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• Formal Models (Bachelor 4th Semester), resp. Formal Basics III

– Formal Modelling of (Distributed) Computer Science Systems

• Model Checking (1st Semester Master)

– Algorithmic Aspects of Explicit Model Checking

• Advanced Model Checking (Master)

– Satisfiability Solving (SAT)

– Algorithmic Aspects of Symbolic Model Checking with SAT and BDDs
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• Formal Methods as Core Computer Science

– abstraction is the tool of computer science

– “abstraction” as the most important tool in computer science

– Computer Science systems are mathematical objects

– abstractions are formal models

• examples of formal technologies with increasing practical relevance:

– simulation of abstract models for validation purposes

– equivalence checking in circuit design

– model checking, abstract interpretation
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• modelling and simulation of computer models

– of natural and artificial systems

– allows projection into the future . . .

z.B. weather forecast

– . . . and optimization
e.g. reversal of global warming through less CO2 production

• representation as mathematical equations

– in general there are no closed solutions

– validation with numerical methods

• Computational Science as part of Computer Science (?!)
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for instance Cocomo [Boehm81]

How much are the developments costs of a program with a certain size?

application programs: PM = 2.4 · (KDSI)1.05

utility programs: PM = 3.0 · (KDSI)1.12

system programs: PM = 3.6 · (KDSI)1.20

PM = person months KDSI = Kilo Delivered Source Instructions
(costs) (size)

typical usage of empirical methods particularly in Software Engineering
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• are there models in mathematics?

– the natural numbers “are just there”’
Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk [Kronecker]

– there is no need for interpretation: subject = reality

• model concept in mathematical logic

– is it possible to model mathematics with mathematics?
no, not in general [Gödel]

– weaker statements are possible:
many theorems can be derived formally
(within a formal calculus)
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• programs and other digital systems are formal objects

– they have precise mathematical models (denotational/operational)

– Reality = Model
(modulo complex semantics, compiler bugs, hardware failure, . . .)

– properties of the models also hold in reality

• proving properties of models is difficult

– for Software in general undecidable

– for Hardware in NP or PSPACE

• only valid for functional properties , not for quantitative aspects

– availability, through put, latency, etc. are difficult to model precisely
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modelling of a controller

world

controller

• model also includes the artifact (controller)

• models are an approximation of reality

– real system is different from the model

• goal is construction/synthesis and optimization of the controller
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• goal is construction/synthesis and optimization of Computer Science systems

• models for quantitative analysis/optimization

– Markov-chains etc.

– quantitative/probabilistic simulation

• high-level models

– stepwise refinement/synthesis (e.g. code generation, compiler)

– example: Model Driven Architecture (MDA) = executable UML models

– example: behavioral models and synthesis for digital systems
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Modelling in Computer Science intro
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• models as in Natural Science

– Computational Science, computer models

• further empirical models:

– empirical methods in Software Engineering

• mathematical/formal modelling

– logic as basis, SW/HW as formula, reality = model

• high-level models

– qualitative (functional) or quantitative, refinement/synthesis
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for instance software design

requirements

high−level design

low−level design

implementation

configuration
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for instance hardware design

RTL

architecture

gates

switch−level

layout
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Finite Automata (FA) fa
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compare with Formal Basics 3 resp. Formal Models

motivation: automata for modelling, specification and verification

Definition a finite automaton A = (S, I,Σ,T,F) consists of

• set of states S (usually finite)

• set of initial states I ⊆ S

• input alphabet Σ (usually finite)

• transition relation T ⊆ S×Σ×S
write s a→ s′ iff (s,a,s′) ∈ T iff T (s,a,s′) “holds”

• set of final states F ⊆ S
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Definition An FA A accepts a word w ∈ Σ∗ iff there are si and ai with

s0
a1→ s1

a2→ s2
a3→ . . .

an−1→ sn−1
an→ sn,

where n≥ 0, s0 ∈ I, sn ∈ F and w = a1 · · ·an (n = 0⇒ w = ε).

Definition The language L(A) of A is the set of its accepted words.

• use automata or regular languages to describe event streams

• “conformance” of implementation event streams to their specification

• conformance relates to sub set relation of languages
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Definition The Product Automaton A = A1×A2 of two FA A1 and A2 with common input
alphabet Σ1 = Σ2 has the following components:

S = S1×S2 I = I1× I2

Σ = Σ1 = Σ2 F = F1×F2

T ((s1,s2),a,(s′1,s
′
2)) iff T1(s1,a,s′1) and T2(s2,a,s′2)

Theorem Let A, A1, and A2 as above, then L(A) = L(A1)∩L(A2)

Example: construction of automata which accepts words with prefix ab and suffix ba

(as regular expression: a ·b ·1∗ ∩ 1∗ ·b ·a, where 1 denotes the set of all letters)
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Completeness and Determinism fa
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Definition for s ∈ S, a ∈ Σ define s a→ as the set of successors of s with

s a→ = {s′ ∈ S | T (s,a,s′)}

Definition An FA is complete iff |I|> 0 and |s a→ |> 0 for all s ∈ S and a ∈ Σ.

Definition . . . deterministic iff |I| ≤ 1 and |s a→ | ≤ 1 for all s ∈ S and a ∈ Σ.

Fact . . . deterministic and complete iff |I|= 1 and |s a→ |= 1 for all s ∈ S, a ∈ Σ.
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Definition The power automaton A = P(A1) of an FA A1 has the following components

S = P(S1) (P = power set) I = {I1}

Σ = Σ1 F = {F ′ ⊆ S | F ′∩F1 6= /0}

T (S′,a,S′′) iff S′′ = {s′′ | ∃s′ ∈ S′ with T1(s′,a,s′′)}

Theorem A, A1 as above, then L(A) = L(A1) and A is deterministic and complete.

Example: Spam filter based on the white list “abb”, “abba”, and “abacus”!

(regular expression: “abb” | “abba” | “abacus”)
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Definition The complement automaton A =C(A1) of an FA A1 has the same components
as A1 except F = S\F1.

Theorem The complement automaton A =C(A1) of a deterministic and complete automa-
ton A1 accepts the same language L(A) = L(A1) = Σ∗\L(A1).

Example: Spam filter based on black list “abb”, “abba”, and “abacus”!

(regular expression: “abb” | “abba” | “abacus”)
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• modelling and specification with automata:

– event streams of an implementation represented by FA A1

– partial specification of event streams as FA A2

• conformance test:

– L(A1)⊆ L(A2)

– iff L(A1)∩L(A2) = /0

– iff A1×C(P(A2)) contains no reachable final state

• Example: specification S = (cs |sc |ss)∗, implementation I =
(
(s |c)2

)∗
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• temporal properties: (1 denotes an arbitrary letter)

– every third step a holds: (1 ·1 ·a)∗

– exactly every third step a holds: (a ·a ·a)∗

– a (acknowledge) has to be preceded by r (request): (r)∗ ·a

– each a has to be preceded by an r: (1∗ ·a)∗ · (r)∗ ·a

• refinement: (scheduling of three processes a, b and c)

– abstract round robin scheduler: (abc | acb | bac | bca | cab | cba)∗

– round robin scheduler, a higher priority than b: (abc | acb | cab)∗

– round robin scheduler, a before b, c before b: (acb | cab)∗

– deterministic round robin scheduler of implementation: (cab)∗

Model Checking #342234 WS 2015 Armin Biere JKU Linz



Conformance for Propositional Properties fa
Version 2015.1

26

• similar approach:

– given a propositional formula f over boolean variables V = {x1, . . . ,xn}

– the expansion E( f )⊆ 2n is the set of satisfying assignments of f

(a1, . . . ,an) ∈ E( f ) iff f [x1 7→ a1, . . . ,xn 7→ an] = 1

– e.g. E( f ) 6= /0 iff f satisfiable

• modelling and specification:

– f1 characterizes the implementation for all possible configurations

– f2 represents a partial specification of all valid configuration

• conformance test: f1⇒ f2 iff E( f1)⊆ E( f2) iff E( f1)∩E( f2) = /0

(or in practice: . . . iff f1∧¬ f2 unsatisfiable)
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while (...) {

  lock ();

  ...

  while (...) {

    if (...) {

      lock ();

      ...

