Model Checking WS 2015: Assignment 6

Institute for Formal Models and Verification, JKU Linz

Due 21.01.2016

Exercise 31

Recap the basics of propositional logic in order to solve the following exercise.

- a) Given boolean variables x and y, find two different formulations of the binary XOR-operation $x \oplus y$ using only negation and binary conjunction.
- b) Find a DNF representation¹ for the parity function *f* over four boolean variables: $f(x_1, x_2, x_3, x_4) := x_1 \oplus x_2 \oplus x_3 \oplus x_4.$

Exercise 32

Apply Tarjan's SCC decomposition algorithm (see slides 109 and 110) on the given graph and...

- a) ... number newly visited nodes with a unique *depth-first search index (DFSI)* in the order as they are visited by DFS.
- b) ... compute the *minimum reachable DFSI (MRDFSI)* for each node.²
- c) ... mark back edges with 'b'.
- d) ... mark all strongly-connected components with circles.

¹Note that this exercise can be solved without constructing the truth table of f.

²Specify this value *before* it is reset to INF by mrdfsi[M] = INF near the bottom of slide 110.

Exercise 33

Apply Tarjan's SCC decomposition algorithm (see slides 109 and 110) on the given graph and...

- b) compute the *minimum reachable DFSI (MRDFSI)* for each node and specify this value *before* it is reset to infinity by the algorithm.
- c) mark back edges with 'b'
- d) mark all strongly-connected components with circles.

Exercise 34

a) Which of the following logically equivalent AIGs *A*, *B*, *C*, *D* and *E*, where *a*, *b*, and *c* are distinct AIG variable nodes, can be recognized as equivalent by syntactic sharing and detection of commutativity? Check *all* possible pairs and justify your answers.

- b) AIG t 5 is constructed bottom-up in the following four incremental steps. Draw the resulting AIG after step 4 including the effects of all previous steps:
 - (a) $t0 = and_aig(var_aig(0), var_aig(1)), t1 = and_aig(var_aig(0), var_aig(2))$
 - (b) $t2 = or_aig(t0, t1)$
 - (c) $t3 = and_aig(var_aig(1), var_aig(0)), t4 = and_aig(var_aig(2), var_aig(1))$
 - (d) $t5 = xor_aig(t3, t4)$

Exercise 35

- a) Draw a binary decision tree with variable order³ a > b > c for the boolean function f(a,b,c) which returns *true* if, and only if, exactly one argument is *true*. Then draw the ROBDD *F* for *f* resulting from the decision tree by applying the reduction rules.
- b) Eliminate two nodes in the ROBDD F from the first part by inserting negated edges without changing the function denoted by F.

Exercise 36

Given the boolean function $f(a,b,c) := (a \oplus b) \lor (b \oplus c)$.

- a) Write down f using only conjunction and negation.
- b) Draw the AIG for f using syntactical sharing.
- c) Draw the ROBDD for f using the variable order b > a > c.

³Note that *a* is "above" *b* if a > b.