Exercise 5

Given two FA A_I and A_S describing an implementation I and specification S, respectively. Explain in detail how to check whether I conforms to S, given A_I and A_S. Illustrate your explanations using set diagrams.

Exercise 6

Check conformance of implementation I and specification S given as FA on the right.

Exercise 7

Let $f_1 := (x \lor y \lor z) \land (\neg x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land (\neg x \lor y \lor \neg z)$ and $f_2 := (\neg x \lor \neg z) \land (x \lor y)$ be propositional formulae in conjunctive normal form (CNF) over a set of Boolean variables $V := \{x, y, z\}$. Assume that f_1 characterizes an implementation and f_2 a specification.

Does f_1 conform to f_2? Is $f_1 \land \neg f_2$ satisfiable? Justify your answers by constructing a truth table.

Exercise 8

a) Read sections I and III “Software Model Checking” in the survey on software verification\(^1\) and describe the approach of counterexample-guided abstraction refinement (CEGAR).

b) Given variables $i, n \in \mathbb{Z}$ (integers), the predicate $a \leftrightarrow (i \leq n)$ and the action $\alpha := i++$. Predicate a defines two abstract states a and $\neg a$, i.e. a can hold or not. Draw an abstract transition system by adding all possible transitions between states a and $\neg a$ when action α is executed: how does executing α influence the value of predicate a? What is the difference when interpreting i, n and α over 32-bit Java integers with overflow semantics?

\(^1\)V. D’Silva, D. Kroening, G. Weissenbacher: A Survey of Automated Techniques for Formal Software Verification. IEEE TCAD 27(7), 2008. The article can be found in KUSSS.