    } else {

      unlock ();

      ...

      lock ();

    }

    ...

  }

  ...

  unlock();

}

exit

lock()

entry

lock()

unlock()

lock()

unlock()

(l · (l | u · l)∗ ·u)∗
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assert (i < n);

lock ();

do {

  ...

  i++;

  if (i >= n)

    unlock ();

  ...

} while (i < n);

l · (ε|u)∗ violates partial specification 1∗ · l ·u∗

(“...” neither leads to a lock nor unlock and leaves i and n untouched)
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refinement of abstraction by introduction of a predicate variable: b== (i < n)

assert (i < n);

lock ();

do {

  ...

  i++;

  if (i >= n)

    unlock ();

  ...

} while (i < n);

is abstracted to

assert (b);

lock ();

do {

  ...

  if (b) b = *;

  if (!b)

    unlock ();

  ...

} while (b);

l · ε∗ ·u satisfies partial specification 1∗ · l ·u∗

(“...” neither leads to a lock nor unlock and leaves i and n untouched)
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int bsearch (int * a, int n, int e) {

int l = 0, r = n;

if (!n) return 0; int main (void) {

while (l + 1 < r) { int n = INT_MAX;

printf ("l=%d r=%d\n", l, r); int * a = calloc (n, 4);

int m = (l + r) / 2; (void) bsearch (a, n, 1);

if (e < a[m]) r = m; }

else l = m;

} $ ./bsearch

return a[l] == e; l=0 r=2147483647

} l=1073741823 r=2147483647

Segmentation fault

running this allocates 8GB and actually took more than 3 seconds

fix: int min = l + (r - l)/2;
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• general semantical model for process algebra

– focus on reactive or open systems

– concept of environment with external events

– implementation (on one abstraction layer) determines internal events

• an LTS A = (S, I,Σ,T ) essentially is an FA:

– only behavior, e.g. potential of transition, is important

– no final states: no “explicit” language

– “implicit” language L(A) defined by F = S
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p p p

d d mm

G B

p = pay

d = dark chocolate

m = milk chocolate
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• semantics of the two LTS should be “different”

– G allows to select the type of chocolate after paying

– B non deterministically determines the chocolate type while paying

• but B and G are language equivalent:

– L(B) = p · (d | m) = L(G)

• same problem with conformance test:

– language based conformance test identifies B and G

– language conformance ignores “branching behavior”
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• behavior of implementation A1 should be consistent with specification A2

– each transition in A1 has a counterpart in A2

– A2 simulates A1

– A2 may have more behavior 1
A

2
A

• to simplify exposition merge A1 and A2 into one LTS A

– common alphabet Σ

– (disjoint) union of the other components:

S = S1
.
∪ S2, I = I1

.
∪ I2, T = T1

.
∪ T2

– . . . written as A = A1
.
∪ A2
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Definition a relation <∼ ⊆ S×S over an LTS A is a simulation iff

(read s <∼ t as t simulates s)

s <∼ t then ∀a ∈ Σ, s′ ∈ S [s a→ s′ ⇒ ∃ t′ ∈ S [ t a→ t′ ∧ s′ <∼ t′]]

Fact there is exactly one maximal simulation over an LTS A

Proof (sketch) S finite

• union of simulations is again a simulation

• the set of simulations over A is non empty (it contains the identity)
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• starting point: <∼0
= S×S (usually not a simulation)

• refine <∼i
to <∼i+1

as follows

s <∼i+1
t iff s <∼i

t and ∀a ∈ Σ, s′ ∈ S [s a→ s′ ⇒ ∃ t′ ∈ S [ t a→ t′ ∧ s′ <∼i
t′]]

• for finite S there is an n with <∼n
= <∼n+1

– <∼n
obviously a simulation

– maximality less obvious

• can be interpreted as fixpoint computation
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Let <∼ be a simulation.

Show <∼⊆<∼i
with induction over i.

Base case is trivial, induction step follows.

Assume (indirect proof): <∼ 6⊆<∼i+1
.

Then there is s and t with s <∼ t but s 6<∼i+1
t.

Therefore there has to be s′ and a with s a→ s′, but t 6 a→ t′ or t 6<∼i
t′ for all t′.

With the induction hypothesis <∼⊆<∼i
we get: t 6 a→ t′ or t 6<∼ t′ for all t′.

Contradiction to the assumption that <∼ is a simulation.
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Fact maximal simulations are transitive and reflexive

Proof (sketch)

• maximum simulation is reflexive because identity is a simulation

• transitivity by the following lemma

Lemma transitive hull of a simulation is again a simulation

Proof the following operator produces simulations from simulations

Ψ:P(S×S)→ P(S×S) Ψ(<∼)(r, t) iff r <∼ t or ∃s[r <∼ s ∧ s <∼ t]
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Definition

LTS A2 simulates LTS A1 iff there is a simulation <∼ over A1∪A2 such that for all initial states

s1 ∈ S1 of A1 there is an initial state s2 ∈ S2 of A2 with s1 <∼ s2. Also written as A1 <∼ A2.

Fact simulation on LTS are transitive and reflexive

Proof (sketch)

• construct maximal simulation over all three LTS

• show existence of simulating initial states

• project to the two outer LTS
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Definition A trace of an LTS A is a word w = a1 · · ·an ∈ Σ∗ with

s0
a1→ s1

a2→ ···
an−1→ sn−1

an→ sn,

where s0 ∈ I and n≥ 0.

Fact L(A) = {w | w trace of A}

Theorem (simulating LTS are conservative abstractions)

if LTS A2 simulates A1 (A1 <∼ A2), then L(A1)⊆ L(A2).

Application P <∼ A≤ S ⇒ L(P)⊆ L(S)

(P = program, A abstraction, S specification)
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• τ ∈ Σ represents a non observable internal event

• previous definition of simulation becomes strong simulation

s <∼ t then ∀a ∈ Σ, s′ ∈ S [s a→ s′ ⇒ ∃ t′ ∈ S [ t a→ t′ ∧ s′ <∼ t′]]

• write s τ∗a→ t if there is s0, · · · ,sn with

s = s0
τ→ s1

τ→ ··· τ→ sn−1
a→ sn = t

• a relation <∼ is a weak simulation iff

s <∼ t then ∀a ∈ Σ\{τ} , s′ ∈ S [s τ∗a→ s′ ⇒ ∃ t′ ∈ S [ t τ∗a→ t′ ∧ s′ <∼ t′]]
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Ad Weak Simulation sim
Version 2015.1

42

• use τ to abstract events

– for instance computations / data flow irrelevant for synchronization

• τ-cleared LTS A of an LTS A1 with τ: Σ = Σ1\{τ}, T (s,a, t) iff s τ∗a→ t in A1.

– τ removal produces a strong simulation from a weak one

– previous algorithms can be adapted to work here as well

• transitivity and applications as with strong simulation

• divergence s τ+→ s is not handled sufficiently

– A1 <∼ A2 allows A1 to diverge and A2 not
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Idea: implementation is exactly the specified behavior and not more !

Definition a relation ≈ is a strong bisimulation iff

s≈ t then ∀a ∈ Σ, s′ ∈ S [s a→ s′⇒ ∃ t′ ∈ S [ t a→ t′ ∧ s′ ≈ t′]] and

∀a ∈ Σ, t′ ∈ S [t a→ t′ ⇒ ∃ s′ ∈ S [ s a→ s′ ∧ s′ ≈ t′]]

Definition a relation ≈ is a weak bisimulation iff

s≈ t then ∀a ∈ Σ\{τ}, s′ ∈ S [s τ∗a→ s′⇒ ∃ t′ ∈ S [ t τ∗a→ t′ ∧ s′ ≈ t′]] and

∀a ∈ Σ\{τ}, t′ ∈ S [t τ∗a→ t′ ⇒ ∃ s′ ∈ S [ s τ∗a→ s′ ∧ s′ ≈ t′]]

weak bisimulation is useful when abstracting internal events of the implementation with τ

theoretical application: bisimulation equivalent LTS “have the same properties”
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Minimization of Deterministic FA sim
Version 2015.1

44

Given a deterministic and complete FA A = (S, I,Σ,T,F)

• starting point: ∼0 = (F×F)∪ (F×F)

– partition with respect to “final state flag”

– equivalence relation

• refine ∼i by ∼i+1

s∼i+1 t iff s∼i t and

∀a ∈ Σ, s′ ∈ S [s a→ s′⇒ ∃ t′ ∈ S [ t a→ t′ ∧ s′ ∼i t′]] and

∀a ∈ Σ, t′ ∈ S [t a→ t′ ⇒ ∃ s′ ∈ S [ s a→ s′ ∧ s′ ∼i t′]]

• termination ∼n+1 =∼n guaranteed at n = |S|

• equivalence relation ∼=∼n produces minimal automaton A/∼
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Definition Reachability Analysis is . . .

