. Conclusion and Future Work

We have shown that it is possible to partly reconstruct logic circuit structures from
CNF. If the type of gates are known and the algorithms can detect all gate types
used in the circuit then the whole circuit can be reconstructed. We have combined

different approaches on the problem and provided a general strategy to solve the
partial MAX-SAT problem.

Detailed benchmarks show that it is possible to find circuit structures even if the
CNF has not been encoded from a circuit. This may allow circuit SAT techniques
to non circuit encoded CNFs.

The benchmarks of cnf2aig have shown that solving the partial MAX-SAT
problem by encoding cardinality constraints using a parallel counter is possible
and applicable to many inputs. Although the approach scales linearly it produces
a hard problem which leads to a non solvable problem for big inputs within a
reasonable amount of time.

Further optimization potential exists. Other techniques for solving the partial
MAX-SAT problems will probably give better results. Further there exist more
efficient at-most-one encodings like the two product encoding introduced in [Chel0)].

Another interesting research topic would be to port the approach described
in this work to Quantified Boolean Formulas (QBF). QBFs are an extension to
Boolean formulas and can be used to encode circuits as well.

60

A. Abbreviations for SAT
Competition 2013 Benchmarks

The following table shows the abbreviations for the SAT Competition 2013 ap-
plication benchmarks. These short names are used in the tables presenting our
evaluation results.

Table A.1.: Numbering of SAT Competition 2013 benchmars.

Abbreviation = Bechmark Name

005 005

006 006

pipl 10pipe_k

pip2 10pipe_q0-k

pip3 11pipe_11_ooo0

pip4 11pipe_q0_k

pip5 Tpipe_k

pip6 8pipe_k

pip7 8pipe_q0_k

dix1 9dlx_vliw_at_b_iq4

dlx2 9dlx_vliw_at_b_iq9

pip8 9pipe_k

vlil 9vliw_m_9stages_iq3_C1_bugl0

vli2 9vliw_m _9stages_iq3_-C1l_bugl

vli3 9vliw_m_9stages_iq3_C1_bugd

vli4 9vliw_m _9stages_iq3_-C1l_bugb

vlib 9vliw_m_9stages_iq3_C1_bug7

vli6 9vliw_m_9stages_ig3-C1_bug8

vIi7 9vliw_m_9stages_iq3_C1_bug9

aaal aaailO-planning-ipc5-pathways-13-stepl7
aaa2 aaail0O-planning-ipc5-pathways-17-step20
aaald aaailO-planning-ipc5-pathways-17-step21
aaad aaailO-planning-ipc5-pipesworld-12-step15
aaab aaailO-planning-ipc5-TPP-21-stepl1
aaab aaailO-planning-ipc5-TPP-30-stepl1
acgl ACG-15-10p0

acg2 ACG-15-10p1

acg3 ACG-20-5p0

acgd ACG-20-5p1

aesl aes_16_10_keyfind_3

aes2 aes_24_4 keyfind_2

aes3 aes_24 4 keyfind 4

aes4 aes_32_3 _keyfind_1

aesd aes_32_3_keyfind_2

aes6 aes_64_1_keyfind_1

aprl AProVEQ7-02

61

Numbering of SAT Competition 2013 benchmars (continued).

Abbreviation = Bechmark Name

apr2 AProVEQ7-03

apr4d AProVEQT7-11

aprb AProVEQT7-27

apr6 AProVE09-06

arcl arcfour_initialPermutation_5_32

arc2 arcfour_initialPermutation_6_14

arc3 arcfour_initialPermutation_6_15

arc4 arcfour_initialPermutation_6_16

arch arcfour_initialPermutation_6_24

arc6 arcfour_initialPermutation_6_40

arc? arcfour_initialPermutation_6_56

arc8 arcfour_initialPermutation_6_64

b041 b04_s_2_unknown_pre

b042 b04_s_unknown_pre

b043 b04_s_unknown

bivl bivium-39-200-0s0-0x163b785faadbfb1b3b894a9206768a6c3d5d6f038b3797c4c2-99
biv2 bivium-39-200-0s0-0x1b770901581bbb2863c83835583d7cedelfafd907076320542-34
biv3 bivium-39-200-0s0-0x28df9231b320bd56dfb68bfc7c3f0ca20dbae6blebab535ad91-98
biv4 bivium-39-200-0s0-0x53e7622aad02b083b53dcd6ada76f54a150ceb996ealdfa300-63
bivs bivium-39-200-0s0-0x5fa955de2b4{64d00226837d226¢c955de4566ce95f660180d7-30
biv6 bivium-39-200-0s0-0xdcfb6ab71951500b8e460045bd45afee15¢87e08b0072eb174-43
biv7 bivium-40-200-0s0-0x66b619d7b8e447710bf43b794ded6cfafle75bb8a947e14c78-50
biv8 bivium-40-200-0s0-0x92fc13b11169afbb2efl1a684d9fe9al9e743cd6aabce23fb5-19
biv9 bivium-40-200-0s0-0xd447¢33176b6b675fd5f8dc3abdedad6569dc34eedf37da020-6
blol blocks-blocks-36-0.130-NOTKNOWN

blo2 blocks-blocks-36-0.150-NOTKNOWN

bunl b_unsat_pre

bun2 b_unsat

cou countbitssrl032

ctll ct1_.3082_415_unsat_pre

ctl2 ct1_.3082_415_unsat

ctl3 ct1_.3791_556_unsat

ctl4 ct1-4201_555_unsat_pre

ctlb ct1_.4201_555_unsat

ctl6 ct1.4291_567_10_unsat_pre

ctl7 ct1.4291_567_10_unsat

ctl8 ct1.4291_567_11_unsat_pre

ctl9 ct1.4291_567_11_unsat

ctl10 ct1.4291_567_12_unsat_pre

ctlll ct1-4291_567_12_unsat

ctl12 ct1.4291_567_1_unsat_pre

ctll3 ct1-4291_567_1_unsat

ctll4 ct1_4291_567_2_unsat_pre

ctlls ct1.4291_567_2_unsat

ctll6 ct1_4291_567_5_unsat

ctll7 ct1.4291_567_6_unsat_pre

ctll8 ct1_4291_567_6_unsat

ctl19 ct1.4291_567_7_unsat_pre

ctl20 ct1-4291_567_7_unsat

ctl21 ct1.4291_567_8_unsat_pre

ctl22 ct1.4291_567_8_unsat

ctl23 ct1_4291_567_9_unsat_pre

ctl24 ct1.4291_567_9_unsat

datl dated-10-11-u

dat2 dated-10-13-u

dat3 dated-5-13-u

dat4 dated-5-19-u

e0l EOON23

e02 E00X23

62

Numbering of SAT Competition 2013 benchmars (continued).

Abbreviation = Bechmark Name

e03 E02F20

e04 E02F22

e05 E04F19

esa esawn_uw3.debugged

gril grid-strips-grid-y-3.045-NOTKNOWN
gri2 grid-strips-grid-y-3.055-NOTKNOWN
gri3 grid-strips-grid-y-3.065-SAT

gre grieu-vmpc-31

gssl gss-17-s100

gss2 gss-18-s100

gss3 gss-19-s100

gssd gss-20-s100

gssb gss-21-s100

gss6 gss-22-s100

gss7 gss-23-s100

gss8 gss-24-s100

gss9 gss-25-s100

gusl gus-md5-08

gus2 gus-md5-11

hitl hitag2-10-60-0-0x2201a94920a2d2e-8
hit2 hitag2-10-60-0-0x8edc44db7837bb{-65
hit3 hitag2-10-60-0-0xa04d664a73eac4d-66
hit4 hitag2-10-60-0-0xa360966c6eb75c4-62
hit5 hitag2-10-60-0-0xac23f1205{76343-96
hit6 hitag2-10-60-0-0xb7b72dfef34c17b-39
hit7 hitag2-10-60-0-0xbc15b17d0353413-10
hit8 hitag2-10-60-0-0xdf7fa6426edec07-17
hit9 hitag2-10-60-0-0xe14721bd199894a-99
hit10 hitag2-10-60-0-0xe6754daf48162bf-46
hitll hitag2-10-60-0-0xfee9637399d85a2-78
hit12 hitag2-7-60-0-0x39{f85d4ef127de-52
hit13 hitag2-7-60-0-0x5{8ecOffadb15c6-25
hit14 hitag2-7-60-0-0xc048b9ebaec66e9d-32-SAT
hit15 hitag2-7-60-0-0xe8fa35372ed37e2-80
hit16 hitag2-7-60-0-0xe97b5{1bee04d70-47
hitl7 hitag2-8-60-0-0x880693399044612-25-SAT
hit18 hitag2-8-60-0-0xa3b8497b8aad6d7-42
hit19 hitag2-8-60-0-0xb2021557d918860-94
hit20 hitag2-8-60-0-0xdcdbc8bf368ee73-37
hit21 hitag2-8-60-0-Oxfbalad1b5dfd7{7-52
hwl hwmeccl0-timeframe-expansion-k45-pdtpmsgoodbakery-tseitin
hw?2 hwmecc10-timeframe-expansion-k45-pdtvissoapl-tseitin
hw3 hwmccl0-timeframe-expansion-k50-pdtpmsns2-tseitin
hw4 hwmccl2miters-nonopt-6s126

hwb hwmeccl2miters-nonopt-6s139

hw6 hwmeccl2miters-nonopt-6s20

hw7 hwmeccl2miters-nonopt-bob12m06
hw8 hwmccl2miters-nonopt-bob12s06

hw9 hwmeccl2miters-opt-6s103

hw10 hwmccl2miters-opt-6s133

hwll hwmccl2miters-opt-6s137

hw12 hwmccl2miters-opt-6s139

hwl3 hwmeccl2miters-opt-6s153

hwl4 hwmeccl2miters-opt-6s165

hwl5 hwmccl2miters-opt-6s166

hw16 hwmeccl2miters-opt-6s19

hwl7 hwmeccl2miters-opt-6s20

hwl8 hwmccl2miters-opt-6s9

hw19 hwmccl2miters-opt-beempgsol2bl

63

Numbering of SAT Competition 2013 benchmars (continued).

Abbreviation = Bechmark Name

hw20 hwmeccl2miters-opt-beempgsol5b1
hw21 hwmccl2miters-opt-bob12m04
hw22 hwmccl2miters-opt-bob12m06
hw23 hwmeccl2miters-opt-bob12s02
hw24 hwmeccl2miters-opt-bob12s04
hw25 hwmeccl2miters-opt-bob12s06
itol itox_vc1033

ito2 itox_vc1130

kun k_unsat

max1 maxor064

max2 maxorl28

max3 maxxor032

max4 maxxor064

md51 md5_47_1

md52 md5_47_2

md53 md5_47_3

mdb54 md5-47.4

md55 md5_48_1

md56 md5_48_2

md57 md5_48_3

md58 md5_48_4

md59 md5_48_5

minl minandmaxor128

min2 minxor128

min3d minxorminand064

min4 minxorminand128

ndhl ndhf _xits_ 19 _UNKNOWN
ndh2 ndhf_xits_ 21_SAT

nosl nossum-sha-1128-001

nos2 nossum-sha-1128-002

nos3 nossum-sha-1128-003

nos4 nossum-sha-1128-004

nosb nossum-sha-1128-005

nos6 nossum-sha-1128-006

nos7 nossum-sha-1128-007

nos8 nossum-sha-1128-008

nos9 nossum-sha-1128-009

nos10 nossum-sha-1128-010

nosll nossum-sha-1144-001

nosl2 nossum-sha-1144-002

nosl3 nossum-sha-1144-003

nosl4 nossum-sha-1144-005

noslb nossum-sha-1144-007

nosl6 nossum-sha-1144-008

nosl17 nossum-sha-1144-009

nosl8 nossum-sha-1160-001

nosl19 nossum-sha-1160-002

nos20 nossum-sha-1160-003

nos21 nossum-sha-1160-007

nos22 nossum-sha-1160-008

nos23 nossum-sha-1160-009

nos24 nossum-shal-23-64-003
nos25 nossum-shal-23-64-004

nos26 nossum-shal-23-80-001

nos27 nossum-shal-23-96-003
nos28 nossum-shal-23-96-007

ope openstacks-sequencedstrips-nonadl-nonnegated-os-sequencedstrips-p30_3.085-SAT
pO1 p01.1b_05

parl partial-10-11-s

64

Numbering of SAT Competition 2013 benchmars (continued).

