
Model Checking WS 2015: Assignment 4

Institute for Formal Models and Verification, JKU Linz

Due 03.12.2015

Exercise 19

Apply the fixpoint algorithm to minimize the FA shown on
the right. Draw the minimized automaton.

A

EB

C F

D

1

1
1

1
0

0

0
0

0

0

1

1

Exercise 20

1

2

3

4

5

6

7

8

9

10

Apply non-recursive DFS (see lecture slides 56, 57) on the given graph separately for parts a) and
b) and report the contents of cache and stack and the value of current at the end of each
iteration of the while-loop. Use the convention that states with larger ID are always pushed first
on the stack, e.g. for initial states 1 and 2, 2 is pushed before 1.

Specify the error trace, its length and the number of visited states under the assumption that . . .

a) . . . state 7 is the only bad state: is target(7) is true and false otherwise.

b) . . . state 5 is the only bad state: is target(5) is true and false otherwise.

1



Exercise 21

The same tasks as in Exercise 20, but now apply non-recursive BFS (see lecture slides 60, 61)
with the convention that states with smaller ID are always enqueued first on the queue. As before,
report search progress at the end of each iteration of the while-loop.

Compare the behaviours of DFS from Exercise 20 and BFS. For detecting bad states 7 and 5, is
there a clear preference for DFS or BFS?

Exercise 22

simple_dfs ()
{

Stack stack;

forall initial states ’s’
stack.push(s);

simple_dfs_aux (stack);
}

simple_dfs_aux (Stack stack)
{

while (!stack.empty())
{
current = stack.pop();
forall successors ’next’ of current
stack.push(next);

}
}

a) For a natural number n≥ 1, let LTS Ln := (Sn, In,Σn,Tn) be defined as follows:
Sn := {s0,s1, . . . ,sn−1}, In := {s0}, Σn := {a}, and Tn(si,a,s j)⇔ i < j.

The pseudo code of a simplified DFS algorithm simple dfs()without target checking and state
caching is shown above (compare with slides 56 and 57).

What is the exact number of total state visits in terms of n when calling simple dfs() on Ln,
i.e. how often is line “current = stack.pop()” executed? Justify your answer.

b) Explain in your own words the two wrong implementations of DFS discussed in the lecture.
Give exmamples illustrating the problems.



Exercise 23

a) Given a hash function that always returns the same constant hash value. How many collision list
elements have to be visited altogether if n objects with different keys are inserted into a hash table
with collision chains? Justify your answer and illustrate your solution with a drawing.

b) Given a collision-free hash function and an empty hash table using collision chains with a size
of 210 slots initially. The hash table is said to be full and is resized each time there are as many
elements in the hash table as there are slots and a new element is inserted. Resizing requires all
elements in the table to be hashed again and assigned to slots in the resized table. 1

When inserting 220 elements altogether, determine the total number of hash value computations
(including resizing) and table resize operations, if

(i) the table size is doubled each time the hash table is full.

(ii) the table size is incremented by 210 slots each time the hash table is full.

Exercise 24 (optional)

1

2

3

4

5

6

7

8

9

10

11

12

Apply non-recursive DFS (see slides 56, 57) on the given graph with states S := {1,2, . . . ,12}
where the state cache is implemented using bit state-hashing with one hash function h as follows.

Let h : S → {0,1, . . . ,15} be a hash function which maps a state s ∈ S to a 4-bit hash value
where h(s) := (2 · s+ 2)%16. Value h(s) is used to index a hash table with 24 = 16 1-bit entries
b0,b1, . . . ,b15. Before DFS starts all bi are set to 0.

Report the contents of cache (i.e. what bi are set to 1) and stack and the value of current
at the end of each iteration of the while-loop. Use the convention that states with larger ID are
always pushed first on the stack, e.g. for initial states 1 and 4, 4 is pushed before 1. Assume that
state 11 is the only bad state: is target(11) is true and false otherwise.

1For illustration, consider also the implementation of the testhash program demonstrated in the lecture. Source
code is available from http://fmv.jku.at/mc/testhash.c.