• computations of all reachable states

– starting from initial states

– result is represented either “explicitly” or “symbolically”

– can be used for optimizing systems, e.g. remove dead code

• check reachability of certain states

– corresponds to model checking of safety properties
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Explicit vs Symbolic reach
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explicit = each state/transition is represented separately

symbolic = sets of states/transitions represented as formulas

explicit model symbolic model

explicit analysis graph search explicit model checking

symbolic analysis — symbolic model checking

originally: symbolic MC for HW (SMV), explicit MC for SW (SPIN)

today: symbolic and explicit MC for both SW+HW
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Explicit vs Symbolic Model reach
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• in theory explicit matrix representation of T is enough

initial state: 0

transition matrix 0 1 2 3 4 5 6 7

0 0 0 1 0 1 0 0 0
1 0 0 0 1 0 1 0 0
2 0 0 0 0 1 0 1 0
3 0 0 0 0 0 1 0 1
4 1 0 0 0 0 0 1 0
5 0 1 0 0 0 0 0 1
6 1 0 1 0 0 0 0 0
7 0 1 0 1 0 0 0 0

• in practice T is given in a modelling or programming language

initial state = 0;

next state = (current state + 2 * (bit + 1)) % 8;

• symbolic representation can be exponentially more succinct
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Symbolic Reachability Analysis reach
Version 2015.1

48

• symbolic traversal of state space

– determine set of states reachable in one step from a given set of states

– successor states are computed and represented symbolically

– has some flavor of breadth first search

– for (infinite state) programs undecidable

• result is symbolic representation of all reachable states

– for instance 0 <= state && state < 8 && even (state)
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• symbolic representation usually has “parallel composition operator”

– for instance product of automata, each automaton is represented explicitly

G =C1×C2

– components are programmed separately

process A begin P1 end || process B begin P2 end;

• program size of whole system:

– |C1|+ |C2|, resp. |P1|+ |P2|

– sum of the sizes of the components

• also applies to HW
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• size of state space:

– |SG|= |SC1| · |SC2|

– product of the number of states of the components

• sequential circuits:

– n-bit counter can be implemented with O(n) gates, but has 2n states

• hierarchical descriptions can lead to another exponential factor

• for (infinite state) SW even more complex:

– in theory not even double exponential is enough

– in practice heap is the problem
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Explicit vs Symbolic Modelling reach
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• explicit representation reduces to graph search:

– search for reachable states starting from the initial states

– linear in the size of the number of all states

• symbolic representation:

– computation of the successor states is the main problem

– on-the-fly expansion of T for a concrete state (simulate or interpret T )

– avoid computation of explicit transitions of T for unreachable states

– alternatively compute symbolic representation of successor states
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• mark all visited states

– implementation depends on, whether states are generated on-the-fly

• unmarked successors of visited states pushed on search stack

• next working state popped from top of search stack

• if “error” or “target” state reached then

– path to error resp. target state is on the search stack

– to simplify the algorithms abort search
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recursive_dfs_aux (Stack stack, State current)

{

  if (marked (current))

    return;

  mark (current);

  stack.push (current);

  if (is_target (current))

    stack.dump_and_exit ();   /* target reachable */

  forall successors next of current

    recursive_dfs_aux (stack, next);

  stack.pop ();

}
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recursive_dfs ()

{

  Stack stack;

  forall initial states state

    recursive_dfs_aux (stack, state);

  /* target not reachable */

}

• “abort/exit” needs to be handled more gracefully of course

• recursive version may run out of stack memory

• support on-the-fly generation of reachable states by hashing
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#include <stdio.h>

void

f (int i) 

{ 

  printf ("%d\n", i);

  f (i + 1);

}

int

main (void)

{

  f (0);

}

this C program crashes after a “few” recursions
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non_recursive_dfs_aux (Stack stack) 

{

  while (!stack.empty ()) 

    {

      current = stack.pop ();

      if (is_target (current))

        dump_family_line_and_exit (current);

      forall successors next of current 

        {

          if (cached (next)) continue;

          cache (next);

          stack.push (next);

          next.set_parent (current);

        }

    }

}
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non_recursive_dfs ()

{

  Stack stack;

  forall initial states state

    {

      if (!cached (state))

        cache (state);

      stack.push (state);

    }

  non_recursive_dfs_aux (stack);

  /* target not reachable */

}
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non_recursive_buggy_dfs_aux (Stack stack) 

{

  while (!stack.empty ()) 

    {

      current = stack.pop ();

      if (is_target (current))

        dump_family_line_and_exit (current);

      if (cached (current)) continue;

      cache (current);

      forall successors next of current 

        {

          stack.push (next);

          next.set_parent (current);

        }

    }

}
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non_recursive_but_also_buggy_aux (Stack stack)

{

  while (!stack.empty ()) 

    {

      current = stack.pop ();

      forall successors next of current 

        {

          if (cached (next)) continue;

          cache (next);

          stack.push (next);

          next.set_parent (current);

          if (is_target (next))

            dump_family_line_and_exit (next);

        }

    }

}
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bfs_aux (Queue queue) 

{

  while (!queue.empty ())

    {

      current = queue.dequeue ();

      if (is_target (current))

        dump_family_line_and_exit (current);

      forall successors next of current 

        {

          if (cached (next)) continue;

          cache (next);

          queue.enqueue (next);

          next.set_parent (current);

        }

    }

}
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bfs ()

{

  Queue queue;

  forall initial states state 

    {

      if (!cached (state))

        cache (state);

      queue.enqueue (state);

    }

  bfs_aux (queue);

  /* target not reachable */

}
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• DFS

– easy to implement recursively (which you should not do anyhow)

– can be extended to detect cycles⇒ liveness

– faster if there are many but deep targets

• BFS

– requires non recursive formulation from the beginning

– generates shortest paths to error/target states

– no cycle detection (at least not easy to implement)

– faster if there are few but shallow targets
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• forward:

– successors of working states are next states to work with

– all analyzed states are reachable

• backward:

– predecessors of working states are next states to work with

– analyzed states can be unreachable

– most useful in symbolic analysis

– in some applications backward analysis terminates fast
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• global analysis “adds one bit” for each possibly reachable state

bool cached (State state) { return state.mark; }

void cache (State state) { state.mark = true; }

• global analysis without on-the-fly state generation

– example: struct State { int components[2]; bool mark; };

– 264 = 232 ·232 possible states can not be allocated 9 ·226 TB≈ 604 million TB

• local analysis with on-the-fly state generation

– 2 ·220 = 2097152 reachable states

– need 8 times more bytes ≈ 16 MB

plus overhead to access them, < factor 2
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• requirements:

– visited states have to be marked and saved (cache)

⇒ insertion operation for each new visited state

– successors have to be checked for already “being visited” (cached)

⇒ contains check for each successor

• alternatives:

– bit set: for each possible state one bit (as in global analysis)

– search trees: operations logarithmic in number of reachable states

– hash table: operations constant time in number of reachable states
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• look up and insertion time can be assumed to be constant

– in theory much more complex analysis required

• “good” hash functions are important

– hash index computed by randomization resp. distribution of input bits

• adaptation of hash table size:

– either enlarge dynamically by constant factor!