Abbreviation = Bechmark Name

par2 partial-10-17-s

par3 partial-10-19-s

pard partial-5-13-s

parb partial-5-15-s

par6 partial-5-17-s

par7 partial-5-19-s

pbl pb-200-03_1b_01

pb2 pb-200-03_1b_02

pb3 pb-200-03_1b_03

pb4 pb-200-05_1b_00

pb5 pb-200-10_1b_15

pb6 pb-300-01_1b_00

pb7 pb-300-02_1b_06

pb8 pb-300-02_1b_07

pb9 pb-300-03_1b_13

pb10 pb-300-04_1b_05

pbll pb-300-04_1b_06

pb12 pb-300-05_1b_11

pb13 pb-300-05_1b_16

pbl14 pb-300-05_1b_17

pb15 pb-300-06_1b_02

pbl6 pb-300-09_1b_07

pbl7 pb-300-10_1b_06

pb18 pb_300_10_1b_12

pb19 pb-300-10_1b_13

pb20 pb-400-02_1b_15

pb21 pb-400-03_1b_05

pb22 pb-400-03_1b_07

pb23 pb-400-04_1b_19

pb24 pb-400-05_1b_00

pb25 pb-400-09_1b_02

pb26 pb-400-09_1b_03

pb27 pb-400-09_1b_04

pb28 pb-400-09_1b_05

pb29 pb-400-10-1b_00

pos post-cbmc-zfcp-2.8-u2

qqu q-query_3_L70_coli.sat

rbc rbcl xits_14_SAT

rpo rpoc_xits_15_SAT

satl SAT _dat.k100

sat2 SAT _dat.k65

sat3 SAT _dat.k80

satd SAT _dat.k85

slpl slp-synthesis-aes-bottom13

slp2 slp-synthesis-aes-bottom14

slp3 slp-synthesis-aes-top25

slp4 slp-synthesis-aes-top26

slpb slp-synthesis-aes-top27

smt1 smtlib-qfbv-aigs-ext_con_032_008_0256-tseitin

smt2 smtlib-qfbv-aigs-1fsr_004_127_112-tseitin

smt3 smtlib-qfbv-aigs-servers_slapd_a_vc149789-tseitin

tot total-10-15-s

tral transport-transport-city-sequential-25nodes-1000size-3degree-100mindistance-3trucks-
10packages-2008seed.020-NOTKNOWN

tra2 transport-transport-city-sequential-25nodes-1000size-3degree-100mindistance-3trucks-
10packages-2008seed.030-NOTKNOWN

tra3 transport-transport-city-sequential-25nodes-1000size-3degree-100mindistance-3trucks-

10packages-2008seed.040-NOTKNOWN

65

Numbering of SAT Competition 2013 benchmars (continued).

Abbreviation = Bechmark Name

trad transport-transport-city-sequential-25nodes-1000size-3degree-100mindistance-3trucks-
10packages-2008seed.050-NOTKNOWN

trab transport-transport-city-sequential-25nodes-1000size-3degree-100mindistance-3trucks-
10packages-2008seed.060-SAT

tra6 transport-transport-city-sequential-35nodes-1000size-4degree-100mindistance-4trucks-
14packages-2008seed.020-NOTKNOWN

tra7 transport-transport-city-sequential-35nodes-1000size-4degree-100mindistance-4trucks-
14packages-2008seed.030-NOTKNOWN

tra8 transport-transport-city-sequential-35nodes-1000size-4degree-100mindistance-4trucks-
14packages-2008seed.040-NOTKNOWN

tra9 transport-transport-three-cities-sequential-14nodes-1000size-4degree-100mindistance-
4trucks-14packages-2008seed.020-NOTKNOWN

tralO transport-transport-three-cities-sequential-14nodes-1000size-4degree-100mindistance-
4trucks-14packages-2008seed.030-NOTKNOWN

trall transport-transport-two-cities-sequential-15nodes-1000size-3degree-100mindistance-3trucks-
10packages-2008seed.020-NOTKNOWN

tral2 transport-transport-two-cities-sequential-15nodes-1000size-3degree-100mindistance-3trucks-
10packages-2008seed.030-NOTKNOWN

tral3 transport-transport-two-cities-sequential-15nodes-1000size-3degree-100mindistance-3trucks-
10packages-2008seed.040-SAT

ucg UCG-15-10p1

url UR-15-10p0

ur2 UR-15-10p1

ur3 UR-20-10p1

urd UR-20-5p0

urb UR-20-5p1

util UTI-15-10p1

uti2 UTI-20-10p0

uti3 UTI-20-10p1

uti4 UTI-20-5p1

vell velev-npe-1.0-9d1x-b71

vel2 velev-pipe-sat-1.0-b7

vel3 velev-pipe-sat-1.0-b9

veld velev-vliw-uns-4.0-9

vmpl vmpc-29

vmp2 vmpc-30

vmp3 vmpc_32.renamed-as.sat05-1919

vmp4 vmpc_33

vmp5b vmpc-_34

vmp6 vmpc-35.renamed-as.sat05-1921

vmp7 vmpc_36.renamed-as.sat05-1922

zfc zfcp-2.8-u2-nh

66

B. Benchmark Results

Table B.1 shows the results of running cnf2aig on the benchmarks with the fol-
lowing options:

e Maximum number of X(N)OR inputs: 4
e Maximum number of (N)AND and (N)OR inputs: 10

See Section 7.2 for additional information and interpretation.

Table B.1.: Results of cnf2aig run on SAT Competition 2013 benchmars.

Bench- Variables Matches Clauses Cyclic It. Relaxation = Matching Exec. Time

mark Clauses in Cover in Cover Cardin. It. Variables Time SAT Time
005 4;2322 7323(8) 50688 8 50688 0.066 Zgég
006 4;2322 73233 50688 8 50688 0.067 Zg;g
PPL ggoiare gi 10601 L L
pip2 20;;3?? o787 2 19195 0.759 oot
pip3 4123222 gggg 22379 8 22379 1.142 gggg
pip4 3%83;3; (62 2 24145 1.281 oot
pips o000 S 10516 0 10516 0.032 o
PP ygoprs i 4790 o Wm0 ook j
PPTgors sy 0T w00 Log
dlx1 léggg(l)? 10062 (1] 47469 0.109 oot
dlx2 géggggg 25518 (1) 133851 1.016 oot
PP ggimso o 1972 o lmL om0 o
vlil 132351;(132; gg;gg 149160 8 149160 31.102 532;2
vli2 132$éé2§ gg;gg 149160 8 149160 30.973 53223
vli3 1324212;?; gg;ig 149137 8 149137 30.595 532%
vlid 132351;;3? gg;gg 149160 8 149160 30.450 53222

67

Results of cnf2aig run on SAT Competition 2013 benchmars (continued).
Bench- Variables Matches Clauses Cyclic It. Relaxation = Matching Exec. Time

mark Clauses in Cover in Cover Cardin. It. Variables Time SAT Time
vli5 132351;(1;11(7) gg;gg 149134 8 149134 30.829 5322(1)
vli6 lgggéézg gg;gg 149160 8 149160 37.034 53121
vli7 1323;(1321 gg;gg 149177 8 149177 30.844 nggg
ot ESEE D um o 2
wa ETBD a0 mm om0
g SO0 O um oo S5
at SS9 050 O s oo
s O a0n O om oo
aaab 23;3;38 8318 (i 41305 0.104 oot
acgl 1?2??23 RS (_i) 279786 0.143 oot
acg2 liggggf 82565 (1] 281943 0.141 oot
r2ATIO oasss O ams oies oo
acgd 13?3%23 94282 ? 320950 0.166 oot
B B L Y 0y o 018
aes2 5322 gg 1184 8 1184 0.000 8822
aes3 532(8] gzg 1184 8 1184 0.001 8333
aesd 2;2[% 1?&2 1616 12 1616 0.001 }g?;
aesb 2222 1?&2 1616 12 1616 0.001 }g?;
aes6 2?23 1ggg 2000 18 2000 0.001 8822
iz SIS0y L1260
aprd igggggi 3460439 g 3970037 1.307 oot
aprb 2;;32 25101 1773 28992 0.008 oot
apr6 22;?23 250690 8 261884 0.093 oot
i BB 00 e o
wa B8 0o 0 o a7
R
w B0 o8 o ome OE
wa B0 o0 o am O

68

Results of cnf2aig run on SAT Competition 2013 benchmars (continued).
Bench- Variables Matches Clauses Cyclic It. Relaxation = Matching Exec. Time

mark Clauses in Cover in Cover Cardin. It. Variables Time SAT Time
BT e O
we M0 o0 o e O
I
D R BT
I T TP
R
bivl 52;2 6737 44571 5182 0.009 oot
biv2 52;; 6979 4271? 5193 0.009 oot
biv3 5?;3 e 5369’i 5324 0.005 oot
biv4 5?1;11 6911 5102? 5188 0.009 oot
bivs 5212 6874 5911? 5265 0.009 oot
biv6 523;1 6878 4803? 5201 0.009 oot
biv7 SZZ; 6725 5956? 5220 0.004 oot
biv8 5?1?7)(2) 6775 4884? 5191 0.009 oot
biv9 52;3 6675 532451; 5192 0.008 oot
A B T B SR
wa STE o0 o m
R
wa AET 00D am
ow 0T s 0 sam oo O
P
R T S S S P 11
T
R T
a0 o0 o m
S
R E B S R
P
P P

69

Results of cnf2aig run on SAT Competition 2013 benchmars (continued).
Bench- Variables Matches Clauses Cyclic It. Relaxation = Matching Exec. Time

mark Clauses in Cover in Cover Cardin. It. Variables Time SAT Time
GO s 0 0 0 0 oo oy
Gl i 0 0 0 0 ooz oG
@Az 0 0 0 0 ool o
Q3o 0 0 0 0 000 G
ae o 0 0 0 0000 G
S 0 0 0 0000
S0 0 0 0 0009
AT i 0 0 0 0 0009 ay
QS o7 0 0 0 00009 g
A9 0 0 0 0 0 om3 g
Q0o 0 0 0 0 oo
G2l 0 0 0 0 ool g
G2y 0 0 0 0 oo oo
23 o 0 0 0 0 omm i
2t ey 0 0 0 0 ooz g
datl (15334812(1] 98644 (1] 196992 0.089 oot
dat2 é?gggf 124944 ? 249492 0.117 oot
dat3 égg?g? s (_i) 191742 0.086 oot
datd ooco0s 14209 v 284427 0.175 oot
O ppiomos im0 0% R T L by
0 s a0 0% I o
€03 Béggzg gggg 22960 (1) 22960 0.210 gg?gi;
O goniss 1o 20668 posmses oo oy
O sy g 19640 P e oue gl
osa. 13842706 0 oom
53616734 0
gril 2?28;;2 1800 1042 9900 0.051 oot
gri2 33211%32 2200 72% 12100 0.061 oot
gri3 33%322 2600 75? 14300 0.071 oot
B L6000 0 0 0 0020 g

