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Exercise 7

Given the predicates A := “x < y” and B := “(x % 2) != 0” and the action
α := “y := y + x”.

For variables x, y and action α, assume 4-bit signed integer modular arithmetic and two’s comple-
ment representation, that is values can overflow at the borders of the value range. This corresponds
e.g. to Java semantics of integer arithmetic.

Given the abstract transition system with abstract states S = {AB,AB,AB,AB} shown below. No-
tation A (B) means that predicate A (B) does not hold. Edges represent transitions between states
by action α.

For each transition from a state s to state s′ given by an edge, add concrete values for x and y in
s, if possible. If a transition cannot be executed, then delete the corresponding edge. You do not
have to introduce new edges.
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Exercise 8

a) Given variables i, n ∈ Z (integers), the predicate a↔ (i = 0) and the action α := i++.
Predicate a defines two abstract states a and ¬a, i.e. a can hold or not. Draw an abstract
transition system by adding all possible transitions between states a and ¬a when action α

is executed: how does executing α influence the value of predicate a?

b) As above, but a↔ (i > n). What is the difference when interpreting i, n and α over
32-bit Java integers with overflow semantics?

The abstract transition system from part b) is used to abstract the code fragment shown below
(left). It is assumed that i, n ∈Z (integers), i.e. values can not overflow. In the abstraction (right),
value * denotes nondeterministic choice. Relational expression i > n is replaced by predicate
a.

assert (i <= n);
lock ();
do {
i++;
if (i > n) unlock ();
} while (i <= n);

Bool a = false;
assert (!a);
lock ();
do {
if (!a) a = *;
if (a) unlock ();
} while (!a);

Exercise 9

Let x and y be 4-bit signed integer variables with Java semantics, i.e. two’s complement rep-
resentation and modular arithmetic with underflow/overflow. Let a↔ ((x % 2) == 0) and
b ↔ (x < y) be predicates. Similar to Exercise 7, a and b together define 4 possible ab-
stract states. Draw an abstract transition system for predicates a and b and actions α := x++
and β := y = y - 2. How do α and β influence the values of a and b? Make sure to consider
all possible combinations of abstract states and transitions. For each transition you draw between
abstract states, give concrete values for variables x and y as a “witness”.

Exercise 10

Using predicates a and b and actions α and β from the abstract transition system in Exercise 9,
construct an abstract program statement by statement for the program fragment given below. Re-
place relational expressions by the corresponding predicate. Make sure that all possible transitions
between abstract states (see Exercise 9) by executing α := x++ and β := y = y - 2 are fully
encoded in the abstract program. Your program should have only two boolean variables a and b.

assert (x < y);
lock();
while (x < y) {

if ((x % 2) == 0) x++; else y = y - 2;
if (x >= y && (x % 2) != 0)

unlock;
}



Exercise 11

Justify your answers to the following questions.

a) Explain why the empty set <∼ := {} is a simulation over any arbitrary LTS L = (S, I,Σ,T ).

b) Given an LTS L and two simulations <∼1
and <∼2

over L. Prove that <∼1
∪<∼2

is a simulation
over L as well.

c) Draw all different LTS L = (S, I,Σ,T ) with the restrictions that I = S = {1,2}, Σ = {a} and
further (1,a,2) 6∈ T and (2,a,2) 6∈ T .

d) Given the relation <∼:= S×S. For which LTS of part c) is <∼ a simulation?

Exercise 12

Compute the maximal simulation <∼ over the following LTS using the fixpoint algorithm:
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