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Introduction

Lemmas on Demand

e so-called lazy SMT approach

e our SMT solver Boolector
o implements Lemmas on Demand for
o the quantifier-free theory of

o fixed-size bit vectors
® arrays

e recently: Lemmas on Demand for Lambdas [DIFTS'13]

generalization of Lemmas on Demand for Arrays [JSAT'09]
arrays represented as uninterpreted functions

array operations represented as lambda-terms

reads represented as function applications
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Lemmas on Demand
Workflow: Original Procedure LOD
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Lemmas on Demand
Workflow: Original Procedure LOD
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Lemmas on Demand
Workflow: Original Procedure LOD

LOD

¢7r4. — abstraction refinement usually
Abstraction

the most costly part of LOD

= .
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Lemmas on Demand

Workflow: Optimized Procedure LOD,;
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e focus LOD on the relevant parts
of the input formula

e exploit a posteriori observability
don’t cares

e partial model extraction prior to

consistency checking

— subsequently reduces the cost
for consistency checking



Lemmas on Demand

Example: Input Formula

Example. 1 =i#kA(f(i) =eV f(k) =v) Av=ite(i = j,e,9(j))




Lemmas on Demand

Example: Formula Abstraction

Example.  Bit Vector Skeleton

a(applys)




Lemmas on Demand

Example: Formula Abstraction

Example. Full Candidate Model

a(apply1)

00 00 00 00 00 00 00 01



Lemmas on Demand
Example: Formula Abstraction

Example. Full Candidate Model

Check consistency:
{apply1, apply2, applys}




Lemmas on Demand
Example: Formula Abstraction

Example. Partial Candidate Model

Check consistency:
{apply1}

a(apply1)

00 00 00 00 00 01



Partial Model Extraction

Most intuitive: use justification-based approach

— Justification-based techniques in the context of

e SMT
o prune the search space of DPLL(T) [ENTCS'05, MSRTR'07]

e Model checking
o prune the search space of BMC [CAV'02]
o generalize proof obligations in PDR [EénFMCAD'11, ChoFMCAD'11]
o generalize candidate counter examples (CEGAR) [LPAR'08]



Partial Model Extraction

Our approach: Dual propagation-based partial model extraction

o exploiting the duality of a formula abstraction ¥

— assignments satisfying ¢ (the primal channel)
falsify its negation —) (the dual channel)

e motivated by dual propagation techniques in QBF [AAAI'10]
o one solver with two channels (online approach)
o symmetric propagation between primal and dual channel

o here: offline dual propagation
o two solvers, one solver per channel
o consecutive propagation between primal and dual channel
—— primal generates full assignment before dual enables partial model extraction
based on the primal assignment



Partial Model Extraction
Dual Propagation-Based Approach

Example. Boolean Level

Primal channel: Y2 =(aAb)V (cAd)
Dual channel: —ha = (—a V =b) A (—e V —d)



Partial Model Extraction
Dual Propagation-Based Approach

Example. Boolean Level
Primal channel: Y2 =(aAb)V (cAd)
Dual channel: —ha = (—a V =b) A (—e V —d)

Primal assignment:  o(¢2) ={o(a) =T, o) =T, 0(c)=T,0(d) =T}



Partial Model Extraction
Dual Propagation-Based Approach

Example. Boolean Level
Primal channel: Y2 =(aAb)V (cAd)
Dual channel: —ha = (—a V =b) A (—e V —d)

Primal assignment:  o(¢2) ={o(a) =T, o) =T, 0(c)=T,0(d) =T}

Fix values of inputs via assumptions to the dual solver:
Dual assumptions: {a=T,b=T,c=T,d=T}



Partial Model Extraction
Dual Propagation-Based Approach

Example. Boolean Level
Primal channel: Y2 =(aAb)V (cAd)
Dual channel: —ha = (—a V =b) A (—e V —d)

Primal assignment:  o(¢2) ={o(a) =T, o) =T, 0(c)=T,0(d) =T}

Fix values of inputs via assumptions to the dual solver:
Dual assumptions: {a=T,b=T,c=T,d=T}