70

Results of cnf2aig run on SAT Competition 2013 benchmars (continued).
Bench- Variables Matches Clauses Cyclic It. Relaxation = Matching Exec. Time

mark Clauses in Cover in Cover Cardin. It. Variables Time SAT Time
gssl 3}5’}2 SRAEE 6253 94052 0.016 oot
gss2 3}132:}1 40251 616(2) 94205 0.016 oot
gss3 Sigig 40729 6168 94484 0.016 oot
gssd gi‘;’zz 40923 6063 94684 0.017 oot
gssb 3;?(1)2 41255 6083 95040 0.016 oot
gss6 g;?}g 41257 6133 95046 0.017 oot
gssT S;Z(l)(l] 41451 6088 95336 0.016 oot
gss8 3;33; 41669 6003 95671 0.017 oot
gss9 gé?:ﬁ 42062 5978 96047 0.016 oot
gusl 222283 261107 8 226171 0.099 oot
gus2 222?2; 261657 8 226658 0.098 oot
w20 A, R L
hit2 3(%;;; 2822 5154 21 5154 0.003 gggg
hit3 2;3;2 282? 5355 3? 5355 0.002 i?gg;
TR R R 0 g o BT
hit5 233?8 2;2’; 5277 251; 5277 0.003 E??é
WPRR BT R B g o 62
hit7 3(2)33; 2523 5261 1? 5261 0.003 };ggi
ws 20 2O B e oo 028
wo 2M A, ® s e 1000
hit10 33233 2;(7)3 5267 2? 5267 0.003 1???{2‘)
hit11l 33322 2g§§ 5408 3? 5408 0.002 ﬁggg
hit12 23;;@ 2;22 5437 4? 5437 0.002 Eggg
hit13 3(2)?13 2égé 5261 23 5261 0.002 833(7)
hit14 3(2]222 2323 5296 2411 5296 0.002 ﬁ?i;
hit15 2332? 251)2(8) 5337 3? 5337 0.002 }gg?é
e 200, © w1519
war S I
hit18 3322? 23;2 5299 Qé 5299 0.003 83?3

71

Results of cnf2aig run on SAT Competition 2013 benchmars (continued).
Bench- Variables Matches Clauses Cyclic It. Relaxation = Matching Exec. Time

mark Clauses in Cover in Cover Cardin. It. Variables Time SAT Time
hit19 3(2)?’;3 Qégg 5337 251; 5337 0.002 ﬁ?gi
hit20 33238 23);13 5331 3? 5331 0.002 igg?g
hit21 3?335 Zégg 5489 2; 5489 0.002 }gég?
hwl 23223? LS ? 161382 0.042 oot
hw?2 igggg? 104818 ? 313768 0.063 oot
hw3 22222; 55065 (1) 165138 0.040 oot
hw4 2;22332 ;;Zi}; 2335251 8 2335251 0.331 1é;i$
hwb 1(;;?13;2 gggggg 1197279 8 1197279 0.250 ggig
hw6 12;3?2 ggggg 109077 8 109077 0.026 gggg
hw7 lggfggé 289303 (.i 867903 0.227 oot
hw8 123?2?2 289303 (1] 867903 0.229 oot
hw9 23?2?82 441370 ? 1324109 0.321 oot
A
hwill 28?33;; 458615 (1) 1375844 0.350 oot
g SO0 O R P
hwl3 12?2;; 30587 (1) 91760 0.023 oot
hwl4 zggg gggg 7065 8 7065 0.002 8332
hwl5 12332 jﬁg; 12486 8 12486 0.002 882?
i S 1m0 O s om0
i SO BTR 0 g oo 058
s OB 205 0 e oo 0
hw19 21;2? iggﬂ 39033 g 39033 0.008 8?(2)2,’
hw20 21;22 iggi; 39036 8 39036 0.007 813;
hw21 1232(1582 S (i 897338 0.258 oot
hw22 1323232 326117 ? 978347 0.216 oot
w2108 0 swowm om0
hw24 12;1?138; 295385 ? 886151 0.234 oot
hw25 1;12;3;12 326036 (1) 978105 0.208 oot
itol éigggg 286725 323 245373 0.749 oot

72

Results of cnf2aig run on SAT Competition 2013 benchmars (continued).
Bench- Variables Matches Clauses Cyclic It. Relaxation = Matching Exec. Time

mark Clauses in Cover in Cover Cardin. It. Variables Time SAT Time
ito2 ii?igg SRR 8 310183 0.814 oot
o B0 0 0 ame
max1 1;?332 ggggg 88659 8 88659 0.016 8;12,17
o 20005 IG5 O s ooe 2
max3 ég?jg Zgg; 23001 8 23001 0.003 83?2
max4 12;823 ;gggg 89049 8 89049 0.016 8383
md51 2?2?1);1 235919 363 257320 0.106 oot
md52 2?2(5383 235839 403 257220 0.105 oot
md53 2?2?2;1 235899 383 257292 0.103 oot
md54 233282 235979 413 257308 0.103 oot
md55 2?8222 241537 353 262850 0.108 oot
md56 2?3233 241457 358 262750 0.109 oot
md57 zggggg 241517 368 262822 0.107 oot
md58 23332; 241597 34é 262838 0.104 oot
md59 2?32?2 241697 353 262902 0.106 oot
R 0 smer o 31
min2 12342123 ggggg 106704 8 106704 0.016 8;;3
min3 1411835513 32;2} 80193 8 80193 0.013 8323
w026 © s oo 16D
P
N
nosl 122;22 6§gé 7424 8 7424 0.012 (1)2?2
nos2 12[6%4212 6;82 7424 8 7424 0.012 ég?é
nos3 122;22 6;182 7424 8 7424 0.013 (1)(5]?2
nos4 123;?12 6283 7424 8 7424 0.012 (1)2?2
T T
s DS e, 0w oo LT
st AR, 0 o L8
nos8 122;32 Gggé 7424 8 7424 0.012 ég?g

73

Results of cnf2aig run on SAT Competition 2013 benchmars (continued).
Bench- Variables Matches Clauses Cyclic It. Relaxation = Matching Exec. Time

mark Clauses in Cover in Cover Cardin. It. Variables Time SAT Time
nos9 12;5%4212 Gggg 7424 8 7424 0.012 (1)(5]4112
nos10 122;4212 62821 7424 8 7424 0.012 ég;g
nosll 122;22 G;ng 7424 8 7424 0.012 égﬁ
sz 12, © e oon L9
T I 0 o oon 1092
nosl4 122;22 6382 7424 8 7424 0.012 (l);ji
N L 0 e oz 103
T L YR T PR .
nosl7 12%%22 Gggg 7424 8 7424 0.012 (1)(5]?;
nosl18 122;;3 63821 7424 8 7424 0.011 (1)(5)(133
L 0O e o 10
nos20 122‘;;2 6;82 7424 8 7424 0.012 égzé
nos21 123;22 6;18;1 7424 8 7424 0.012 (1)(;11;
nos22 122;23 6382 7424 g 7424 0.013 (1)2411?
N I T P .
nos24 13;%?2 7’;;(6) 8192 8 8192 0.012 é;g?
w2 T 0w ogs LIS
nos26 133222 7;;3 8192 8 8192 0.012 (1);;?
nos27 1332§§ 7;23 8192 8 8192 0.013 éégg
eSO 0 ae om0
ope 12121;1(1;(1)? 10200 246411 20400 0.036 oot
o BT 0 g0
parl é?gg?i 135508 (1] 265950 0.127 oot
par2 1421832(2)(8] A (i 414900 0.271 oot
par3 lggg;gg 233292 ? 458008 0.325 oot
pard 515481;18’;? 131311 (1] 257861 0.124 oot
pard 1312?33 154726 ? 303576 0.168 oot
par6 1?2;232 178334 (1) 350222 0.223 oot
par? 1;?3;3? 185171 (1) 363683 0.254 oot

74

Results of cnf2aig run on SAT Competition 2013 benchmars (continued).
Bench- Variables Matches Clauses Cyclic It. Relaxation = Matching Exec. Time

mark Clauses in Cover in Cover Cardin. It. Variables Time SAT Time

L im0 20 A

P2 gos aom 0% o e oos g

P9 e a0 2000 o e oo g

L s a0 200 S L C R

5 smes i 0% TR L C Yt

P gymon awip 69 o e om o,

BT geasso 1sas 0098 o W 00k o

P geooss 15y 0108 o w6 0ok g

PO oo ams 010 o s 00 g
PO g e 308 S C T i
U gy e 909 S C T
L2 G o 9607 pooseT oom gigl
P g s 22 o s 006 g
U gioos o 98 poosss ook o
pbls oot B 3056 0 3056 0.034 oo
I gl gy 1992 pome o oos g
U Gliar sor2 19608 o wes oo e
POIS g g 19992 po e oo 0D
IO oo sy 20096 O I C -t
P20 g g 1T L I CL Rt
P2 g w5 A C N v
P22 oocoro aas BT o W™ 0080 g
P2 s amg 228 o B 008 o
PR gim e 21624 poome oo ot
POIguiess oo 004 o e 00m gy
T o et 00% o
PR goasor a0 0T S CC N v
P2 oty o 08 L C A v
P20 oiog oy 0% o st oo ol

75

Results of cnf2aig run on SAT Competition 2013 benchmars (continued).

Bench- Variables Matches Clauses Cyclic It. Relaxation = Matching Exec. Time
mark Clauses in Cover in Cover Cardin. It. Variables Time SAT Time

3
B O s oso oot
S T BT
. T TR T
satl ég?é;gi 1614717 8 4156655 1.241 oot
iz 1049961 1045500 O e o
sat3 éggigzi 1289497 8 3318635 0.997 oot
aps LOTOTO7 170802 O gm0 1oss
slpl égggg 45292 21 61563 0.022 oot
slp2 iéggg PR 1? 70658 0.026 oot
slp3 2;,17?22 114314 11 220749 0.066 oot
slp4 QZggég e 1? 238035 0.072 oot
slpb 22;?81(53 132950 ? 255985 0.078 oot
R (R R O s oo O
oy B0006 0TS O ggms oom A0
I O e oms 32
tot 1;;3(1)?’,2 185434 ? 370242 0.218 oot
R T T R TR
e BTH0 0o w2
. T
w0 0 o om
wo JER0 oD o o I
S T R
T T
A T R
o R0 0w
o MESE0 0 gm0
T
e R0

76

Results of cnf2aig run on SAT Competition 2013 benchmars (continued).
Bench- Variables Matches Clauses Cyclic It. Relaxation = Matching Exec. Time

mark Clauses in Cover in Cover Cardin. It. Variables Time SAT Time
TR T
ucg 1(2)?(!;22? 65419 (_f 230505 0.138 oot
url 1(1)82338 ce (1] 230484 0.136 oot
ur2 13?3383 65412 ? 230484 0.140 oot
ur3 1§2$3§i 84325 ? 296983 0.201 oot
urd 1?332?8 73207 (1) 257725 0.174 oot
ws 2062 Ta07 O s o
util 1(2)(1)361523 65583 (1) 230937 0.134 oot
uti2 1;?2?;8 AR, (f 296205 0.192 oot
uti3 1;8(1)24513 84456 (_f 297296 0.196 oot
utid 13(2)?24213 (520 (1] 258002 0.168 0ot
vell 1422332121 24599 ? 99254 5.126 oot
i 180 s P
I R O e ases 155
N R
vmpl 12051;?1; 8 0 8 0 0.162 8:353
N
T
N
e
S T
N T PR TR
o 1000100 7316302 0 638 oom

77

Table B.2 shows the results of running cnf2aig on the benchmarks with the
following options:

e Maximum number of X(N)OR inputs: 4
e Maximum number of (N)AND and (N)OR inputs: 10
e Do not add clauses for constraint 3 that only contain one match

See Section 7.2.1 for additional information and interpretation.

Table B.2.: Results of cnf2aig run with —no-single-relax.

