
Institute for Formal Models and Verification
Johannes Kepler University Linz

Model Checking, Winter Semester 2015/2016

Satisfiabiliy Modulo Theories Overview
Version 2015.1

Armin Biere (biere@jku.at)
Martina Seidl (martina.seidl@jku.at)

1

Satisfiability Modulo Theories (SMT)

Example

f (x) 6= f (y) ∧ x + u = 3 ∧ v + y = 3 ∧ u = a[z] ∧ v = a[w] ∧ z = w

formulas in first-order logic
usually without quantifiers, variables implicitly existentially quantified
but with sorted / typed symbols and
functions / constants / predicates are interpreted
SMT quantifier reasoning weaker than in first-order theorem proving (FO)
much richer language compared to propositional logic (SAT)

no need to axiomatize “theories” using axioms with quantifiers
important theories are “built-in”:
uninterpreted functions, equality, arithmetic, arrays, bit-vectors . . .
focus is on decidable theories, thus fully automatic procedures

state-of-the-art SMT solvers essentially rely on SAT solvers
SAT solver enumerates solutions to a propositional skeleton
propositional and theory conflicts recorded as propositional clauses
DPLL(T), CDCL (T), read DPLL modulo theory T or CDCL modulo T

SMT sweet spot between SAT and FO: many (industrial) applications
standardized language SMTLIB used in applications and competitions

2

Buggy Program

int middle (int x, int y, int z) {
int m = z;
if (y < z) {
if (x < y)
m = y;

else if (x < z)
m = y;

} else {
if (x > y)
m = y;

else if (x > z)
m = x;

}
return m;

}

this program is supposed to return the middle (median) of three numbers

3

Test Suite for Buggy Program

middle (1, 2, 3) = 2

middle (1, 3, 2) = 2

middle (2, 1, 3) = 1

middle (2, 3, 1) = 2

middle (3, 1, 2) = 2

middle (3, 2, 1) = 2

middle (1, 1, 1) = 1

middle (1, 1, 2) = 1

middle (1, 2, 1) = 1

middle (2, 1, 1) = 1

middle (1, 2, 2) = 2

middle (2, 1, 2) = 2

middle (2, 2, 1) = 2

This black box test suite has to be
generated manually.

How to ensure that it covers all cases?

Need to check outcome of each run
individually and determine correct result.

Difficult for large programs.

Better use specification and check it.

4

Specification for Middle

let a be an array of size 3 indexed from 0 to 2

a[i] = x ∧ a[j] = y ∧ a[k] = z
∧

a[0] ≤ a[1] ∧ a[1] ≤ a[2]
∧

i 6= j ∧ i 6= k ∧ j 6= k
→

m = a[1]

median obtained by sorting and taking middle element in the order
coming up with this specification is a manual process

5

Encoding of Middle Program in Logic

int m = z;
if (y < z) {
if (x < y)
m = y;

else if (x < z)
m = y;

} else {
if (x > y)
m = y;

else if (x > z)
m = x;

}
return m;

}

(y < z ∧ x < y → m = y)
∧

(y < z ∧ x ≥ y ∧ x < z → m = y)
∧

(y < z ∧ x ≥ y ∧ x ≥ z → m = z)
∧

(y ≥ z ∧ x > y → m = y)
∧

(y ≥ z ∧ x ≤ y ∧ x > z → m = x)
∧

(y ≥ z ∧ x ≤ y ∧ x ≤ z → m = z)

this formula can be generated automatically by a compiler

6

Checking Specification as SMT Problem
let P be the encoding of the program, and S of the specification

program is correct if “P → S” is valid
program has a bug if “P → S” is invalid
program has a bug if negation of “P → S” is satisfiable (has a model)
program has a bug if “P ∧ ¬S” is satisfiable (has a model)

