Model Checking WS 2011: Assignment 4

Institute for Formal Models and Verification, JKU Linz

Due 10.11.2011

Exercise 13

Is relation $\{(1,A), (1,C), (2,B), (3,B), (3,C)\}$ a strong bisimulation over the LTS shown on the right? Justify your answer.

Exercise 14

Given LTS A and B as shown on the right,...

- a) ... compute the maximal strong simulation \leq over $A \cup B$.
- b) ... compute the maximal strong bisimulation \approx over $A \cup B$.
- c) Check whether $1 \lesssim 4, 4 \lesssim 1$ and $1 \approx 4$.
- d) Is L(A) = L(B)?

Exercise 15

Compute the *maximal weak simulation* \lesssim over the LTS shown on the right.

Exercise 16

Let $L := (S, I, \Sigma, T)$ be an LTS with states *S*. Let $\Psi : \mathbb{P}(S \times S) \to \mathbb{P}(S \times S)$ be the operator defined on slide 38, i.e. $\Psi(\lesssim) := \{(r,t) \in (S \times S) \mid r \lesssim t \text{ or } \exists s \in S : [r \lesssim s \text{ and } s \lesssim t]\}$ for relation $\lesssim \subseteq S \times S$.

- a) Prove that if \lesssim is a simulation then $\Psi(\lesssim)$ is also a simulation.
- b) Given a relation $\lesssim \subseteq S \times S$, is $\Psi(\lesssim)$ always a transitive relation? Justify your answer.