– or use all available memory
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17

9

8

7

3

1

0

2

3

size_table == (1 << 2)

count_table == 5

table

unsigned hash (unsigned data) { return data; }

struct Bucket *

find (unsigned data)

{

  unsigned h = hash (data);

  h &= (size_table - 1);

  ...

}
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unsigned

bad_string_hash (const char * str)

{

  const char * p;

  unsigned res;

  res = 0;

  for (p = str; *p; p++)

    res += *p;

  return res;

}
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unsigned

very_bad_string_hash (const char * str)

{

  const char * p;

  unsigned res;

  res = 0;

  for (p = str; *p; p++)

    res = (res << 4) + *p;

  return res;

}
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[Dragonbook]

unsigned

classic_string_hash (const char *str)

{

  unsigned res, tmp;

  const char *p;

  res = 0;

  for (p = str; *p; p++)

    {

      tmp = res & 0xf0000000;   /* unsigned 32-bit */

      res <<= 4;

      res += *p;

      if (tmp)

        res ^= tmp >> 28;

    }

  return res;

}
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• empirically good randomization for identifiers in programming languages

– average number collisions as quality metric for good hash functions

• fast: max. 4 logical/arithmetic operations per character

• for strings longer than 8 characters good distribution of bits

• overlapping of 8-bit encodings of individual characters

(but beware of ASCII encoding)

• clustering effects for many short strings (e.g. in automatically generated code)

n1, ..., n99, n100, ..., n1000
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static unsigned primes [] = { 2000000011, 2000000033, ... };

#define NUM_PRIMES  (sizeof (primes) / sizeof (primes[0]))

unsigned

primes_string_hash (const char * str)

{

  unsigned res, i;

  const char * p;

  i = 0;

  res = 0;

  for (p = str; *p; p++)

    {

      res += *p * primes[i++];

      if (i >= NUM_PRIMES)

        i = 0;

    }

  return res;

}
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static unsigned primes [] = { 2000000011, 2000000033, ... };

#define NUM_PRIMES (sizeof(primes)/sizeof(primes[0]))

unsigned

hash_state (unsigned * state, unsigned words_per_state)

{

  unsigned res, i, j;

  res = 0;

  i = 0;

  for (j = 0; j < words_per_state; j++)

    {

      res += state[j] * primes [i++];

      if (i >= NUM_PRIMES)

        i = 0;

    }

  return res;

}
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#define CRC_POLYNOMIAL 0x82F63B78

static unsigned

crc_hash_bit_by_bit (const char * str)

{

  unsigned const char * p;

  unsigned res = 0;

  int i, bit;

  for (p = str; *p; p++) {

      res ^= *p;

      for (i = 0; i < 8; i++) {

          bit = res & 1;

          res >>= 1;

          if (bit)

            res ^= CRC_POLYNOMIAL;

        }

    }

  return res;

}
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• easy to parameterize

– just use different prime numbers or starting positions (salt)

• integer multiplication is quite fast on modern processors

– more space (transistors) available for multipliers

– super scalar processors: multiple integer functional units

• how to adjust hash index to table size

– power of two sizes: bit masking

– otherwise calculate remainder
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• problem with explicit complete state space exploration:

1. too many states due to state space explosion

2. single state requires already quite some space to be saved (10 - 1000 bytes?)

• simple idea of super-trace algorithm:

1. treat states with the same hash value as identical states

2. do not save states

3. save only their hash value

• super-trace algorithm = bit-state hashing
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if a state with the same hash value as the hash value
of the current state was visited before then the current
state is considered to have been visited as well!
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• Advantages:

– drastic reduction of space usage (one bit per state)

– reduced by at least 8 times the size of a single state in bytes

– fit size of hash table to the amount of available main memory

– produces a lower bound on the number of visited and thus reachable states

– hash function parameterization and/or search order randomization . . .

– . . . thus different parts of the search space are explored

• Disadvantages:

– incompleteness due to non collision free hashing

– coverage?
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• calculate two hash values with different hash functions

– save state by storing in both hash tables one bit

– now state is assumed to have been visited iff both bits are already set

– z.B. h1,h2 : Keys→{0, . . . ,232−1}

– two hash tables with 232 bits = 229 bytes = 512 MB

• easy to extend to n hash functions with n > 2

– n = 4 with 2 GB main memory for hash tables is realistic

– cf. parameterization of hash function using multiplication with primes
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• instead of storing n bits it is also possible to store the n bit hash value in the hash table

– hash table using 256 MB = 228 bytes can store 226 hash values / states

– 32 bit hash function h:keys→{0, . . . ,232−1}

– 4 bytes hash value per state

100%

0%

50%

2^10 2^15 2^25 2^30 2^35

= 2n

2^20

memory

hash compact

complete

coverage

(after [Holzmann 1998], 427567 reachable states, 1376 bits)
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• best case assumptions:

– hash function is collision free

– hash table is filled as long as possible without collisions

• m memory usage in bits, s state size in bits, r reachable states

coveragen=2 (m) = m
r·2

coveragehashcompact(m) = m
r·w w = word size in bits,e.g. 32 bits,w≤ dlog2re

coveragecomplete (m) = m
r·s horizontal axis in previous figure is logarithmic

• in practice collisions do occur

• complete methods actually need more memory to achieve the same coverage

• these techniques are actually so called “Bloom filters”
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• synchronous composition

– lock step of all components, global clock

– corresponds to product automaton construction

– typical model for sequential hardware

(even though on switch/transistor level we need asynchronous models)

• asynchronous composition

– components run independently, local clock

– typical model for communication protocols and distributed software

– synchronization: system calls, interrupts, signals, messages, channels, RPC

– appropriate simplification: interleaving
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A

a

s

B

b

ss global

s

a local to A

s global

b local to B
b

b a

a

||A  B

• alternating execution of each process for local actions

• synchronization on global actions by rendezvous

• standard parallel composition in process algebra
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Definition Let A1 and A2 be LTS. Their parallel composition A = A1 || A2
consists of the following components:

S = S1×S2, Σ = Σ1∪Σ2, I = I1× I2, T is defined as follows:

(s, t) a→ (s′, t′) in A iff

s a→ s′ in A1 and t′ = t if a ∈ Σ\Σ2

t a→ t′ in A2 and s′ = s if a ∈ Σ\Σ1

s a→ s′ in A1 and t a→ t′ in A2 if a ∈ Σ1∩Σ2

interleaving with synchronization on common actions
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Definition In A1 || A2 a symbol a is local for Ai iff a ∈ Σi and a 6∈ Σ j for all i 6= j.

The set of local symbols for Ai is denoted as Λi.

Definition A symbol is called local if it is local for one Ai.

The set of all local symbols is denoted as Λ =
⋃

Λi.

Definition Transition (s1,s2)
a→ (s′1,s

′
2) in A1 || A2 is local (for Ai), iff a is local (for Ai).

Definition Symbols resp. transitions are global, iff they are not local.

The set of global symbols for Ai is denoted Γi and for all components denoted as Γ =
⋃

Γi.

If i = 1 let σ(i) = 2 and vice versa.

Fact (s1,s2)
a→ (s′1,s

′
2) in A iff

si
a→ s′i in Ai and s′

σ(i) = sσ(i) if a local for Ai

s j
a→ s′j in A j for all j = 1,2 if a global
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Fact Asynchronous parallel composition || is associative.

(the notation A1 || A2 || . . . || An is therefore well defined)

Fact . . . and commutative modulo bisimulation: A1 || A2 ≈ A2 || A1

Fact For the transition relation of A1 || A2 || . . . || An we have:

Let Ψ(a)⊆ {1, . . . ,n} be the set of indices i with a ∈ Σi.

Let Ψ(a) be its complement.

