Model Checking WS 2012: Assignment 1

Institute for Formal Models and Verification, JKU Linz

Due 18.10.2012

Exercise 1

a) Graphically describe an automaton which accepts the numbers 20 to 28 written in Roman style, i.e., the language is { XX, XXI, XXII, XXIII, XXIV, XXV, XXVI, XXVII, XXVII }.

b) Given the infinite sets of words *abc*, *abcabc*, *abcabcabc*, ..., *a*, *aa*, *aaa*, *aaaa*, ... Graphically specify the automaton which accepts exactly the words described above. Define the automaton as 5-tupel. Is it deterministic? Is it complete?

Exercise 2

Let $Q := (S_Q, I_Q, \Sigma_Q, T_Q, F_Q)$ be a finite automaton where $S_Q := \{A, B, C\}$, $I_Q := \{A, B\}$, $\Sigma_Q := \{a, b\}$, $T_Q := \{(A, b, B), (B, a, B), (B, a, C), (C, b, C), (C, b, A)\}$ and $F_Q := \{A\}$.

Let $R := (S_R, I_R, \Sigma_R, T_R, F_R)$ be a finite automaton where $S_R := \{1, 2, 3\}, I_R := \{1\}, \Sigma_R := \{a, b\}, T_R := \{(1, b, 2), (1, b, 3), (2, b, 2), (3, a, 3), (3, a, 2), (1, a, 3), (2, a, 2)\}$ and $F_R := \{1\}$.

Draw the product automaton $P := Q \times R$ for automata Q and R as defined above.

Exercise 3

For finite automaton A as defined below, check if A is deterministic, complete and if $L(K(A)) = \overline{L(A)}$ holds. Justify your answers. Show the power automata.

- a) Let $A := (S, I, \Sigma, T, F)$ be a finite automaton where $S := \{A, B\}, I := \{A\}, \Sigma := \{a, b\}, T := \{(A, a, B), (A, b, B), (B, a, B), (B, b, B), (B, a, A), (B, a, B)\}$ and $F := \{A\}$.
- b) Let $A := (S, I, \Sigma, T, F)$ be a finite automaton where $S := \{A, B\}$, $I := \{A, B\}$, $\Sigma := \{a, b\}$, $T := \{(A, b, B), (B, b, B), (B, a, A)\}$ and $F := \{A\}$.

Exercise 4

Let *A* and *B* be two finite automata and $P := A \times B$ the product automaton of *A* and *B*. Do the following two statements hold? If so then give a proof sketch for the claim. Otherwise, provide a *concrete* counterexample, i.e. concrete *A*, *B* and *P* refuting the claim.

a) If both A and B are deterministic then P is deterministic.

b) If *P* is deterministic then both *A* and *B* are deterministic.

Exercise 5

a) Given two FA A_I and A_S describing an implementation I and specification S, respectively. Explain in detail how to check whether I conforms to S, given A_I and A_S . Illustrate your explanations using set diagrams.

Bonus Exercise

Read sections I and III "Software Model Checking" in the survey on software verification¹ and describe the approach of counterexample-guided abstraction refinement (CEGAR).

¹V. D'Silva, D. Kroening, G. Weissenbacher: A Survey of Automated Techniques for Formal Software Verification. IEEE TCAD 27(7), 2008. The article can be found in KUSSS.