Bench- Clauses Counter Clauses Exec. Optimized
mark Inputs Saved Time Exec. Time
005 478484 50688 3840 7.743 7.692
006 478484 50688 3840 7.67 7.516
pipl 3601247 16661 16661 5.798 5.738
pip3 4187694 22379 22379 7.745 7.724
pip5 751116 10516 10516 1.169 1.194
pip6 1332773 14790 14790 2.048 2.123
pip7 887706 11123 11080 73.544 55.379
dlx1 1598301 47469 47464 oot 977.825
pip8 2317839 19221 19221 3.686 3.666
vlil 13378625 149160 149160 54.519 52.686
vli2 13378641 149160 149160 53.553 52.623
vli3 13348117 149137 149137 53.511 52.904
vli4 13378781 149160 149160 53.336 52.394
vli5 13378010 149134 149134 53.931 52.729
vli6 13378617 149160 149160 59.797 52.884
vli7 13378624 149177 149177 53.748 52.776
aaal 142227 14472 11946 112.244 105.582
aaa2 283903 25277 20325 347.534 305.258
aaa3 308235 26409 21363 358.856 312.359
aesl 14656 2224 0 0.168 0.169
aes2 5968 1184 0 0.03 0.033
aes3 5968 1184 0 0.032 0.028
aes4 2664 1616 0 1.587 1.596
aesb 2664 1616 0 1.587 1.594
aes6 2780 2000 0 0.099 0.099
aprl 22741 22004 13648 413.695 317.949
apr2 10827 10674 6452 112.603 75.503
aprd 29194 28992 18422 oot 442.341
arcl 87670 0 0 0.144 0.137
arc2 405350 0 0 0.716 0.684
arc3 405350 0 0 0.716 0.662
arcd 405350 0 0 0.717 0.689
arch 405350 0 0 0.706 0.692
arc6 405350 0 0 0.708 0.674
arc? 405350 0 0 0.72 0.67
arc8 405350 0 0 0.707 0.681
b041 801488 50 0 1.489 1.429
b042 792142 96 0 1.393 1.415
b043 1262210 6 0 2.256 2.195
blol 9511460 0 0 12.537 12.255
blo2 10974540 0 0 14.344 14.224
bunl 575617 0 0 1.057 1.082

78

Results of cnf2aig run with —no-single-relax. (continued).

Bench- Clauses Counter Clauses Exec. Optimized
mark Inputs Saved Time Exec. Time
bun2 1010625 0 0 1.936 1.91

cou 55724 34335 34335 0.174 0.083
ctll 97667 0 0 0.18 0.176
ctl2 103844 0 0 0.178 0.187
ctl3 111990 0 0 0.214 0.206
ctl4 141683 0 0 0.269 0.248
ctl5 144538 0 0 0.263 0.256
ctl6 157735 0 0 0.3 0.286
ctl7 154048 0 0 0.278 0.275
ctl8 142785 0 0 0.253 0.258
ctl9 147308 0 0 0.256 0.262
ctl10 259243 0 0 0.512 0.492
ctlll 156259 0 0 0.275 0.274
ctll12 147244 0 0 0.254 0.257
ctl13 149131 0 0 0.26 0.268
ctll4 147245 0 0 0.28 0.265
ctll5 149132 0 0 0.255 0.261
ctll6 142693 0 0 0.262 0.256
ctll7 134760 0 0 0.24 0.262
ctll8 142697 0 0 0.252 0.257
ctl19 167062 0 0 0.3 0.305
ct120 154654 0 0 0.28 0.279
ctl21 142789 0 0 0.247 0.258
ctl22 147312 0 0 0.254 0.259
ctl23 169583 0 0 0.308 0.303
ctl24 154655 0 0 0.272 0.283
e01 2210893 35098 34914 702.848 614.493
e02 2133873 35098 34914 696.306 604.189
€03 395383 22960 22800 253.411 229.699
e04 1301188 30668 30492 555.363 434.716
€05 295685 19646 19494 186.627 155.913
gre 146909 0 0 0.431 0.452
hit1l 29903 5324 2362 15.603 15.122
hit2 30273 5154 2338 13.669 14.115
hit3 29932 5355 2381 15.341 14.298
hit4 29810 5377 2371 15.737 14.991
hit5 29319 5277 2301 15.291 14.303
hit6 31221 5377 2443 14.439 14.437
hit7 30992 5261 2383 14.051 0.196
hit8 30662 5187 2353 0.283 0.197
hit9 30374 5424 2402 16.005 15.807
hit10 30899 5267 2407 15.262 14.135
hit11 30268 5408 2428 14.972 15.632
hit12 29849 5437 2383 15.804 14.69
hit13 30142 5261 2311 0.34 13.69
hit14 30362 5296 2374 14.887 13.241
hit15 29727 5337 2319 16.031 15.076
hit16 30014 5490 2410 15.616 15.564
hit17 31013 5389 2457 16.008 14.829
hit18 30885 5299 2367 0.359 14.423
hit19 30117 5337 2341 14.833 13.768
hit20 30490 5331 2339 15.627 14.426
hit21 31022 5489 2453 15.149 15.999
hw4 2384932 2335251 2335251 11.152 3.714
hwb 1794934 1197279 1197279 6.966 2.791
hw6 183916 109077 109077 0.579 0.279
hw10 133180 83771 83770 391.087 268.277
hwl2 1464739 979305 979305 5.827 2.339

79

Results of cnf2aig run with —no-single-relax. (continued).

Bench- Clauses Counter Clauses Exec. Optimized
mark Inputs Saved Time Exec. Time
hwl4 8995 7065 7065 0.039 0.022
hwl5 15994 12486 12486 0.066 0.026
hwl6 90805 59778 59778 0.306 0.137
hwl7 175093 95226 95226 0.546 0.256
hwl8 98113 64515 64515 0.325 0.145
hwl9 61561 39033 39033 0.201 0.091
hw20 61564 39036 39036 0.197 0.088
hw23 7737 51024 51024 0.261 0.121

kun 95854 0 0 0.182 0.186
max1 151835 88659 88659 0.481 0.226
max2 598619 349395 349395 2.104 0.92
max3 39143 23001 23001 0.123 0.059
max4 152039 89049 89049 0.464 0.229
minl 746444 547161 547161 3.145 1.149
min2 160469 106704 106704 0.544 0.24
min3 119357 80193 80193 0.403 0.178
ming 459965 307905 307905 1.67 0.667
ndhl 466486 5369 5187 15.849 14.363
ndh2 542457 5915 5733 19.491 16.972

nosl 126548 7424 3840 1.066 1.049
nos2 126548 7424 3840 1.061 1.051
nos3 126548 7424 3840 1.059 1.037
nos4 126548 7424 3840 1.062 1.053
nosb 126548 7424 3840 1.058 1.044
nos6 126548 7424 3840 1.077 1.068
nos7 126548 7424 3840 1.063 1.063
nos8 126548 7424 3840 1.067 1.036
nos9 126548 7424 3840 1.049 1.079
nosl0 126548 7424 3840 1.077 1.048
nosll 126564 7424 3840 1.045 1.042
nosl2 126564 7424 3840 1.06 1.055
nosl3 126564 7424 3840 1.062 1.062
nosl4 126564 7424 3840 1.123 1.031
nosls 126564 7424 3840 1.073 1.03
nosl6 126564 7424 3840 1.076 1.04
nosl7 126564 7424 3840 1.067 1.048
nosl18 126580 7424 3840 1.063 1.045
nosl9 126580 7424 3840 1.063 1.027
nos20 126580 7424 3840 1.071 1.056
nos21 126580 7424 3840 1.044 1.03
nos22 126580 7424 3840 1.048 1.063
nos23 126580 7424 3840 1.057 1.034
nos24 132576 8192 3840 1.185 1.164
nos25 132576 8192 3840 1.183 1.164
nos26 132592 8192 3840 1.179 1.161
nos27 132608 8192 3840 1.169 1.142
nos28 132608 8192 3840 1.202 1.176

pO1 126201 2865 1785 0.2 3.792

pbl 324420 2046 0 0.447 0.467

pb2 329030 2056 0 0.467 0.468

pb3 333640 2066 0 0.464 0.468

pb4 312285 2030 0 0.431 0.449

pb5 358063 9054 6880 44.813 36.732

pb6 627295 6334 3300 0.937 21.874

pb7 663350 3096 0 0.933 0.946

pb8 669936 3106 0 0.936 1.009

pb9 708350 3166 0 1.013 1.034
pb10 660773 3084 0 0.949 0.985

80

Results of cnf2aig run with —no-single-relax. (continued).

Bench- Clauses Counter Clauses Exec. Optimized
mark Inputs Saved Time Exec. Time
pbll 667283 3094 0 0.926 0.957
pbl2 614115 9667 6531 45.794 37.298
pb13 647355 9822 6636 0.915 41.231
pbl14 654003 9853 6657 35.034 44.745
pb15 648803 3056 0 0.918 0.962
pb16 654778 15992 12894 139.63 109.058
pbl7 614791 19608 16524 206.788 185.368
pb18 653473 19992 16848 187.382 173.217
pb19 659920 20056 16902 227.664 134.998
pb20 1134514 17875 13695 156.792 148.542
pb21 1080258 8537 4455 1.529 32.275
pb22 1096970 8579 4477 1.557 30.383
pb23 1207650 4228 0 1.786 1.762
pb24 988171 21624 17600 253.843 188.988
pb25 1035554 4054 0 1.446 1.509
pb26 1044074 4064 0 1.487 1.527
pb27 1052594 4074 0 1.522 1.549
pb28 1061114 4084 0 1.526 1.548
pb29 1041009 4034 0 1.476 1.477

rbc 148488 2948 2814 4.792 4.156
rpo 177941 3149 3015 5.328 4.41
smtl 68879 35766 35766 0.205 0.101
smt2 878969 357228 357228 2.445 1.304
smt3 1076507 775479 775479 4.324 1.671
tral 1289940 0 0 1.76 1.794
tra2 1934720 0 0 2.841 2.679
tra3 2579500 0 0 3.564 3.703
trad 3224280 0 0 4.532 4.502
trab 3869060 0 0 5.616 5.451
tra6 3386280 0 0 4.802 4.751
tra7 5079060 0 0 7.297 7.28
tra8 6771840 0 0 10.239 9.776
tra9 4116966 0 0 5.987 5.847
tralO 6175026 0 0 9.01 9.004
trall 1570705 0 0 2.204 2.178
tral2 2355835 0 0 3.278 3.283
tral3 3140965 0 0 4.522 4.445
vel2 8804672 26078 26078 15.885 15.871
vel3 8780591 26070 26070 15.85 15.719
veld 1814189 35359 35357 708.96 409.745
vmpl 120147 0 0 0.314 0.328
vmp2 133080 0 0 0.353 0.38
vmp3 161664 0 0 0.488 0.499
vmp4 177375 0 0 0.56 0.603
vmp5 194072 0 0 0.654 0.668
vmp6 211785 0 0 0.753 0.766
vmp7 230544 0 0 0.861 0.857

81

Table B.3 shows the results of how many clauses are added when running
cnf2aig on the benchmarks with the following options:

e Maximum number of X(N)OR inputs: 4

e Maximum number of (N)AND and (N)OR inputs: 10

e Do not add clauses for constraint 3 that only contain one match

See Section 7.2.2 for additional information and interpretation.

Table B.3.: Clauses produced by cnf2aig run on SAT Competition 2013 bench-

mars.