(s1, . . . ,sn)
a→ (s′1, . . . ,s

′
n) iff si

a→ s′i for all i ∈Ψ(a) 6= /0 and s′j = s j for all j ∈Ψ(a)
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Definition For two LTS A1 and A2 the full asynchronous parallel composition A = A1 ||| A2
consists of the following components:

S = S1×S2, Σ = P(Σ1∪Σ2), I = I1× I2, T is defined as follows:

(s, t) M→ (s′, t′) in A iff

s a→ s′ in A1 and t′ = t if M = {a} ⊆ Σ1\Σ2

t b→ t′ in A2 and s′ = s if M = {b} ⊆ Σ2\Σ1

s a→ s′ in A1 and t a→ t′ in A2 if M = {a} ⊆ Σ1∩Σ2

s a→ s′ in A1 and t b→ t′ in A2 if a ∈ Σ1\Σ2

and b ∈ Σ2\Σ1

and M = {a,b}
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• extension of full asynchronous composition to arbitrary many components:

– Σ = P(Σ1∪·· ·∪Σn), T = . . .

– synchronization on multiple global symbols in parallel is possible

– exponential increase in alphabet size

• interleaving as simplification

– Fact same set of reachable states

– lengths of paths between states may differ but . . .

– . . . interleaving model is not exact with respect to relative speed of components
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idea follow only one out of 8 possible paths, e.g. just the red or green one
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Σi = {ai,s}, Σ = {a1, . . . ,an,s}, Λi = {ai}, Γ = Γi = {s}

a1

s

a
n

s

a2

0

1

2

0

1

2

0

1

2

|||| ||
s

number states: |S|= |{0,1,2}n|= 3n.

number reachable states: |{0,1}n∪{2}n|= 2n+1

number of necessary states: |(1∗0∗∩{0,1}n) ∪ {2}n|= (n+1)+1
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• checker has to be “invariant” against omitted transitions

– removing transitions may not alter reachability of final states

– reduction is depends on checker

• achieving maximum reduction can not be the goal:

– only possible if reachability of final states is known

– then there is no gain

• goal is to use a simple criteria that allows to remove transitions

– best case: these situations can be determined statically . . .

– . . . or efficiently dynamically during search
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Definition A State s = (s1, . . . ,sn) in A1 || · · · || An is called local to Ai iff

all transitions in Ai with si as source are local to Ai and such a transition exists

Definition A symbol a is commutative with a symbol b in state s iff

for all s′, s′′ with s a→ s′ and s b→ s′′ there is a state t with s′ b→ t and s′′ a→ t.
s

t

s′ s′′

a b

ab

Fact Let s be local to Ai. Then all Λi are commutative to all other Σ\Λi.
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Definition An expansion of a state is a subset of its successors.

BFS/DFS iterates only over expansions of current in inner loop

partial_order_recursive_dfs_aux (Stack stack, State current)

{

  ...

  forall next in expansion (current)

    partial_order_recursive_dfs_aux (stack, next);

  ...

}

Definition A partial expansion is a proper subset of the successors.
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Definition Local partial order reduction uses the following expansion for a state s:

• exactly the local transitions of one Ai, if s is local to Ai

(this is a partial expansion in general)

• if there are multiple such Ai, then choose an arbitrary one

• if there is no such Ai, use all successors

(this is a non partial or full expansion)
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also called “stutter equivalent”

Definition two traces w and w′ are locally equivalent, written w≈l w′, iff

they are identical after removing all local symbols

Fact the local equivalence ≈l is in deed an equivalence relation

Proof

• reflexivity and symmetry are easy

• write w|Σ′ for the trace w after removing symbols from Σ′

• transitivity: from w1 ≈l w2, w2 ≈l w3 follows w1|Γ = w2|Γ = w3|Γ and therefore w1 ≈l w3
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Definition Checker C ignores local symbols iff

s a→ = {s} in C for all local a ∈ Λ

(also called “a is invisible for C”)

Fact Let C ignore local symbols and w≈l w′, then w ∈ L(C)⇔ w′ ∈ L(C).

Proof For w ∈ L(C), a state sequence that accepts w also accepts w′ and vice versa.

Search with partial order reduction only needs to traverse
one representative of each equivalence class of ≈l.
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Problem

• partial expansion “delays” execution of transitions of other A j

• those could be delayed forever even though they are executable

Solution

• cycles with only partial expansion need to be broken by fully expanding one state

• easy to implement in DFS:

– each cycle is closed through a “back edge” to a state on the search stack

– if a “back edge” is found the current state is fully expanded

• approximation in BFS: full expansion if an edge to an earlier generation is found.
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• instead of synchronization through actions:

– synchronization through global variables

– and/or synchronization through monitors/semaphores

– and/or synchronization through messages/channels

• partial order reduction can be applied using the following concepts:

– independence resp. commutativity of statements

∗ read/write and write/read dependent, read/read independent

∗ similar approach for messages (read = receive, write = send)

– invisibility of local statements
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• Message Passing

– communication with messages over channels/buffers

– note: finite models always have channels with finite capacity

• independent or local operations (2 processes, 1 channel):

– read from channel, which is not full

– write into a channel, which is not empty

• dependent or global operations (2 processes, 1 channel):

– read from a full channel

– write into an empty channel
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• liveness

– opposite of safety (not “security”)

– describes unavailable behavior

– usually only makes sense, if concrete timing is abstracted away:

concentrate on potential sequences of events

• deadlock is still a safety property

– “no state without successor is reachable”

• livelock as a generic liveness property:

– “system is locked up in an endless loop with real progress”
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• termination of programs/processes/protocols:

– quicksort terminates

– IEEE Firewire: initialization phase terminates with a proper topology

• expected events really happen:

– operations in super scalar processors eventually “retire”

– elevator eventually shows up, if called

• in these examples there are no time limits
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• finite state systems:

lasso

no progressstem

• infinite state systems:

– “divergence” possible: counter example may not have lasso shape

– for instance an incrementing counter over natural numbers
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• abstraction of concrete scheduler:

– order of process execution is arbitrary in the model

– applies to interleaving and full asynchronous composition

• this abstraction may lead to spurious resp. artificial counter examples for liveness:

– not executing a process even though executable may produce spurious live lock

• fairness:

– scheduler does not ignore an (executable) process forever . . .

– . . . without specifying a concrete scheduler

(which would be incorrect anyhow, because relative speed of processes unknown)
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Definition a fair LTS A = (S, I,Σ,T,F) is an ordinary LTS (S, I,Σ,T ),
with F ⊆ T a set of fair transitions of A.

(a transition is represented as (s,a,s′))

Definition an infinite path π = s0
a0→ s1→ . . . in a fair LTS is fair iff

π contains infinitely many fair transitions: |{i | (si,ai,si+1) ∈ F}|= ∞.

Example choose F as the set of transitions in which a deterministic component A j either
does a local or global transition, or is “disabled” (s 6 a→ for all a ∈ Σ j). A fair path in A1
according to F in A1 || · · · || An has to execute A j over and over again.
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a s

r

a

rb

s

b

client A

b s
r

a,b,s

b,r,s

a a,b,r,s

fair
a r

server

Bclient checker

F = all {b,r,s}-transitions, for which the checker stays in the middle state

(counter example, that an a has to occur after r eventually)

there is a fair path with trace r(bs)ω = rbsbsbs . . .

(in which A is executed once)
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• brute force (results in a quadratic algorithm):

– back edge: edge from current to state on stack during recursive DFS

– cycle closed by back edge is fair iff the cycle contains a fair transition

• SCC = strongly connected component

– max. set of nodes of a directed graph (= state space),

in which every node is reachable from every other node in the set

• every cycle (incl. the cyclic part of any lasso) is contained in an SCC

– SCCs can be found by DFS:

linear algorithm by Tarjan for decomposing a directed graph into its SCCs
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stack

back edge

SCC

SCC

SCC

stack

initial states

stack

stack

stack stack

back edge
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• for each node/state calculate

1. depth first search index (DFSI): order nodes as they are discovered

2. min. reachable DFSI through back edges (MRDFSI), initialized by DFSI

• determine DFSI in prefix phase of DFS (before successors are visited)

• push each newly reached node on auxiliary stack

• minimize MRDFSI over the MRDFSI of each node and its immediate children

(during suffix or post-fix phase, but not over children already in an SCC )

• after visiting children of current node with MRDFSI = DFSI:

– pop from aux. stack until current node is popped

– all popped nodes in this last step form an SCC
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forall nodes N do dfsi[N] = 0, mrdfsi[N] = INF;

S = empty stack;

I = 0; forall nodes N do I = tarjan (N, I, S);

tarjan (N, I, S)

if (dfsi[N] != 0) return I;

mrdfsi[N] = dfsi[N] = ++I;

S.push (N);

forall successors M of N do I = tarjan (M, I, S);

forall successors M of N do

mrdfsi[N] = min (mrdfsi[N], mrdfsi[M]);

if (dfsi[N] != mrdfsi[N]) return I;

do M = S.pop (), scc[M] = N, mrdfsi[M] = INF; while (M != N);

return I;
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Problem prev. example without fair scheduler, allows spurious counter example

Definition a general fair LTS A = (S, I,Σ,T,F1, . . . ,Fn) is an LTS (S, I,Σ,T ),
with Fi ⊆ T a family of fairness constraints.

