Model Checking WS 2015: Assignment 6

Institute for Formal Models and Verification, JKU Linz

Due 21.01.2016

Exercise 31

Recap the basics of propositional logic in order to solve the following exercise.

a) Given boolean variables \(x \) and \(y \), find two different formulations of the binary XOR-operation \(x \oplus y \) using only negation and binary conjunction.

b) Find a DNF representation\(^1\) for the parity function \(f \) over four boolean variables:
\[
f(x_1, x_2, x_3, x_4) := x_1 \oplus x_2 \oplus x_3 \oplus x_4.
\]

Exercise 32

Apply Tarjan’s SCC decomposition algorithm (see slides 109 and 110) on the given graph and...

a) ... number newly visited nodes with a unique depth-first search index (DFSI) in the order as they are visited by DFS.

b) ... compute the minimum reachable DFSI (MRDFSI) for each node.\(^2\)

c) ... mark back edges with 'b'.

d) ... mark all strongly-connected components with circles.

\(^1\)Note that this exercise can be solved without constructing the truth table of \(f \).

\(^2\)Specify this value before it is reset to INF by mrdfs[M] = INF near the bottom of slide 110.
Exercise 33

Apply Tarjan’s SCC decomposition algorithm (see slides 109 and 110) on the given graph and...

a) number newly visited nodes with a unique depth-first search index (DFSI).

b) compute the minimum reachable DFSI (MRDFSI) for each node and specify this value before it is reset to infinity by the algorithm.

c) mark back edges with 'b'

d) mark all strongly-connected components with circles.

Exercise 34

a) Which of the following logically equivalent AIGs A, B, C, D and E, where a, b, and c are distinct AIG variable nodes, can be recognized as equivalent by syntactic sharing and detection of commutativity? Check all possible pairs and justify your answers.

\[
\begin{align*}
A &= a \land c \\
B &= a \land b \\
C &= c \lor a \\
D &= a \land b \\
E &= c \land b
\end{align*}
\]

b) AIG \(t_5\) is constructed bottom-up in the following four incremental steps. Draw the resulting AIG after step 4 including the effects of all previous steps:

- (a) \(t_0 = \text{and}_a\text{ig}(\text{var}_a\text{ig}(0), \text{var}_a\text{ig}(1))\), \(t_1 = \text{and}_a\text{ig}(\text{var}_a\text{ig}(0), \text{var}_a\text{ig}(2))\)
- (b) \(t_2 = \text{or}_a\text{ig}(t_0, t_1)\)
- (c) \(t_3 = \text{and}_a\text{ig}(\text{var}_a\text{ig}(1), \text{var}_a\text{ig}(0))\), \(t_4 = \text{and}_a\text{ig}(\text{var}_a\text{ig}(2), \text{var}_a\text{ig}(1))\)
- (d) \(t_5 = \text{xor}_a\text{ig}(t_3, t_4)\)
Exercise 35

a) Draw a binary decision tree with variable order\(^3\) \(a > b > c\) for the boolean function \(f(a, b, c)\) which returns \(true\) if, and only if, exactly one argument is \(true\). Then draw the ROBDD \(F\) for \(f\) resulting from the decision tree by applying the reduction rules.

b) Eliminate two nodes in the ROBDD \(F\) from the first part by inserting negated edges without changing the function denoted by \(F\).

Exercise 36

Given the boolean function \(f(a, b, c) := (a \oplus b) \lor (b \oplus c)\).

a) Write down \(f\) using only \textit{conjunction} and \textit{negation}.

b) Draw the AIG for \(f\) using syntactical sharing.

c) Draw the ROBDD for \(f\) using the variable order \(b > a > c\).

\(^3\text{Note that } a \text{ is “above” } b \text{ if } a > b.\)