Bi?g"ll; Ciﬁf:; Constr. 1 Constr. 2 Constr. 3 Counter Cyclic
005 11753152 635584(5.41) 11070720(94.19) 46848(0.40) (0.00) 0(0.00)
006 11753152 635584(5.41) 11070720(94.19) 46848(0.40) (0.00) 0(0.00)

pipl 0 0() 00 0() o)
pip2 134492 43(0.03) 87(0.06) 87(0.06) 134275(99.84) 0(0.00)
pip3 0 0() o) 0() o)
pip4 169216 57(0.03) 114(0.07) 114(0.07) 168931(99.83) 0(0.00)
pip5 0 0) 00 o) 0 00
pip6 0 0() 0() 0() 0()
pip7 77885 21(0.03) 43(0.06) 43(0.06) T77778(99.86) 0(0.00)
dix1 332202 3(0.00) 5(0.00) 5(0.00) 332189(100.00) 0(0.00)
dlx2 936871 (0.00) 5(0.00) 5(0.00) 936858(100.00) 0(0.00)
pip8 0 0() 00 0() 0 o)
Vil 0 0() o) 0() 0 o)
vIi2 0 o) 00 0) 0 00
vli3 0 0() 0() 0() 0 0()
vlid 0 0() 0() 0() 0 0()
vIi5 0 0() o) 0() 0 o)
vli6 0 0() 0() 0() 0 0()
vliT 0 o) o) o) 0 o)
aaal 106905 620(0.58) 2526(2. 6) 2526(2.36) 101233(94.69) 0(0.00)
aaa2 188105 1349(0.72) 4952(2.63) 4952(2.63) 176852(94.02) 0(0.00)
aaa3 196221 1350(0.69) 5046(2.57) 5046(2.57) 184779(94.17) 0(0.00)
aaad 328266 133(0.04) 228(0.07) 228(0.07) 327677(99.82) 0(0.00)
aaab 136820 591(0.43) 708(0.52) 708(0.52) 134813(98.53) 0(0.00)
aaab 293345 1283(0.44) 1506(0.51) 1506(0.51) 289050(98.54) 0(0.00)
acgl 2056993 47879(2.33) 25356(1.23) 25356(1.23) 1958402(95.21) 0(0.00)
acg2 2072086 47879(2.31) 25356(1.22) 25356(1.22) 1973495(95.24) 0(0.00)
acg3 2347930 53300(2.27) 28228(1.20) 28228(1.20) 2238174(95.33) 0(0.00)
acgd 2356297 53300(2.26) 28228(1.20) 28228(1.20) 2246541(95.34) 0(0.00)
aesl 9156 580(6.33) 6352(69.38) 2224(24.29) (0.00) 20(0.22)
aes2 5656 536(9.48) 3936(69.59) 1184(20.93) (0.00) 0(0.00)
aes3 5656 536(9.48) 3936(69.59) 1184(20.93) (0.00) 0(0.00)
aesd 18528 712(3.84) 4944(26.68) 1616(8.72) 11256(60.75) 19(0.10)
aesh 18528 712(3.84) 4944(26.68) 1616(8.72) 11256(60.75) 19(0.10)
aes6 15760 624(3.96) 13136(83.35) 2000(12.69) (0.00) 15(0.10)
aprl 412443 51906(12.59) 198240(48.06) 8356(2.03) 153941(37.32) 312(0.08)
apr2 236271 32150(13.61) 125258(53.01) 4222(1.79) 74641(31.59) 41(0.02)
aprd 52600217 6795993(12.92) 44524842(84.65) 1279382(2.43) (0.00) 0(0.00)
aprb 558696 47203(8.45) 298054(53.35) 10570(1.89) 202869(36.31) 38(0.01)
apr6 5456029 444766(8.15) 3087206(56.58) 90986(1.67) 1833071(33.60) 0(0.00)

82

Clauses produced by cnf2aig run on SAT Competition 2013 benchmars (cont.).

Bench- Clauses .

mark added Constr. 1 Constr. 2 Constr. 3 Counter Cyclic
arcl 0 0() 0() 0() 0 0()
arc2 0 0() 0() 0() 0 0()
arc3 0 0() 0() 0() 0 0()
arcd 0 0() 0() 0() 0 0()
arch 0 0() 0() 0() 0 0()
arcé 0 0() 0() 0() 0 0()
arc? 0 0() 0() 0() 0 0()
arc8 0 0() 0() 0() 0 0()
b041 101 1(0.99) 50(49.50) 50(49.50) (0.00) 0(0.00)
b042 193 1(0.52) 96(49.74) 96(49.74) (0.00) 0(0.00)
b043 12 0(0.00) 6(50.00) 6(50.00) (0.00) 0(0.00)
bivl 909717 49045(5.39) 856074(94.10) 4598(0.51) (0.00) 97269(10.69)
biv2 933954 51242(5.49) 878104(94.02) 4608(0.49) (0.00) 97726(10.46)
biv3 970386 50134(5.17) 915510(94.34) 4742(0.49) (0.00) 95881(9.88)
biv4 923226 50970(5.52) 867644(93.98) 4612(0.50) (0.00) 97265(10.54)
bivh 955857 49811(5.21) 901378(94.30) 4668(0.49) (0.00) 96579(10.10)
biv6 941717 49769(5.28) 887340(94.23) 4608(0.49) (0.00) 97781(10.38)
biv7 976419 48546(4.97) 886756(90.82) 4644(0.48) 36473(3.74) 56476(5.78)
biv8 932985 49533(5.31) 878840(94.20) 4612(0.49) (0.00) 97591(10.46)
biv9 954686 47614(4.99) 866174(90.73) 4618(0.48) 36280(3.80) 96635(10.12)
blol 0 0() 0() 0() 0 0()
blo2 0 0() 0() 0() 0 0()
bunl 0 0() 0() 0() 0 0()
bun2 0 0() 0() 0() 0 0()
cou 0 0() 0() 0() 0 0()
ctll 0 0() 0() 0() 0 0()
ctl2 0 0() 0() 0() 0 0()
ctl3 0 0() 0() 0() 0 0()
ctld 0 0() 0() 0() 0 0()
ctls 0 0() 0() 0() 0 0()
ctl6 0 0() 0() 0() 0 0()
ctl? 0 0() 0() 0() 0 0()
ctl8 0 0() 0() 0() 0 0()
ctl9 0 0() 0() 0() 0 0()
ctl10 0 0() 0() 0() 0 0()
ctlll 0 0() 0() 0() 0 0()
ctll12 0 0() 0() 0() 0 0()
ctll13 0 0() 0() 0() 0 0()
ctll4 0 0() 0() 0() 0 0()
ctllb 0 0() 0() 0() 0 0()
ctll6 0 0() 0() 0() 0 0()
ctll? 0 0() 0() 0() 0 0()
ctl18 0 0() 0() 0() 0 0()
ctll9 0 0() 0() 0() 0 0()
ctl20 0 0() 0() 0() 0 0()
ctl21 0 0() 0() 0() 0 0()
ctl22 0 0() 0() 0() 0 0()
ctl23 0 0() 0() 0() 0 0()
ctl24 0 0() 0() 0() 0 0()
datl 1579860 69000(4.37) 66000(4.18) 66000(4.18) 1378860(87.28) 0(0.00)
dat2 2000942 87400(4.37) 83600(4.18) 83600(4.18) 1746342(87.28) 0(0.00)
dat3 1537723 67160(4.37) 64240(4.18) 64240(4.18) 1342083(87.28) 0(0.00)
dat4 2280326 99360(4.36) 95040(4.17) 95040(4.17) 1990886(87.31) 0(0.00)
e01 245972 0(0.00) 184(0.07) 184(0.07) 245604(99.85) 0(0.00)
€02 245972 0(0.00) 184(0.07) 184(0.07) 245604(99.85) 0(0.00)
e03 160959 0(0.00) 160(0.10) 160(0.10) 160639(99.80) 0(0.00)
e04 214938 0(0.00) 176(0.08) 176(0.08) 214586(99.84) 0(0.00)
e05 137739 0(0.00) 152(0.11) 152(0.11) 137435(99.78) 0(0.00)

83

Clauses produced by cnf2aig run on SAT Competition 2013 benchmars (cont.).

Bi?;ﬁ; Ciillilsees Constr. 1 Constr. 2 Constr. 3 Counter Cyclic
esa 0 0 (0() 0()
gril 71913 890(1.24) 900(1.25) 900(1.25) 69223(96.26) 0(0.00)
gri2 87913 1090(1.24) 1100(1.25) 1100(1.25) 84623(96.26) 0(0.00)
gri3 103904 1290(1.24) 1300(1. 25) 1300(1.25) 100014(96.26) 0(0.00)
gre 0 0() 0() 0() 0 0()
gssl 195806 46986(24.00) 143220(73.14) 5600(2.86) (0.00) 17460(8.92)
gss2 201339 48791(24.23) 146834(72.93) 5714(2.84) (0.00) 17335(8.61)
gss3 215365 55037(25.56) 154434(71.71) 5894(2.74) (0.00) 17441(8.10)
gssd 216976 54516(25.13) 156480(72.12) 5980(2.76) (0.00) 17092(7.88)
gssh 223369 56769(25.41) 160510(71.86) 6090(2.73) (0.00) 17297(7.74)
gss6 223365 56765(25.41) 160510(71.86) 6090(2.73) (0.00) 17024(7.62)
gssT 226171 57779(25.55) 162246(71.74) 6146(2.72) (0.00) 16653(7.36)
gss8 229261 58925(25.70) 164128(71.59) 6208(2.71) (0.00) 16387(7.15)
gss9 239227 63463(26.53) 169432(70.82) 6332(2.65) (0.00) 16540(6.91)
gusl 4167566 697166(16.73) 3366620(80.78) 103780(2.49) (0.00) 0(0.00)
gus2 4175301 698113(16.72) 3373164(80.79) 104024(2.49) (0.00) 0(0.00)
hit1 77419 977(1.26) 36282(46.86) 2962(3.83) 37198(48.05) 42(0.05)
hit2 73000 878(1.20) 33292(45.61) 2816(3.86) 36014(49.33) 21(0.03)
hit3 68985 680(0.99) 27922(40.48) 2974(4.31) 37409(54.23) 44(0.06)
hit4 70138 775(1.10) 28782(41.04) 3006(4.29) 37575(53.57) 48(0.07)
hit5 83668 1254(1.50) 42572(50.88) 2976(3.56) 36866(44.06) 34(0.04)
hit6 77119 848(1.10) 35762(46.37) 2934(3.80) 37575(48.72) 35(0.05)
hit7 41220 864(2.10) 37478(90.92) 2878(6.98) (0.00) 9(0.02)
hit8 48959 1075(2.20) 45050(92.02) 2834(5.79) (0.00) 9(0.02)
hit9 80118 917(1.14) 38278(47.78) 3022(3.77) 37901(47.31) 37(0.05)
hit10 76207 800(1.05) 35748(46.91) 2860(3.75) 36799(48.29) 21(0.03)
hit11 73632 612(0.83) 32248(43.80) 2980(4.05) 37792(51.33) 42(0.06)
hit12 76659 956(1.25) 34666(45.22) 3054(3.98) 37983(49.55) 44(0.06)
hit13 94167 1174(1.25) 53286(56.59) 2950(3.13) 36757(39.03) 18(0.02)
hit14 81034 1133(1.40) 39974(49.33) 2922(3.61) 37005(45.67) 28(0.03)
hit15 82230 1100(1.34) 40826(49.65) 3018(3.67) 37286(45.34) 39(0.05)
hit16 71489 652(0.91) 29400(41.13) 3080(4.31) 38357(53.65) 32(0.04)
hit17 70793 624(0.88) 29584(41.79) 2932(4.14) 37653(53.19) 28(0.04)
hit18 86152 1212(1.41) 44988(52.22) 2932(3.40) 37020(42.97) 21(0.02)
hit19 81050 1236(1.52) 39532(48.77) 2996(3.70) 37286(46.00) 30(0.04)
hit20 79127 935(1.18) 37956(47.97) 2992(3.78) 37244(47.07) 28(0.04)
hit21 76834 684(0.89) 34764(45.25) 3036(3.95) 38350(49.91) 39(0.05)
hwl 1129857 111(0.01) 87(0.01) 87(0.01) 1129572(99.97) 0(0.00)
hw2 2198535 887(0.04) 686(0.03) 686(0.03) 2196276(99.90) 0(0.00)
hw3 1156411 421(0.04) 57(0.00) 57(0.00) 1155876(99.95) 0(0.00)
hw4 0 0() 0() 0() 0 0()
hwb 0 0() 0() 0() 0 0()
hw6 0 0() 0() 0() 0()
hw7 6075362 151(0.00) 6(0.00) 6(0.00) 6075199(100.00) 0(0.00)
hw8 6075362 151(0.00) 6(0.00) 6(0.00) 6075199(100.00) 0(0.00)
hw9 9268655 1(0.00) 1(0.00) 1(0.00) 9268652(100.00) 0(0.00)
hw10 586301 0(0.00) 1(0.00) 1(0.00) 586299(100.00) 0(0.00)
hwll 9630791 1(0.00) 1(0.00) 1(0.00) 9630788(100.00) 0(0.00)
hw12 0 0() 0() 0() 0()
hwl3 642235 5(0.00) 1(0.00) 1(0.00) 642228(100.00) 0(0.00)
hwi4 0 0() 0() 0() 0 0()
hw15 0 0() 0() 0() 0 0()
hw16 0 0() 0() 0() 0 0()
howl7 0 0) 00 0 0 00
hw18 0 0() 0() 0() 0 0()
hw19 0 0() 0() 0() 0 0()
hw20 0 0() 0() 0() 0 0()
hw21 6281267 6(0.00) 4(0.00) 4(0.00) 6281253(100.00) 0(0.00)

84

Clauses produced by cnf2aig run on SAT Competition 2013 benchmars (cont.).