Definition transition (s,a,s′) is fair for the fairness constraint Fi iff (s,a,s′) ∈ Fi.

Definition an infinite path π= s0
a0→ s1→ . . . in a general fair LTS is fair iff π contains infinitely

many fair transitions for each fairness constraint Fi: |{i | (s j,ai,s j+1) ∈ Fi}|= ∞.

Example Cont. choose as second fairness constraint all transitions which are either local
to A or global. Then no fair path exists and there is no counter example for the property
that r has to be followed by an a eventually.
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• similar algorithm as just for one fairness constraint:

– while closing cycles (through back edges)

check whether cycle contains all fairness constraints

– or alternatively check if there is an SCC,

which contains a fair transition for each fairness constraint

• reduction of general fairness to (single) fairness: “counter construction”

– order fairness constraints, e.g. F1 < .. . < Fn

– cross product with modulo n counter which goes from i to (i+1) mod n iff

the transition of the (original) LTS is fair with respect to Fi+1

– new single fairness constraint consists of all transitions

in which the counter goes from n−1 to 0
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• abstract data type “boolean logic”:

constructors: for boolean constants and variables

operations: conjunction, disjunction, negation, . . .

queries: test on satisfiability, tautology . . .

• fundamental data type in EDA (Electronic Design Automation) tools:

simulators, synthesis, optimization, compilation, verification, . . .

• trade off between fast operations versus space usage
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0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

f g f ∨g ¬ f

point wise operations
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• function table always has 2n rows for n variables (grows exponential)

• operations are linear in the size of its operands:

e.g. conjunction generates function table of same size

• representation is canonical:

two semantically equivalent boolean formulas have identical function tables

• queries are linear:

tautology: check that there is no row with 0 as result

satisfiability: find at least one row with 1 as result
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• potentially more compact than function table

– only depends on number of prime implicants

– minimizing is still NP hard (Quine-McCluskey, heuristics methods: Espresso)

• simple implementation as 2-level circuit (PLA)

• operation of disjunction is linear (without minimization)

• conjunction quadratic, negation exponential (even without minimization)

• satisfiability check has constant complexity:

DNF satisfiable iff DNF has at least one cube
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b

c

d

a

0 1

10 0

0 1

0

0

1

1 01

1 0

1

a⊕b⊕ c⊕d

• no combination of blocks in KV
diagram possible

• only full cubes (= min terms)
as prime implicants (with
max. number of literals)

• DNF for parity of n variables has
2n−1 cubes

Model Checking #342234 WS 2015 Armin Biere JKU Linz



Conjunction on DNF comb
Version 2015.1

118

( a ·b ∨ a ·b · c )︸ ︷︷ ︸
1st Operand

∧ ( a ·b ∨ b · c )︸ ︷︷ ︸
2nd Operand

multiply out

a ·b · a ·b ∨ a ·b · b · c ∨ a ·b · c · a ·b ∨ a ·b · c · b · c

simplify

a ·b ∨ a ·b · c

minimize, e.g. use Quine-McCluskey

a ·b
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( a ∨ b ∨ c )︸ ︷︷ ︸
1st operand

∧ ( d ∨ e ∨ f )︸ ︷︷ ︸
2nd operand

distribution of “∧” over “∨” results in

a ·d ∨ a · e ∨ a · f ∨ b ·d ∨ b · e ∨ b · f ∨ c ·d ∨ c · e ∨ c · f

no further simplifications!

example can be generalized:

the DNF for the conjunction of two DNFs with n resp. m cubes has O(n ·m) cubes
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• net list for combinational circuit:

hyper graph with gates as nodes and signals as hyper edges

(hyper edge: set of nodes connected to this edge)

• parse tree of a boolean formula

• sharing of common sub formulas is more compact:

carry out of a ripple-adders as tree is exponential in bit width

even though it can be implemented with a linear sized circuit

• parse DAG (directed acyclic graph) for combinational logic
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VAR x VAR y VAR i

ANDXOR

pointer to
node representing
the sum output

XOR

OR

pointer to
node representing
the carry output

AND
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enum Tag

{

  OR, AND, XOR, NOT, VAR, CONST

};

typedef struct Node Node;

typedef union NodeData NodeData;

union NodeData

{

  Node *child[2];

  int idx;

};

struct Node

{

  enum Tag tag;

  NodeData data;

  int mark;                     /* traversal */

};
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• similar symbols in symbol table and expressions of compilers

• variable are encoded with integer indices

• boolean constants are represented with index 0 resp. 1

• operations nodes have pointers to their operands

• nodes can be shared

(memory management: reference counting or garbage collection)

• no cycles (DAG)!
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Node *

new_node_val (int constant_value)

{

  Node *res;

  res = (Node *) malloc (sizeof (Node));

  memset (res, 0, sizeof (Node));

  res->tag = CONST;

  res->data.idx = constant_value;

  return res;

}

usually only 0 and 1 as values for constants
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Node *

new_node_var (int variable_index)

{

  Node *res;

  res = (Node *) malloc (sizeof (Node));

  memset (res, 0, sizeof (Node));

  res->tag = VAR;

  res->data.idx = variable_index;

  return res;

}

variables are distinguished by their index
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Node *

new_node_op (enum Tag tag, Node * child0, Node * child1)

{

  Node *res;

  res = (Node *) malloc (sizeof (Node));

  memset (res, 0, sizeof (Node));

  res->tag = tag;

  res->data.child[0] = child0;

  res->data.child[1] = child1;

  return res;

}

operator type as first argument

(assumption: child1 is 0 for negation operator)
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Node *x, *y, *i, *o, *s, *t[3];

x = new_node_var (0);

y = new_node_var (1);

i = new_node_var (2);

t[0] = new_node_op (XOR, x, y);

t[1] = new_node_op (AND, x, y);

t[2] = new_node_op (AND, t[0], i);

s = new_node_op (XOR, t[0], i);

o = new_node_op (OR, t[1], t[2]);

explicit sharing through temporary pointers t[0], t[1] and t[2]
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void

input_cone_node (Node * node)

{

  if (node->mark)

    return;

  node->mark = 1;

  switch (node->tag)

    {

    case CONST:

      break;

    case VAR:

      printf ("variable %d in input cone\n", node->data.idx);

      break;

    case NOT:

      input_cone_node (node->data.child[0]);

      break;

    default:                    /* assume binary operator */

      input_cone_node (node->data.child[0]);

      input_cone_node (node->data.child[1]);

      break;

    }

}
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void

mark_node (Node * node, int new_value)

{

  if (node->mark == new_value)

    return;

  node->mark = new_value;

  switch (node->tag)

    {

    case VAR:

    case CONST:

      return;

    case NOT:

      mark_node (node->data.child[0], new_value);

      break;

    default:

      mark_node (node->data.child[0], new_value);

      mark_node (node->data.child[1], new_value);

      break;

    }

}
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• algorithms are essentially a variant of DFS

• avoid multiple visits with mark flag

• usually two phases: traversal, reset of mark flags

• conjunction, negation are fast (simply use op)

• tautology and satisfiability checks are hard

• explicit sharing: not canonical representation
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• basic logical operators: conjunction and negation