(y < z ∧ x < y → m = y) ∧
(y < z ∧ x ≥ y ∧ x < z → m = y) ∧
(y < z ∧ x ≥ y ∧ x ≥ z → m = z) ∧
(y ≥ z ∧ x > y → m = y) ∧
(y ≥ z ∧ x ≤ y ∧ x > z → m = x) ∧
(y ≥ z ∧ x ≤ y ∧ x ≤ z → m = z) ∧
a[i] = x ∧ a[j] = y ∧ a[k] = z ∧
a[0] ≤ a[1] ∧ a[1] ≤ a[2] ∧
i 6= j ∧ i 6= k ∧ j 6= k ∧
m 6= a[1]

7

Encoding with Linear Integer Arithmetic in SMTLIB2

(set-logic QF_AUFLIA)
(declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int) (declare-fun m () Int)
(assert (=> (and (< y z) (< x y)) (= m y)))
(assert (=> (and (< y z) (>= x y) (< x z)) (= m y))) ; fix by replacing last ’y’ by ’x’
(assert (=> (and (< y z) (>= x y) (>= x z)) (= m z)))
(assert (=> (and (>= y z) (> x y)) (= m y)))
(assert (=> (and (>= y z) (<= x y) (> x z)) (= m x)))
(assert (=> (and (>= y z) (<= x y) (<= x z)) (= m z)))
(declare-fun i () Int) (declare-fun j () Int) (declare-fun k () Int)
(declare-fun a () (Array Int Int))
(assert (and (<= 0 i) (<= i 2) (<= 0 j) (<= j 2) (<= 0 k) (<= k 2)))
(assert (and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(assert (<= (select a 0) (select a 1) (select a 2)))
(assert (distinct i j k))
(assert (distinct m (select a 1)))
(check-sat)
(get-model)
(exit)

8

Checking Middle Example with Z3

$ z3 middle-buggy.smt2 $ z3 middle-fixed.smt2
sat unsat
(model

(define-fun i () Int 1)
(define-fun a () (Array Int Int) (_ as-array k!0))
(define-fun j () Int 0)
(define-fun k () Int 2)
(define-fun m () Int 2281)
(define-fun z () Int 2283)
(define-fun y () Int 2281)
(define-fun x () Int 2282)
(define-fun k!0 ((x!1 Int)) Int

(ite (= x!1 2) 2283
(ite (= x!1 1) 2282
(ite (= x!1 0) 2281 2283)))) see also http://rise4fun.com

)

9

http://rise4fun.com

Encoding with Bit-Vector Logic in SMTLIB2

(set-logic QF_AUFBV)
(declare-fun x () (_ BitVec 32)) (declare-fun y () (_ BitVec 32))
(declare-fun z () (_ BitVec 32)) (declare-fun m () (_ BitVec 32))
(assert (=> (and (bvult y z) (bvult x y)) (= m y)))
(assert (=> (and (bvult y z) (bvuge x y) (bvult x z)) (= m y))) ; fix last ’y’->’x’
(assert (=> (and (bvult y z) (bvuge x y) (bvuge x z)) (= m z)))
(assert (=> (and (bvuge y z) (bvugt x y)) (= m y)))
(assert (=> (and (bvuge y z) (bvule x y) (bvugt x z)) (= m x)))
(assert (=> (and (bvuge y z) (bvule x y) (bvule x z)) (= m z)))
(declare-fun i ()(_ BitVec 2)) (declare-fun j ()(_ BitVec 2)) (declare-fun k ()(_ BitVec 2))
(declare-fun a ()(Array (_ BitVec 2) (_ BitVec 32)))
(assert (and (bvule #b00 i) (bvule i #b10) (bvule #b00 j) (bvule j #b10)))
(assert (and (bvule #b00 k) (bvule k #b10)))
(assert (and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(assert (bvule (select a #b00) (select a #b01)))
(assert (bvule (select a #b01) (select a #b10)))
(assert (distinct i j k)) (assert (distinct m (select a #b01)))
(check-sat) (get-model) (exit)

10

Checking Middle Example with Boolector

$ boolector -m middle32-buggy.smt2
sat
x 10111000111111001011111011111011
y 01111000111111001011111011111011
z 11110000111111011011111011111001
m 01111000111111001011111011111011
i 01
j 00
k 10
a[10] 11110000111111011011111011111001
a[01] 10111000111111001011111011111011
a[00] 01111000111111001011111011111011