Bi?;ﬁ; Ciillilsees Constr. 1 Constr. 2 Constr. 3 Counter Cyclic
hw22 6848389 74(0.00) 4(0.00) 4(0.00) 6848307(100.00) 0(0.00)
hw23 0 0() 0() 0() 0()
hw24 6202961 6(0.00) 4(0.00) 4(0.00) 6202947(100.00) 0(0.00)
hw25 6846695 73(0.00) 3(0.00) 3(0.00) 6846616(100.00) 0(0.00)

itol 6454544 3040896(47.11) 3272120(50.69) 141528(2.19) (0.00) 949(0.01)
ito2 7396083 3235167(43.74) 3980246(53.82) 180670(2.44) (0.00) 415(0.01)
kun 0 0() 0() 0() 0 0()
max1 0 0() 0() 0() 0 0()
max2 0 0() 0() 0() 0 0()
max3 0 0() 0() 0() 0 0
max4 0 0() 0() 0() 0 0()
md51 48068638 37233626(77.46) 10728886(22.32) 106126(0.22) (0.00) 1133(0.00)
md52 47913047 37080155(77.39) 10726782(22.39) 106110(0.22) (0.00) 1117(0.00)
md53 48116573 37284641(77.49) 10725786(22.29) 106146(0.22) (0.00) 1103(0.00)
mdb4 48192509 37353345(77.51) 10733050(22.27) 106114(0.22) (0.00) 1116(0.00)
mdb5 49680495 38573167(77.64) 10998612(22.14) 108716(0.22) (0.00) 1051(0.00)
md56 49522168 38416960(77.58) 10996508(22.21) 108700(0.22) (0.00) 1079(0.00)
md57 49729342 38625004(77.67) 10995512(22.11) 108736(0.22) (0.00) 1057(0.00)
md58 49806494 38695014(77.69) 11002776(22.09) 108704(0.22) (0.00) 1055(0.00)
md59 50071945 38956497(77.80) 11006716(21.98) 108732(0.22) (0.00) 1052(0.00)
minl 0 0() 0() 0() 0 0()
min2 0 0) 00 0) 0 00
min3 0 0() () 0() 0 0()
mind 0 0 00 0 0 00
ndhl 37871 0(0.00) 182(0.48) 182(0.48) 37507(99.04) 0(0.00)
ndh2 41693 0(0.00) 182(0.44) 182(0.44) 41329(99.13) 0(0.00)
nosl 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nos2 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nos3 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nos4 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nosb 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nos6 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nos7 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nos8 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nos9 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nos10 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nosll 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nos12 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nosl3 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nosl4 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nosls 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nosl6 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nos17 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nos18 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nos19 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nos20 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nos21 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nos22 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nos23 1005184 18560(1.85) 983040(97.80) 3584(0.36) (0.00) 0(0.00)
nos24 1197376 25664(2.14) 1167360(97.49) 4352(0.36) (0.00) 0(0.00)
nos25 1197376 25664(2.14) 1167360(97.49) 4352(0.36) (0.00) 0(0.00)
nos26 1197376 25664(2.14) 1167360(97.49) 4352(0.36) (0.00) 0(0.00)
nos27 1197376 25664(2.14) 1167360(97.49) 4352(0.36) (0.00) 0(0.00)
nos28 1197376 25664(2.14) 1167360(97.49) 4352(0.36) (0.00) 0(0.00)
ope 157986 5070(3.21) 5100(3.23) 5100(3.23) 142716(90.33) 0(0.00)
pO1 22360 211(0.94) 1080(4.83) 1080(4.83) 19989(89.40) 0(0.00)
parl 2144976 95794(4.47) 96144(4.48) 91494(4.27) 1861544(86.79) 0(0.00)
par2 3345712 149177(4.46) 149804(4.48) 142444(4.26) 2904197(86.80) 0(0.00)

85

Clauses produced by cnf2aig run on SAT Competition 2013 benchmars (cont.).

Birll;ﬁ; Cﬁllilseej Constr. 1 Constr. 2 Constr. 3 Counter Cyclic
par3 3693348 164667(4.46) 165482(4.48) 157252(4.26) 3205947(86.80) 0(0.00)
pard 2079393 92794(4.46) 93020(4.47) 88660(4.26) 1804919(86.80) 0(0.00)
par5 2448664 109394(4.47) 109864(4.49) 104474(4.27) 2124932(86.78) 0(0.00)
par6 2823910 125856(4.46) 126400(4.48) 120200(4.26) 2451454(86.81) 0(0.00)
par7 2932379 130681(4.46) 131210(4.47) 124810(4.26) 2545678(86.81) 0(0.00)
pbl 4097 5(0.12) 2046(49.94) 2046(49.94) (0.00) 0(0.00)
pb2 4117 5(0.12) 2056(49.94) 2056(49.94) (0.00) 0(0.00)
pb3 4137 5(0.12) 2066(49.94) 2066(49.94) (0.00) 0(0.00)
pbd 4065 5(0.12) 2030(49.94) 2030(49.94) (0.00) 0(0.00)
pb5 68291 645(0.94) 2174(3.18) 2174(3.18) 63298(92.69) 0(0.00)
pb6 50632 302(0.60) 3034(5.99) 3034(5.99) 44262(87.42) 0(0.00)
pb7 6197 5(0.08) 3096(49.96) 3096(49.96) (0.00) 0(0.00)
pb8 6217 5(0.08) 3106(49.96) 3106(49.96) (0.00) 0(0.00)
pb9 6337 5(0.08) 3166(49.96) 3166(49.96) (0.00) 0(0.00)
pb10 6173 5(0.08) 3084(49.96) 3084(49.96) (0.00) 0(0.00)
pbll 6193 5(0.08) 3094(49.96) 3094(49.96) (0.00) 0(0.00)
pb12 74488 624(0.84) 3136(4.21) 3136(4.21) 67592(90.74) 0(0.00)
pb13 75680 634(0.84) 3186(4.21) 3186(4.21) 68674(90.74) 0(0.00)
pb14 75916 636(0.84) 3196(4.21) 3196(4.21) 68888(90.74) 0(0.00)
pb15 6117 5(0.08) 3056(49.96) 3056(49.96) (0.00) 0(0.00)
pbl6 119283 1226(1.03) 3098(2.60) 3098(2.60) 111861(93.78) 0(0.00)
pb17 144873 1527(1.05) 3084(2.13) 3084(2.13) 137178(94.69) 0(0.00)
pbl8 147711 1557(1.05) 3144(2.13) 3144(2.13) 139866(94.69) 0(0.00)
pb19 148181 1562(1.05) 3154(2.13) 3154(2.13) 140311(94.69) 0(0.00)
pb20 134647 1246(0.93) 4180(3.10) 4180(3.10) 125041(92.87) 0(0.00)
pb21 68256 407(0.60) 4082(5.98) 4082(5.98) 59685(87.44) 0(0.00)
pb22 68595 409(0.60) 4102(5.98) 4102(5.98) 59982(87.44) 0(0.00)
pb23 8461 5(0.06) 4228(49.97) 4228(49.97) (0.00) 0(0.00)
pb24 160935 1600(0.99) 4024(2.50) 4024(2.50) 151287(94.01) 0(0.00)
pb25 8113 5(0.06) 4054(49.97) 4054(49.97) (0.00) 0(0.00)
pb26 8133 5(0.06) 4064(49.97) 4064(49.97) (0.00) 0(0.00)
pb27 8153 5(0.06) 4074(49.97) 4074(49.97) (0.00) 0(0.00)
pb28 8173 5(0.06) 4084(49.97) 4084(49.97) (0.00) 0(0.00)
pb29 8073 5(0.06) 4034(49.97) 4034(49.97) (0.00) 0(0.00)

pos 1263322 286008(22.64) 943642(74.70) 33672(2.67) (0.00) 0(0.00)
qqu 1952289 2067(0.11) 1839(0.09) 693(0.04) 1947690(99.76) 0(0.00)

rbe 20841 0(0.00) 134(0.64) 134(0.64) 20573(98.71) 0(0.00)

rpo 22245 0(0.00) 134(0.60) 134(0.60) 21977(98.80) 0(0.00)
satl 6784444 2115318(31.18) 4097931(60.40) 571195(8.42) (0.00) 0(0.00)
sat2 4403564 1371410(31.14) 2662034(60.45) 370120(8.41) (0.00) 144(0.00)
sat3 5424464 1690298(31.16) 3277871(60.43) 456295(8.41) (0.00) 0(0.00)
satd 5764459 1796553(31.17) 3482886(60.42) 485020(8.41) (0.00) 0(0.00)
slpl 1205440 332569(27.59) 423838(35.16) 18186(1.51) 430847(35.74) 22(0.00)
slp2 1423622 413808(29.07) 494188(34.71) 21100(1.48) 494526(34.74) 18(0.00)
slp3 3291452 991654(30.13) 723580(21.98) 31080(0.94) 1545138(46.94) 12(0.00)
slp4 3597044 1113709(30.96) 783620(21.79) 33572(0.93) 1666143(46.32) 10(0.00)
slp5 3919365 1245369(31.77) 846052(21.59) 36160(0.92) 1791784(45.72) 10(0.00)
smt1 0 0() 0() 0() 0 0()
smt2 0 0() 0() 0() 0 0()
smt3 0 0() 0() 0() 0()

tot 2969474 129720(4.37) 124080(4.18) 124080(4.18) 2591594(87.27) 0(0.00)
tral 0 0() 0() 0() 0 0()
tra2 0 0() 0() 0() 0 0()
tra3 0 0() 0() 0() 0 0()
trad 0 0() 0() 0() 0 0()
trab 0 0() 0() 0() 0 0()
tra6 0 0() 0() 0() 0 0()
tra? 0 0() 0() 0() 0 0()

86

Clauses produced by cnf2aig run on SAT Competition 2013 benchmars (cont.).