• DAG representation:

operator nodes are all conjunctions

negation/sign as edge attribute

(bit stuffing: compactly stored as LSB in pointer)

• automatic sharing of isomorphic sub graphs

• simplification rules with constant time look ahead
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yx

negation/sign are edge attributes

(not part of node)
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typedef struct AIG AIG;

struct AIG

{

  enum Tag tag;                 /* AND, VAR */

  void *data[2];

  int mark, level;              /* traversal */

  AIG *next;                    /* hash collision chain */

};

#define sign_aig(aig) (1 & (unsigned) aig)

#define not_aig(aig) ((AIG*)(1 ^ (unsigned) aig))

#define strip_aig(aig) ((AIG*)(~1 & (unsigned) aig))

#define false_aig ((AIG*) 0)

#define true_aig ((AIG*) 1)

assumption for correctness:
sizeof(unsigned) == sizeof(void*)
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• alignment of modern processors “wastes” several LSBs

alignment is typically 4 or 8 bytes⇒ 2 or 3 LSBs left
malloc returns aligned blocks, e.g. 8 Byte aligned on Sparc

• negated and not negated formula represented by the same node

(potentially reduces memory usage by half)

• maximal reduction to one operator (AND)

• negation extremely efficient (bit LSB of pointer)

• allows additional simplification rules

constant time detection of arguments with opposite sign
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int

simp_aig (enum Tag tag, void *d0, void *d1, AIG ** res_ptr)

{

  if (tag == AND)

    {

      if (d0 == false_aig || d1 == false_aig || d0 == not_aig (d1))

        { *res_ptr = false_aig; return 1; }

      if (d0 == true_aig || d0 == d1)

        { *res_ptr = d1; return 1; }

      if (d1 == true_aig)

        { *res_ptr = d0; return 1; }

    }

  return 0;

}
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yx yx

merge nodes with same children
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• is also called algebraic reduction

• main advantage: automatic sharing, thus less memory usage

• implementation:

nodes stored in a hash table (unique table)

• on-the-fly reduction:

invariant: two nodes always have different children

before generating a new node search for already existing equivalent node

if search is successful return equivalent node
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AND

next

VAR

AND

next AND

next

Unique−Table

1

Collision−Chain

Collision−Chain
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#define UNIQUE_SIZE (1 << 20)

AIG *unique[UNIQUE_SIZE];

AIG **

find_aig (enum Tag tag, void *d0, void *d1)

{

  AIG *r, **p;

  unsigned h = (tag + ((int) d0) * 65537 + 13 * (int) d1);

  h = h & (UNIQUE_SIZE - 1);    /* modulo UNIQUE_SIZE */

  for (p = unique + h; (r = *p); p = &r->next)

    if (r->tag == tag && r->data[0] == d0 && r->data[1] == d1)

      break;

  return p;

}
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1. compute hash value as combination of tags tags and pointer values

(resp. variable index or constant value)

2. normalize hash value to table size (modulo table size)

3. search through collision chain starting at the normalized hash value

4. compare nodes with node that is to be generated

5. if these are the same return pointer to the link pointing to the existing node

6. otherwise return pointer to last (empy) link field in collision chain
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void

insert_aig (AIG * aig)

{

  AIG **p;

  int l[2];

  p = find_aig (aig->tag, aig->data[0], aig->data[1]);

  assert (!*p);

  aig->next = *p;

  *p = aig;

  if (aig->tag == AND)

    {

      l[0] = strip_aig (aig->data[0])->level;

      l[1] = strip_aig (aig->data[1])->level;

      aig->level = 1 + ((l[0] < l[1]) ? l[1] : l[0]);

    }

  else

    aig->level = 0;

}

find aig returns “new position” of hashed node
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AIG *

new_aig (enum Tag tag, void *data0, void *data1)

{

  AIG *res;

  if (tag == AND && data0 > data1)

    SWAP (data0, data1);

  if (tag == AND && (simp_aig (tag, data0, data1, &res)))

    return res;

  if ((res = *find_aig (tag, data0, data1)))

    return res;

  res = (AIG *) malloc (sizeof (AIG));

  memset (res, 0, sizeof (AIG));

  res->tag = tag;

  res->data[0] = data0;

  res->data[1] = data1;

  insert_aig (res);

  return res;

}
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AIG *

var_aig (int variable_index)

{

  return new_aig (VAR, (void *) variable_index, 0);

}

AIG *

and_aig (AIG * a, AIG * b)

{

  return new_aig (AND, a, b);

}

AIG *

or_aig (AIG * a, AIG * b)

{

  return not_aig (and_aig (not_aig (a), not_aig (b)));

}

AIG *

xor_aig (AIG * a, AIG * b)

{

  return or_aig (and_aig (a, not_aig (b)), and_aig (not_aig (a), b));

}
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int

count_aig (AIG * aig)

{

  if (sign_aig (aig))

    aig = not_aig (aig);

  if (aig->mark)

    return 0;

  aig->mark = 1;

  if (aig->tag == AND)

    return count_aig (aig->data[0]) + count_aig (aig->data[1]) + 1;

  else

    return 1;

}

be carefull to handle signs
otherwise simple DFS as for DAG representation
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void

mark_aig (AIG * aig, int new_value)

{

  if (sign_aig (aig))

    aig = not_aig (aig);

  if (aig->mark == new_value)

    return;

  aig->mark = new_value;

  if (aig->tag == AND)

    {

      mark_aig (aig->data[0], new_value);

      mark_aig (aig->data[1], new_value);

    }

}

less cases and less code as for DAG representation!
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AIG *

node2aig (Node * node)

{

  switch (node->tag)

    {

    case VAR:

      return new_aig (VAR, (void *) node->data.idx, 0);

    case CONST:

      return node->data.idx ? true_aig : false_aig;

    case AND:

      return and_aig (node2aig (node->data.child[0]),

                      node2aig (node->data.child[1]));

    case OR:

      return or_aig (node2aig (node->data.child[0]),

                     node2aig (node->data.child[1]));

    case XOR:

      return xor_aig (node2aig (node->data.child[0]),

                      node2aig (node->data.child[1]));

    default:

      assert (node->tag == NOT);

      return not_aig (node2aig (node->data.child[0]));

    }

}
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• more robust C code

(for instance 64 Bit conformance)

• memory management

(either use reference counting or garbage collection)

• input format, parser

• more complex simplification rules for grand children

(see our paper BrummayerBiere-MEMICS’06)
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x y x y

x · y ∨ x · y ≡ (x∨ y) · (x∨ y)

both formulas and AIGs represent XOR of x and y

(multiply out right formula and simplify result to obtain left one)

in general there are multiple AIGs for the same boolean function
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• based on ternary base operation ITE (if-then-else):

condition is always a variable

• go back to Shannon also called Shannon graphs

• mainly used in the version of ROBDDs

Reduced Ordered Binary Decision Diagrams

• [Bryant86] showed canonicity of ROBDDs:

each boolean function has exactly one ROBDD modulo variable order
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nodes are
marked with
condition variable

ELSE successor
is reached through
read dashed line

0 1

THEN successor

solid line

boolean
constant
TRUE

FALSE

is reached through

boolean
constant

x

y y
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• inner nodes are ITE, leafs are boolean constants

• notation ite(x, f1, f0) means if x then f1 else f0

(note that ELSE argument f0 follows f1 despite reverse indices)

• semantic eval produces boolean expressions out of a BDD

eval(0) ≡ 0
eval(1) ≡ 1

eval((ite(x, f1, f0)) ≡ x · eval( f1) ∨ x · eval( f0)

• BDDs are again algebraically reduced DAGs

(max. sharing of isomorphic sub graphs as for AIGs)

• negated edges are also possible
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x y x⊕ y

0 0 0
0 1 1
1 0 1
1 1 0

0110

x

y y

10

x

y y

decision tree decision diagram
(DAG)
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x

y yy y

xx

max. sharing of isomorphic sub graphs
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y

x

y

elimination of redundant nodes
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• apply both rules exhaustively

(that gives reduced BDDs: the “R” in “ROBDDs”)