$ boolector middle32-fixed.smt2
unsat

see also http://fmv.jku.at/boolector

11

http://fmv.jku.at/boolector

Theory of Uninterpreted Functions and Equality

functions as in first-order (FO): sorted / typed without interpretation
equality as single interpreted predicate

congruence axiom ∀x , y : x = y → f (x) = f (y)
similar variants for functions with multiple arguments
always assumed in FO if equality is handled explicitly (interpreted)

uninterpreted functions allow to abstract from concrete implementations
in hardware (HW) verification abstract complex circuits (e.g. multiplier)
in software (SW) verification abstract sub routine computation

congruence closure algorithms using fast union-find data structures
start with all terms (and sub-terms) in different equivalence classes
if t1 = t2 is an asserted literal merge equivalence classes of t1 and t2
for all elements of an equivalence class check congruence axiom

let t1 and t2 be two terms in the same equivalence class
if there are terms f (t1) and f (t2) merge their equivalence classes

continue until the partition of terms in equivalence classes stabilizes
if asserted disequality t1 6= t2 exists with t1, t2 in the same equivalence
class then unsatisfiable otherwise satisfiable

12

Example for Uninterpreted Functions and Equality
assume flattened structure where all sub-terms are identified by variables

[x | y | t | u | v]

x = y︸ ︷︷ ︸
asserted literal x = y puts x and y in to the same equivalence class

∧ x = g(y) ∧ t = g(x) ∧ u = f (x , t) ∧ v = f (y , x) ∧ u 6= v

[x y | t | u | v]

x = y∧ x = g(y) ∧ t = g(x)︸ ︷︷ ︸
apply congruence axiom since x and y in same equivalence class

∧u = f (x , t) ∧ v = f (y , x) ∧ u 6= v

[x y t | u | v]

x = y ∧ x = g(y) ∧ t = g(x)∧ u = f (x , t) ∧ v = f (y , x)︸ ︷︷ ︸
apply congruence axiom since y , x and t are all in same equivalence class

∧u 6= v

[x y t | u v]

x = y ∧ x = g(y) ∧ t = g(x) ∧ u = f (x , t) ∧ v = f (y , x)∧ u 6= v

u and v in the same equivalence class but u 6= v asserted
thus unsatisfiable 13

Theory of Arrays

functions “read” and “write”: read(a, i), write(a, i, v)

axioms

∀a, i, j : i = j → read(a, i) = read(a, j) array congruence

∀a, v , i, j : i = j → read(write(a, i, v), j) = v read over write 1

∀a, v , i, j : i 6= j → read(write(a, i, v), j) = read(a, j) read over write 2

used to model memory (HW and SW)

eagerly reduce arrays to uninterpreted functions by eliminating “write”

read(write(a, i, v), j) replaced by (i = j ? v : read(a, j))

more sophisticated non-eager algorithms are usually faster

such as for instance the lemmas-on-demand algorithm in Boolector

14

Simple Array Example

i 6= j ∧ u = read(write(a, i, v), j) ∧ v = read(a, j) ∧ u 6= v

eliminate “write”

i 6= j ∧ u = (i = j ? v : read(a, j)) ∧ v = read(a, j) ∧ u 6= v

simplify conditional by assuming “i 6= j”

i 6= j ∧ u = read(a, j) ∧ v = read(a, j) ∧ u 6= v

applying congruence for both “read”

i 6= j ∧ u = read(a, j) = read(a, j) = v ∧ u 6= v

which is clearly unsatisfiable

15

Theory of Bit-Vectors

allows “bit-precise” reasoning
caputures semantics of low-level languages like assembler, C, C++, . . .
Java / C# also use two-complement representations for int
modelling of hardware / circuits on the word-level (RTL)
important for security applications and precise test case generation

many operations
logical operations, bit-wise operations (and, or)
equalities, inequalities, disequalities
shift, concatenation, slicing
addition, multiplication, division, modulo, . . .

main approach is reduction to SAT through bit-blasting
reduction of bit-vector operations similar to circuit synthesis
Ackermann’s Reduction only needs equality and disequality