Bench-

Clauses

mark added Constr. 1 Constr. 2 Constr. 3 Counter Cyclic
tra8 0 0() 0() 0() 0 0()
tra9 0 0() 0() 0() 0 0()
tral0 0 0() 0() 0() 0 0()
trall 0 0() 0() 0() 0 0()
tral2 0 0() 0() 0() 0 0()
tral3 0 0() 0() 0()) 0()
ucg 1712030 47879(2.80) 25356(1. 8) 25356(1.48) 1613439(94.24) 0(0.00)
url 1711886 47879(2.80) 25356(1.48) 25356(1.48) 1613295(94.24) 0(0.00)
w2 1711886 47879(2.80) 25356(1.48) 25356(1.48) 1613295(94.24) 0(0.00)
ur3 2205127 61391(2.78) 32476(1.47) 32476(1.47) 2078784(94.27) 0(0.00)
ur4 1913717 53300(2.79) 28228(1.48) 28228(1.48) 1803961 (94.26) 0(0.00)
urb 1913717 53300(2.79) 28228(1.48) 28228(1.48) 1803961(94.26) 0(0.00)
util 1715115 47880(2.79) 25386(1.48) 25386(1.48) 1616463(94.25) 0(0.00)
uti2 2199758 61392(2.79) 32514(1.48) 32514(1.48) 2073338(94.25) 0(0.00)
uti3 2207403 61393(2.78) 32516(1.47) 32516(1.47) 2080978(94.27) 0(0.00)
utid 1915741 53302(2.78) 28268(1.48) 28268(1.48) 1805903(94.27) 0(0.00)
vell 694799 30(0.00) 43(0.01) 43(0.01) 694683(99.98) 0(0.00)
vel2 0 0() 0() 0() 0 0()
vel3 0 0() 0() 0() 0 0()
veld 247464 0(0.00) 37(0.01) 2(0.00) 247425(99.98) 0(0.00)
vmpl 0 0() 0() 0() 0 0()
vmp? 0 0) 00 0) 0 o)
vmp3 0 0() 0() 0() 0 0()
vmpd 0 0) 00 0 0 00
vmp5 0 0() 0() 0() 0 0()
vmp6 0 0() 0() 0() 0 0()
vmp7 0 0() 0() 0() 0 0()
zfc 1263322 286008(22.64) 943642(74.70) 33672(2.67) (0.00) 0(0.00)

87

Table B.4 compares the blocking of strongly connected components to the block-
ing of cycles.

Table B.4.: Evaluation of cnf2aig --scc on SAT Competition 2013 benchmars.

Bench- Cyclic Cardin. Cyclic Cardin. Exec. Exec.
mark Itera. Itera. It. (scc) It. (scc) Time Time (scc)
005 0 0 0 0 7.572 7.743
006 0 0 0 0 7.561 7.670
pipl 0 0 0 0 5.822 5.798
pip2 0 4 0 4 oot oot
pip3 0 0 0 0 7.730 7.745
pip4 0 6 0 6 oot oot
pip5 0 0 0 0 1.207 1.169
pip6 0 0 0 0 2.166 2.048
pip7 0 5 0 5 73.985 73.544
dlx1 0 1 0 1 oot oot
dlx2 0 1 0 1 oot oot
pip8 0 0 0 0 3.791 3.686
vlil 0 0 0 0 53.760 54.519
vli2 0 0 0 0 53.677 53.553
vli3 0 0 0 0 53.474 53.511
vli4 0 0 0 0 53.427 53.336
vlib 0 0 0 0 53.877 53.931
vl1i6 0 0 0 0 53.518 59.797
vIi7 0 0 0 0 53.312 53.748
aaal 0 2 0 2 111.991 112.244
aaa2 0 2 0 2 349.024 347.534
aaald 0 2 0 2 362.140 358.856
aaad 0 1 0 1 oot oot
aaab 0 1 0 1 oot oot
aaab 0 1 0 1 oot oot
acgl 0 1 0 1 oot oot
acg2 0 1 0 1 oot oot
acg3 0 1 0 1 oot oot
acg4 0 1 0 1 oot oot
aesl 20 0 20 0 0.087 0.168
aes2 0 0 0 0 0.040 0.030
aes3 0 0 0 0 0.031 0.032
aesd 15 1 19 2 1.704 1.587
aesbH 15 1 19 2 1.699 1.587
aes6 68 2 15 0 2.747 0.099
aprl 1602 6 555 7 472.610 413.695
apr2 111 5 134 5 101.473 112.603
aprd 0 0 0 0 oot oot
aprd 1585 4 1775 9 oot oot
apr6 0 0 0 0 oot oot
arcl 0 0 0 0 0.144 0.144
arc2 0 0 0 0 0.668 0.716
arc3 0 0 0 0 0.657 0.716
arc4d 0 0 0 0 0.704 0.717
arch 0 0 0 0 0.662 0.706
arc6 0 0 0 0 0.677 0.708
arc7 0 0 0 0 0.664 0.720
arc8 0 0 0 0 0.669 0.707
b041 0 0 0 0 1.439 1.489
b042 0 0 0 0 1.440 1.393
b043 0 0 0 0 2.153 2.256
bivl 66572 0 44571 1 oot oot
biv2 68744 0 42712 1 oot oot

88

Bench- Cyclic Cardin. Cyclic Cardin. Exec. Exec.
mark Itera. Itera. It. (scc) It. (scc) Time Time (scc)
bivd 67344 0 53697 1 oot oot
bivd 66184 0 51020 1 oot oot
bivh 68228 0 59114 1 oot oot
biv6 68739 0 48036 1 oot oot
biv? 69066 0 59569 1 oot oot
biv8 64374 0 48849 1 oot oot
biv9 70339 0 53248 1 oot oot
blol 0 0 0 0 12.139 12.537
blo2 0 0 0 0 14.179 14.344
bunl 0 0 0 0 1.067 1.057
bun2 0 0 0 0 1.928 1.936
cou 0 0 0 0 0.174 0.174
ctll 0 0 0 0 0.178 0.180
ctl2 0 0 0 0 0.181 0.178
ctl3 0 0 0 0 0.218 0.214
ctld 0 0 0 0 0.250 0.269
ctlb 0 0 0 0 0.256 0.263
ctlé 0 0 0 0 0.304 0.300
ctl7 0 0 0 0 0.275 0.278
ctl8 0 0 0 0 0.252 0.253
ctl9 0 0 0 0 0.260 0.256
ctl10 0 0 0 0 0.536 0.512
ctlll 0 0 0 0 0.293 0.275
ctl12 0 0 0 0 0.259 0.254
ctll3 0 0 0 0 0.261 0.260
ctll4 0 0 0 0 0.256 0.280
ctllb 0 0 0 0 0.259 0.255
ctll6 0 0 0 0 0.249 0.262
ctll7 0 0 0 0 0.261 0.240
ctll8 0 0 0 0 0.283 0.252
ctl19 0 0 0 0 0.304 0.300
ctl20 0 0 0 0 0.291 0.280
ctl21 0 0 0 0 0.258 0.247
ctl22 0 0 0 0 0.265 0.254
ctl23 0 0 0 0 0.328 0.308
ctl24 0 0 0 0 0.275 0.272
datl 0 1 0 1 oot oot
dat2 0 1 0 1 oot oot
dat3 0 1 0 1 oot oot
dat4 0 1 0 1 oot oot
e01 0 1 0 1 697.253 702.848
e02 0 1 0 1 693.649 696.306
€03 0 1 0 1 252.503 253.411
e04 0 1 0 1 542.221 555.363
€05 0 1 0 1 188.550 186.627
esa 0 0 0 0 oom oom
gril 438 10 1046 2 67.195 oot
gri2 539 9 722 1 80.133 oot
gri3 628 14 753 1 116.440 oot
gre 0 0 0 0 0.443 0.431
gssl 4454 0 6259 0 oot oot
gss2 4405 0 6162 0 oot oot
gss3 4429 0 6166 0 oot oot
gssd 4453 0 6069 0 oot oot
gssh 4379 0 6087 0 oot oot
gssb 4299 0 6132 0 oot oot
gss7 4400 0 6086 0 oot oot
gss8 4333 0 6001 0 oot oot
gss9 4321 0 5977 0 oot oot
gusl 0 0 0 0 oot oot

89

Bench- Cyclic Cardin. Cyclic Cardin. Exec. Exec.

mark Itera. Itera. It. (scc) It. (scc) Time Time (scc)
gus2 0 0 0 0 oot oot
hit1l 29 2 32 1 14.072 15.603
hit2 26 3 21 1 13.108 13.669
hit3 50 3 36 1 12.743 15.341
hit4 61 1 59 1 12.986 15.737
hit5 50 3 28 1 14.414 15.291
hit6 36 2 33 1 15.541 14.439
hit7 20 1 19 1 15.130 14.051
hit8 15 1 16 0 13.864 0.283
hit9 54 1 39 1 16.151 16.005
hit10 35 1 20 1 14.501 15.262
hitl1 35 4 32 1 15.450 14.972
hit12 47 & 42 1 15.492 15.804
hit13 14 0 21 0 0.255 0.340
hit14 30 1 24 1 14.509 14.887
hit15 48 2 39 1 13.684 16.031
hit16 59 3 49 1 14.722 15.616
hit17 43 3 32 1 14.780 16.008
hit18 18 1 21 0 14.509 0.359
hit19 30 1 28 1 14.545 14.833
hit20 23 1 33 1 13.628 15.627
hit21 32 1 27 1 13.301 15.149
hwl 0 1 0 1 oot oot
hw?2 0 1 0 1 oot oot
hw3 0 1 0 1 oot oot
hw4 0 0 0 0 11.123 11.152
hwb 0 0 0 0 6.908 6.966
hw6 0 0 0 0 0.590 0.579
hw7 0 1 0 1 oot oot
hw8 0 1 0 1 oot oot
hw9 0 1 0 1 oot oot
hw10 0 1 0 1 390.673 391.087
hwll 0 1 0 1 oot oot
hwil2 0 0 0 0 5.749 5.827
hwil3 0 1 0 1 oot oot
hwl4 0 0 0 0 0.039 0.039
hwl5 0 0 0 0 0.064 0.066
hw16 0 0 0 0 0.307 0.306
hwl7 0 0 0 0 0.537 0.546
hw18 0 0 0 0 0.330 0.325
hw19 0 0 0 0 0.200 0.201
hw20 0 0 0 0 0.202 0.197
hw21 0 1 0 1 oot oot
hw22 0 1 0 1 oot oot
hw23 0 0 0 0 0.271 0.261
hw24 0 1 0 1 oot oot
hw25 0 1 0 1 oot oot
itol 101 0 326 0 oot oot
ito2 0 0 0 0 oot oot
kun 0 0 0 0 0.185 0.182
max1 0 0 0 0 0.474 0.481
max2 0 0 0 0 2.101 2.104
max3 0 0 0 0 0.121 0.123
max4 0 0 0 0 0.482 0.464
md51 373 0 367 0 oot oot
mdb52 414 0 404 0 oot oot
mdb53 384 0 389 0 oot oot
mdb4 399 0 413 0 oot oot
md55 15 0 359 0 oot oot
md56 0 0 355 0 oot oot

90

Bench- Cyclic Cardin. Cyclic Cardin. Exec. Exec.

mark Itera. Itera. It. (scc) It. (scc) Time Time (scc)
md57 341 0 360 0 oot oot
md58 376 0 341 0 oot oot
md59 330 0 352 0 oot oot
minl 0 0 0 0 3.042 3.145
min2 0 0 0 0 0.547 0.544
min3 0 0 0 0 0.395 0.403
min4 0 0 0 0 1.735 1.670
ndhl 0 1 0 1 15.804 15.849
ndh2 0 1 0 1 19.390 19.491
nosl 0 0 0 0 1.066 1.066
nos2 0 0 0 0 1.061 1.061
nos3 0 0 0 0 1.059 1.059
nos4 0 0 0 0 1.047 1.062
nos5 0 0 0 0 1.065 1.058
nos6 0 0 0 0 1.070 1.077
nos7 0 0 0 0 1.047 1.063
nos8 0 0 0 0 1.071 1.067
nos9 0 0 0 0 1.061 1.049
nos10 0 0 0 0 1.068 1.077
nosll 0 0 0 0 1.054 1.045
nosl2 0 0 0 0 1.076 1.060
nosl3 0 0 0 0 1.072 1.062
nosl4 0 0 0 0 1.054 1.123
nosl5 0 0 0 0 1.053 1.073
nosl6 0 0 0 0 1.065 1.076
nosl7 0 0 0 0 1.074 1.067
nosl8 0 0 0 0 1.061 1.063
nosl19 0 0 0 0 1.052 1.063
nos20 0 0 0 0 1.039 1.071
nos21 0 0 0 0 1.046 1.044
nos22 0 0 0 0 1.058 1.048
nos23 0 0 0 0 1.050 1.057
nos24 0 0 0 0 1.157 1.185
nos25 0 0 0 0 1.163 1.183
nos26 0 0 0 0 1.192 1.179
nos27 0 0 0 0 1.171 1.169
nos28 0 0 0 0 1.187 1.202
ope 3 1 2464 1 oot oot
p01 0 0 0 0 0.192 0.200
parl 0 1 0 1 oot oot
par2 0 1 0 1 oot oot
par3 0 1 0 1 oot oot
pard 0 1 0 1 oot oot
pard 0 1 0 1 oot oot
par6 0 1 0 1 oot oot
par7 0 1 0 1 oot oot
pbl 0 0 0 0 0.481 0.447
pb2 0 0 0 0 0.483 0.467
pb3 0 0 0 0 0.498 0.464
pb4 0 0 0 0 0.441 0.431
pb5 0 1 0 1 44.924 44.813
pb6 0 0 0 0 0.898 0.937
pb7 0 0 0 0 0.956 0.933
pb8 0 0 0 0 0.971 0.936
pb9 0 0 0 0 1.003 1.013
pb10 0 0 0 0 0.960 0.949
pbll 0 0 0 0 0.954 0.926
pb12 0 1 0 1 45.461 45.794
pb13 0 0 0 0 0.967 0.915
pbl4 0 1 0 1 35.846 35.034