• variables on paths from the root to leafs are ordered always in the same way

(that gives ordered BDDs: the “O” in “ROBDDs”)

• these assumptions make ROBDDs canonical modulo the variable order

– different orders usually lead to different ROBDDs

– variable order has great influence ROBDD size for a given function

• in the following we always mean ROBDD, when we say BDD
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Linear Size BDD for Bit-Vector Comparison BDDs
Version 2015.1

156

00

00

00

00 1

x

x2

2 2

x

x

y y

3

3 3

y y

y y

y y

1

1 1

0

0 0

boolean function/expression:

n−1∧
i=0

xi = yi

interleaved variable order:

x3 > y3 > x2 > y2 > x1 > y1 > x0 > y0

comparison of two n-bit-vectors needs 3 ·n in-
ner nodes for the interleaved variable order
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missing edges
lead to 0

1

x3

x2

1x

x0

1x

x0x0x0

x2

1x

x0

1x

x0x0x0

y2 y2 y2 y2

y3y3y3 y3y3y3y3 y3 y3y3y3 y3y3y3y3 y3

y2 y2 y2 y2

y1 y1 y1y1

y0 y0
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Variable Orders BDDs
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• exponential difference between variable orders

• there also exist exponential functions:

BDD is always exponential in size, e.g. middle output bit of multiplier circuits

• heuristics for static variable ordering:

order the variables with DFS as they occur in the DAG/AIG

(as for instance in input cone aig)

• dynamic reordering of variables

based on in place exchange of neighboring variables
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Tautology, Equivalence, Satisfiability BDDs
Version 2015.1

159

canonicity of BDDs results in: more precisely ROBDD

• BDD is a tautology, iff it is only made of the 1 leaf

• BDD is satisfiable, iff it is not only made of the 0 leaf

• two BDDs are equivalent, iff they are isomorphic

(constant time pointer comparison if unique table as in AIGs is used)

Question: where is the NP completeness of satisfiability?

Answer: hidden in the effort to construct the BDD.
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f (x) ≡ x · f (1) ∨ x · f (0)

let x the top most variable of two BDDs f and g:

f ≡ ite(x, f1, f0) g ≡ ite(x,g1,g0)

with fi resp. gi the children of f and g for i = 0,1.

f (0) = f0 g(0) = g0 f (1) = f1 g(1) = g1

Because of the R in ROBDD x occurs only at the top of f and g.

( f @g)(x) ≡ x · ( f @g)(1) ∨ x · ( f @g)(0)

≡ x · ( f (1)@g(1)) ∨ x · ( f (0)@g(0))

≡ x · ( f1@g1) ∨ x · ( f0@g0)

where @ is any binary boolean operation, such as ∧, ∨, ⊕, . . .

recursive algorithm to compute operations on BDDs
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typedef struct BDD BDD;

struct BDD

{

  int idx, mark;

  BDD *child[2], *next;

};

#define sign_bdd(ptr) (1 & (unsigned) ptr)

#define strip_bdd(ptr) ((BDD*) (~1 & (unsigned) ptr))

#define not_bdd(ptr) ((BDD*) (1 ^ (unsigned) ptr))

#define true_bdd ((BDD*) 1)

#define false_bdd ((BDD*) 0)

#define is_constant_bdd(ptr) \

  ((ptr) == true_bdd || (ptr) == false_bdd)
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#define UNIQUE_SIZE (1 << 20)

BDD *unique[UNIQUE_SIZE];

BDD **

find_bdd (int idx, BDD * c0, BDD * c1)

{

  BDD *r, **p;

  unsigned h = (idx + ((int) c0) * 65537 + 13 * (int) c1);

  h = h & (UNIQUE_SIZE - 1);

  for (p = unique + h; (r = *p); p = &r->next)

    if (r->idx == idx && r->child[0] == c0 && r->child[1] == c1)

      break;

  return p;

}
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0 1 0 1

x

f

f f

x

f

f f

ite(x, f1, f0) ≡ x · f1 ∨ x · f0 ≡ (x∨ f1) · (x∨ f0)

≡ x · f1 ∨ x · f0 ∨ f1 · f0

≡ x · f1 ∨ x · f0 ≡ ite(x, f1, f0)
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BDD *

new_bdd_aux (int idx, BDD * c0, BDD * c1)

{

  BDD *res;

  assert (!sign_bdd (c0));

  if ((res = *find_bdd (idx, c0, c1)))

    return res;

  res = (BDD *) malloc (sizeof (BDD));

  memset (res, 0, sizeof (BDD));

  res->idx = idx;

  res->child[0] = c0;

  res->child[1] = c1;

  *find_bdd (idx, c0, c1) = res;

  return res;

}

Model Checking #342234 WS 2015 Armin Biere JKU Linz



Constructor for BDDs BDDs
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BDD *

new_bdd (int idx, BDD * c0, BDD * c1)

{

  BDD *res;

  int sign;

  if (c0 == c1)

    return c0;

  if ((sign = sign_bdd (c0)))

    {

      c0 = not_bdd (c0);

      c1 = not_bdd (c1);

    }

  res = new_bdd_aux (idx, c0, c1);

  return sign ? not_bdd (res) : res;

}
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Different Top Indices BDDs
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f @ g

x

y y y

( f @g)(x) ≡ x · ( f1 @g) ∨ x · ( f0 @g)

if top variables do not match only one argument is split
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Calculating the Top-Index BDDs
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int

top_idx_bdd (BDD * a, BDD * b)

{

  int res[2];

  res[0] = (is_constant_bdd (a)) ? -1 : strip_bdd (a)->idx;

  res[1] = (is_constant_bdd (b)) ? -1 : strip_bdd (b)->idx;

  return res[res[0] < res[1]];

}
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BDD *

cofactor (BDD * bdd, int pos, int idx)

{

  BDD *res;

  int sign;

  if (is_constant_bdd (bdd))

    return bdd;

  if ((sign = sign_bdd (bdd)))

    bdd = not_bdd (bdd);

  res = (bdd->idx == idx) ? bdd->child[pos] : bdd;

  return sign ? not_bdd (res) : res;

}
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Divide BDDs
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void

cofactor2 (BDD * a, BDD * b, BDD * c[2][2], int *idx_ptr)

{

  int idx = *idx_ptr = top_idx_bdd (a, b);

  c[0][0] = cofactor (a, 0, idx);

  c[0][1] = cofactor (a, 1, idx);

  c[1][0] = cofactor (b, 0, idx);

  c[1][1] = cofactor (b, 1, idx);

}
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BDD *

basic_and (BDD * a, BDD * b)

{

  assert (is_constant_bdd (a) && is_constant_bdd (b));

  return (BDD *) (((unsigned) a) & (unsigned) b);

}

BDD *

basic_or (BDD * a, BDD * b)

{

  assert (is_constant_bdd (a) && is_constant_bdd (b));

  return (BDD *) (((unsigned) a) | (unsigned) b);

}

BDD *

basic_xor (BDD * a, BDD * b)

{

  assert (is_constant_bdd (a) && is_constant_bdd (b));

  return (BDD *) (((unsigned) a) ^ (unsigned) b);

}
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typedef BDD *(*BasicFunctor) (BDD *, BDD *);

BDD *

apply (BasicFunctor op, BDD * a, BDD * b)

{

  BDD *tmp[2], *c[2][2];

  int idx;

  if (is_constant_bdd (a) && is_constant_bdd (b))

    return op (a, b);

  cofactor2 (a, b, c, &idx);

  tmp[0] = apply (op, c[0][0], c[1][0]);

  tmp[1] = apply (op, c[0][1], c[1][1]);

  return new_bdd (idx, tmp[0], tmp[1]);

}
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BDD *

and_bdd (BDD * a, BDD * b)

{

  return apply (basic_and, a, b);

}

BDD *

or_bdd (BDD * a, BDD * b)

{

  return apply (basic_or, a, b);

}

BDD *

xor_bdd (BDD * a, BDD * b)

{

  return apply (basic_xor, a, b);

}

BDD *

var_bdd (int idx)

{

  return new_bdd (idx, false_bdd, true_bdd);

}
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