16

Propositional Skeleton

Example (arbitrary LRA formula)

x 6= y ∧ (2 ∗ x ≤ z ∨ ¬ (x − y ≥ z ∧ z ≤ y))

eliminate 6= by disjunction

(x < y︸ ︷︷ ︸
a

∨ x > y︸ ︷︷ ︸
b

) ∧ (2 ∗ x ≤ z︸ ︷︷ ︸
c

∨ ¬(x − y ≥ z︸ ︷︷ ︸
d

∧ z ≤ y︸ ︷︷ ︸
e

))

which is abstracted to a propositional formula called “propositional skeleton”

(a ∨ b) ∧ (c ∨ ¬(d ∧ e)) with α(x < y) = a, α(x > y) = b, . . .

SAT solver enumerates solutions, e.g., a = b = c = d = e = 1

check solution literals with theory solver, e.g., Fourier-Motzkin

spurious solutions (disproven by theory solver) added as “lemma”,
e.g. ¬(a ∧ b ∧ c ∧ c ∧ d ∧ e) or just ¬(a ∧ b) after minimization

continue until SAT solver says unsatisfiable or theory solver satisfiable
17

Lemmas on Demand

this is an extremely “lazy” version of DPLL (T) / CDCL(T)

LemmasOnDemand(φ)

ψ = PropositionalSkeleton(φ)
let α be the abstraction function, mapping theory literals to prop. literals

while ψ has satisfiable assignment σ
let l1, . . . , ln be all the theory literals with σ(α(li)) = 1
check conjunction L = l1 ∧ · · · ∧ ln with theory solver
if theory solver returns satisfying assignment ρ return satisfiable
determine “small” sub-set {k1, . . . , km} ⊆ {l1, . . . , ln} where

K = k1 ∧ · · · ∧ km remains unsatisfiable (by theory solver)
add lemma ¬K to ψ, actually replace ψ by ψ ∧ α(¬K)

return unsatisfiable

note that these lemmas ¬K are all clauses

18

SMT-Lib

SMT-Lib (www.smtlib.org) is a community portal for people working on
and with SMT Solving including

... a standard for describing background theories and logics
6 background theories, > 20 logics

... a standard for input/output of SMT solvers

... a collection of 95492 benchmark formulas
totalling 59.2 GB in 383 families over 22 logics

... a collection of tools

... the basis of the annual competition

19

www.smtlib.org

SMT Solvers

aim of an SMT solver: check satisfiability of formula φ
not over all (first-order) interpretations
but with respect to some background theory

artifacts of an SMT solving system compliant to SMTLib v2:
based on many-sorted first-order logic with equality
background theory: taken from catalogue of theories

basic theories
combined theories

interface: command language
input formula

20

The SMT-Lib Command Language

communication with the SMT solver
textual input channel
two textual output channels

regular output
diagnostic output

primary design goal: interaction between programs

types of commands
defining sorts and functions
managing assertions
checking satisfiability
setting options
getting information
exit

responses: unsupported, success, error 〈string〉

21

Theories and Logics

A theory

... defines a vocabulary for sorts and functions (signature).

... associates each sort with literals.

... may be infinite.

... has often an informal specification (in natural language).

A logic

... consists of at least one theory.

... restricts the kind of expressions to be used.

... has often an informal specification (in natural language).

SMTLib provides various theories and logics.

22

Some Logics without Quantifiers

Logic Description

QF_UF formulas over uninterpreted functions
QF_LIA formulas over linear integer arithmetic
QF_NIA formulas over integer arithmetic
QF_BV formulas over fixed-size bitvectors
QF_ABV formulas over bitvectors and bitvector arrays
QF_AUFBV formulas over bitvectors and bitvector arrays with unint. func.
QF_AUFLIA linear formulas over integer arrays with uninterpreted functions

23

Terms, Functions, and Predicates

Structure of terms and functions:
〈constant〉
〈identifier〉
as (〈identifier〉 〈 sort 〉)
(〈identifier〉 〈term〉+)
(as (〈identifier〉 〈 sort 〉) 〈term〉+)
quantifier terms with forall, exists
attributed terms !
bound terms with let

example (or (> p (+ q 2)) (< p (- q 2)))

terms are always typed

no syntactic difference between functions and predicates

24

Declaring Functions (and Constants)

declare-fun (σ1 . . . σn) σ:
declaration of new function with n parameters of sorts σ1 . . . σn

return value of sort σ

constants are 0-ary functions

Example
(declare-fun x () Bool)