91

Bench- Cyclic Cardin. Cyclic Cardin. Exec. Exec.
mark Itera. Itera. It. (scc) It. (scc) Time Time (scc)
pbl5 0 0 0 0 0.928 0.918
pb16 0 1 0 1 141.262 139.630
pbl7 0 1 0 1 208.646 206.788
pbl8 0 1 0 1 189.678 187.382
pb19 0 1 0 1 229.122 227.664
pb20 0 1 0 1 157.412 156.792
pb21 0 0 0 0 1.639 1.529
pb22 0 0 0 0 1.650 1.557
pb23 0 0 0 0 1.774 1.786
pb24 0 1 0 1 249.821 253.843
pb25 0 0 0 0 1.502 1.446
pb26 0 0 0 0 1.581 1.487
pb27 0 0 0 0 1.602 1.522
pb28 0 0 0 0 1.538 1.526
pb29 0 0 0 0 1.504 1.476

pos 0 0 0 0 oom oom
qqu 0 1 0 1 oot oot
rbc 0 1 0 1 4.732 4.792
rpo 0 1 0 1 5.291 5.328
satl 0 0 0 0 oot oot
sat2 0 0 0 0 oot oot
sat3 0 0 0 0 oot oot
sat4d 0 0 0 0 oot oot
slpl 1 1 21 1 oot oot
slp2 1 1 19 1 oot oot
slp3 0 1 11 1 oot oot
slp4 0 1 12 1 oot oot
slp5 0 1 9 1 oot oot
smt1 0 0 0 0 0.202 0.205
smt2 0 0 0 0 2.428 2.445
smt3 0 0 0 0 4.277 4.324
tot 0 1 0 1 oot oot
tral 0 0 0 0 1.803 1.760
tra2 0 0 0 0 2.754 2.841
tra3 0 0 0 0 3.661 3.564
trad 0 0 0 0 4.541 4.532
trab 0 0 0 0 5.512 5.616
tra6 0 0 0 0 4.773 4.802
tra7 0 0 0 0 7.173 7.297
tra8 0 0 0 0 9.898 10.239
tra9 0 0 0 0 5.833 5.987
tralO 0 0 0 0 8.860 9.010
trall 0 0 0 0 2.201 2.204
tral2 0 0 0 0 3.288 3.278
tral3 0 0 0 0 4.547 4.522
ucg 0 1 0 1 oot oot
url 0 1 0 1 oot oot
ur2 0 1 0 1 oot oot
ur3 0 1 0 1 oot oot
urd 0 1 0 1 oot oot
urd 0 1 0 1 oot oot
util 0 1 0 1 oot oot
uti2 0 1 0 1 oot oot
uti3 0 1 0 1 oot oot
uti4 0 1 0 1 oot oot
vell 0 1 0 1 oot oot
vel2 0 0 0 0 15.824 15.885
vel3 0 0 0 0 15.801 15.850
veld 0 2 0 2 709.139 708.960
vmpl 0 0 0 0 0.315 0.314

92

Bench- Cyclic Cardin. Cyclic Cardin. Exec. Exec.
mark Itera. Itera. It. (scc) It. (scc) Time Time (scc)
vmp2 0 0 0 0 0.380 0.353
vmp3 0 0 0 0 0.497 0.488
vmp4 0 0 0 0 0.569 0.560
vmp5b 0 0 0 0 0.672 0.654
vmp6 0 0 0 0 0.765 0.753
vmp7 0 0 0 0 0.855 0.861

zfc 0 0 0 0 oom oom

93

Listings

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

4.1.
4.2.
4.3.

5.1
5.2.
5.3.
5.4.
2.5.
2.6.

7.1.

Algorithm to detect (N)AND and (N)OR gates 13
Algorithm to detect inverter gates 14
Algorithm to detect buffer gates 15
Algorithm to detect X(N)OR gates 16
Algorithm to detect majority-of-three gates 19
Algorithm to detect if-then-else gates 20
Algorithm to create a parallel counter 26
Algorithm to create a binary comparator 29
Algorithm to create a the maximum acyclic cover. 32
Abstraction of the AIGER APL. 34
Algorithm to create AIG for AND, NAND, OR, NOR gates. 36
Algorithm to create AIG for XOR gates. 38
Constucting an AIG representing a MAJ3 gate. 38
Preprocessing phase to build w. 0oL 41
Add unmatched clauses and output to AIG. 43
Algorithm using the clim option of Lingeling. o8

List of Figures

1.1.
2.1.
3.1.
4.1.

4.2.

5.1.
5.2.
5.3.
5.4.
2.5.
5.6.

6.1.
6.2.
6.3.

7.1.

Workflow of cnf2aig.o 3
Examples for and-inverter graphs. 6
Karnaugh map for the CNF of z < ite(c,t,e). 11
Recursive parallel counter. I’ depicts a full adder, H a half adder

and count(t) a recursive parallel counter with ¢ inputs 24
XOR chain that may form a cycle. 29
AlIG created from circuit.o 34
AIG representing n-input OR gate. 35
AIG representing a 2-input XOR gate. 37
AIG representing a MAJ3 gate. 39
AIG representing an if-then-else gate. 39
AIG created for buffer and inverter gates. 40
Workflow of testing using cnfcktfuzz 44
The grid created by cnfcktfuzz 45
Percentage of satisfiable CNFs produced by cnfcktfuzz 48

Scatter plot of running cnf2aig with and without the --no-single-relax
option. L 53

IT

List of Tables

3.1.
3.2.

5.1.

6.1.

7.1.
7.2.
7.3.
7.4.

7.5.

Al

B.1.
B.2.
B.3.

B.4.

Truth table of an ITE gate. 11
Associating a key clause to AND, NAND, OR and NOR gates. . . . 12
Inversion of edges for AND, NAND, OR, NOR AIGs. 36

Satisfiability of CNFs produced by cnfcktfuzz with different grid sizes 47

Results of cnf2aig run on benchmarks from [FMO7]. 50
Examples of cnf2aig run on SAT Competition 2013 benchmars. . . 52
Evaluation of the --ccg option. o6
Examples of cnf2aig --scc run on SAT Competition 2013 bench-

TNATS. « « v v v v e e e e e e e e e e e e o7
Examples of cnf2aig --clim 100 run on SAT Competition 2013

benchmars. 29
Numbering of SAT Competition 2013 benchmars. 61
Results of cnf2aig run on SAT Competition 2013 benchmars. . . . 67
Results of cnf2aig run with —no-single-relax. 78
Clauses produced by cnf2aig run on SAT Competition 2013 bench-

TNATS. © « o v v v e e e e e e e e e 82

Evaluation of cnf2aig --scc on SAT Competition 2013 benchmars. 88

I1I

Bibliography

[BBHJ]

[Bie]

[Biel3]

[BLB10]

[Chel0)]

[FMO6]

[FMO7]

(GB13]

[KGPO1]

Adrian Balint, Anton Belov, M Heule, and Matti Jarvisalo. SAT com-
petition 2013. satcompetition.orq/2013.

Armin Biere. The AIGER and-inverter graph (AIG) format. Available
at fmu.jku.at/aiger.

Armin Biere. Lingeling, plingeling and treengeling entering the SAT
competition 2013. Proceedings of SAT Competition, pages 51-52, 2013.

Robert Brummayer, Florian Lonsing, and Armin Biere. Automated
testing and debugging of SAT and QBF solvers. In Theory and Ap-
plications of Satisfiability Testing—SAT 2010, pages 44-57. Springer,
2010.

Jingchao Chen. A new SAT encoding of the at-most-one constraint.
In Proc. of the Tenth Int. Workshop of Constraint Modelling and Re-
formulation, 2010.

Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT prob-
lem. In Theory and Applications of Satisfiability Testing-SAT 2006,
pages 252—265. Springer, 2006.

Zhaohui Fu and S. Malik. Extracting logic circuit structure from con-
junctive normal form descriptions. In VLSI Design, 2007. Held jointly
with 6th International Conference on Embedded Systems., 20th Inter-
national Conference on, pages 37-42, Jan 2007.

Alexandra Goultiaeva and Fahiem Bacchus. Recovering and utilizing
partial duality in QBF. In Theory and Applications of Satisfiability
Testing-SAT 2013, pages 83-99. Springer, 2013.

Andreas Kuehlmann, Malay K Ganai, and Viresh Paruthi. Circuit-
based boolean reasoning. In Design Automation Conference, 2001.

IV

[KPKG02]

[Li00]

[McMO02]

[MP75]

IMSL92]

[OGMS02]

[PGS6]

[RMO04]

[Sin05]

[Tar72]

[Tar75)

Proceedings, pages 232-237. IEEE, 2001.

Andreas Kuehlmann, Viresh Paruthi, Florian Krohm, and Malay K
Ganai. Robust boolean reasoning for equivalence checking and func-
tional property verification. Computer-Aided Design of Integrated Clir-
cuits and Systems, IEEE Transactions on, 21(12):1377-1394, 2002.

Chu Min Li. Integrating equivalency reasoning into davis-putnam pro-
cedure. AAAI/IAAI 2000:291-296, 2000.

Ken L McMillan. Applying SAT methods in unbounded symbolic
model checking. In Computer Aided Verification, pages 250-264.
Springer, 2002.

David E Muller and Franco P Preparata. Bounds to complexities of
networks for sorting and for switching. Journal of the ACM (JACM),
22(2):195-201, 1975.

David Mitchell, Bart Selman, and Hector Levesque. Hard and easy
distributions of SAT problems. In Proceedings of the Tenth National
Conference on Artificial Intelligence, AAAT'92, pages 459-465. AAAI
Press, 1992.

Richard Ostrowski, Eric Grégoire, Bertrand Mazure, and Lakhdar Sais.
Recovering and exploiting structural knowledge from CNF formulas.

In Principles and Practice of Constraint Programming-CP 2002, pages
185-199. Springer, 2002.

David A Plaisted and Steven Greenbaum. A structure-preserving
clause form translation. Journal of Symbolic Computation, 2(3):293—
304, 1986.

Jarrod A. Roy and Igor L. Markov. Restoring circuit structure from
SAT instances. In International Workshop on Logic Synthesis, 2004.

Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality
constraints. In Principles and Practice of Constraint Programming-CP
2005, pages 827-831. Springer, 2005.

Robert Tarjan. Depth-first search and linear graph algorithms. STAM
journal on computing, 1(2):146-160, 1972.

Robert Endre Tarjan. Efficiency of a good but not linear set union

algorithm. Journal of the ACM (JACM), 22(2):215-225, 1975.

[Tse83] G.S. Tseitin. On the complexity of derivation in propositional calcu-
lus. In JorgH. Siekmann and Graham Wrightson, editors, Automation
of Reasoning, Symbolic Computation, pages 466-483. Springer Berlin
Heidelberg, 1983.

VI