(declare-fun f (Int Int) Bool)

(declare-fun ff ((Int Int Bool)) Int)

25

Satisfiability Commands

(assert 〈term〉)
term is of sort Bool
solver shall assume that term is true

(check-sat)

check consistency of conjunction of assertions
response: sat, unsat, unknown

get a solution with (get-model)

Example
(set-option :model true)
(declare-fun x () Int)
(assert (>= (* 3 x) (+ x x)))
(check-sat)
(get-model)

26

Example: Boolean Expressions

Boolean expressions are defined in the Core Theory

sort: Bool

constants: true, false (both of sort Bool)
functions:

not
or, xor, and, =>
=, distinct (equality, inequality)
ite (if-then-else)

Example
(set-logic QF_UF)
(declare-fun x () Bool)
(declare-fun y () Bool)
(assert (and (or x (not y)) (or (not x) y)))
(check-sat)
(exit)

27

Example: Real Expressions
Real expressions are defined in the Real Theory
sort: Real
constants: numerals, decimals (all of sort Real)
functions with signature:

(- (Real) Real) ; negation
(- (Real Real) Real) ; subtraction
(+ (Real Real) Real)
(* (Real Real) Real)
(/ (Real Real) Real)
(<= (Real Real) Bool)
(< (Real Real) Bool)
(>= (Real Real) Bool)
(> (Real Real) Bool)

Example
(set-logic QF_LRA)
(declare-fun x () Real)
(declare-fun y () Real)
(assert (and (>= (* 2 x) (+ y 3.2)) (= x y)))
(check-sat) 28

Example: Array Expressions
The theory of Arrays defines functions to read and write elements of arrays.

sort: Array <sort of index> <sort of elements>
functions

(select (array index) value) where
array is of sort (Array <sort of index> <sort of elements>)
index is of sort <sort of index>
value is of sort <sort of elements>

(store (array1 index value) array2) where
array1, array2 are of sort (Array<sort of index><sort of elements>)
index is of sort <sort of index>
value is of sort <sort of elements>

Example
(declare-fun a () (Array Int Bool))
(declare-fun b () (Array Int Bool))
(assert (= (select a 1) true))
(assert (= (store b 1 false) a))
(check-sat) ; result is unsat

29

Example: Fixed-Sized Bitvectors Expressions

sort: (_ BitVec n) where n is the size of the bitvector
functions:

(op1 (_ BitVec m) (_ BitVec m))
with op1 ∈ {bvnot, bvneg}

(op2 (_ BitVec m) (_ BitVec m) (_ BitVec m))
with op2 ∈ { bvand, bvor, bvadd, bvmul, bvudiv, bvurem, bvshl, bvlshr }

(bvult (_ BitVec m) (_ BitVec m) Bool)
binary comparison

((_ extract i j) (_ BitVec m) (_ BitVec n))
extract contiguous subvector from index i to index j

(concat (_ BitVec i) (_ BitVec j) (_ BitVec m))
combines two bitvectors

30

Outlook

SMTLib2 offers many more language concepts, for example:

Makros

User-defined sorts

Many Options

Scopes

...

More infos:

http://smtlib.cs.uiowa.edu/papers/
smt-lib-reference-v2.5-r2015-06-28.pdf

http://www.grammatech.com/resources/smt/
SMTLIBTutorial.pdf

31

http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.5-r2015-06-28.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.5-r2015-06-28.pdf
http://www.grammatech.com/resources/smt/SMTLIBTutorial.pdf
http://www.grammatech.com/resources/smt/SMTLIBTutorial.pdf

The SMT4J Solver

Approach: Lemmas on Demand

implemented in Java
SMTLib v2 compliant
modular (support different theories)
performant, maintainable, simple
lazy (later maybe mixed)
easy to integrate in application programs

32