Failed assumptions: {a=T, b=T}

— sufficient to falsify =12
— sufficient to satisfy 12



Partial Model Extraction
Dual Propagation-Based Approach

Example. Boolean Level
Primal channel: Y2 =(aAb)V (cAd)
Dual channel: —ha = (—a V =b) A (—e V —d)

Primal assignment:  o(¢2) ={o(a) =T, o) =T, 0(c)=T,0(d) =T}

Fix values of inputs via assumptions to the dual solver:
Dual assumptions: {a=T,b=T,c=T,d=T}

Partial Model

Failed assumptions: {a=T, b=T}

ien 0 (5]

— sufficient to satisfy 12



Partial Model Extraction
Dual Propagation-Based Approach

— structural don’t care reasoning simulated via the dual solver

— no structural SAT solver necessary

Example. (ctd)

Input formula: o = (aADb)V(cAd) =T
Primal SAT solver: CNF(y2) = (-oVaVy)A(—z Vo)A =7
(my Vo) A(—zVa)A
(mx VD) A(—aV-bVax)A
(my V) A (my VA
(meV—=dVy)
Dual SAT solver: CNF(—t2) = (—a VvV =b) A (—eV ~d) =1
Dual assumptions: {a=T,b=T,c=T,d=T}
Partial Model: {a=T,0=T}

— in contrast to partial model extraction techniques based on iterative
removal of unnecessary assignments on the CNF level [FMCAD'13]



Partial Model Extraction
Dual Propagation-Based Approach

— we lift this approach to the word level
Primal channel: I'=a(m)AE = alm) Al A ALisa

Dual channel: -

—— one SMT solver per channel

— one single dual solver instance to maintain —I" over all iterations



Partial Model Extraction
Dual Propagation-Based Approach

Example. Word Level

vr=i#kA(f) =eV f(k) =v) Av=ite(i = j, e, g(5))
a(1) =i # kA (a(applyr) = eV a(apply2) = v) Av =ite(i = j, e, a(applys))

Primal solver: a(t1)

Formula abstraction and its negation
Dual solver:  —a(1) } &

Primal assignment:
o(12) = {o(¢) = 00, o(j) = 00, o(e) = 00, o(v) = 00, o(k) = 01,
a(apply:) = 00, a(apply2) = 00, a(applys) = 00}

Fix values of inputs via assumptions to the dual solver:
Dual assumptions:
o(1h2) = {i = 00, j = 00, e = 00, v = 00, k = 01,
a(apply1) = 00, a(apply2) = 00, a(applys) = 00}

Failed assumptions:
{i =00, j =00, e =00, v =00, k =01, a(apply1) = 00}



Partial Model Extraction
Dual Propagation-Based Approach

Example. Word Level

U1 Ez#k/\(f(l) :e\/f(k) :U)/\’U:ite(i:jv € g(]))
a(P1) =i # kA (a(apply1) = eV a(apply2) = v) Av =ite(i = j, e, a(applys))

Primal solver: a(t1)

Formula abstraction and its negation
Dual solver:  —a(1) } &

Primal assignment:
o(12) = {o(¢) = 00, o(j) = 00, o(e) = 00, o(v) = 00, o(k) = 01,
a(apply:) = 00, a(apply2) = 00, a(applys) = 00}

Fix values of inputs via assumptions to the dual solver:
Dual assumptions:
o(1h2) = {i = 00, j = 00, e = 00, v = 00, k = 01,
a(apply1) = 00, a(apply2) = 00, a(applys) = 00}

Failed assumptions: Partial Model
{i =00, j =00, e = 00, v = 00, k = 01, a(apply:) = 00}




Partial Model Extraction
Dual Propagation-Based Approach

Example. Word Level

br=i#E kA (fi) =eV f(k)=v) Av=ite(i = j, e, g(j))
a(yr) =i # kA (a(apply:) = e V a(applyz) = v) Av = ite(i = j, e, a(applys))

Primal solver: a(t1)

Formula abstraction and its negation
Dual solver:  —a(1) } &

Primal assignment:
o(12) = {o(¢) = 00, o(j) = 00, o(e) = 00, o(v) = 00, o(k) = 01,
a(apply:) = 00, a(apply2) = 00, a(applys) = 00}
Fix values of inputs via assumptions to the dual solver:
Dual assumptions:
o(yp2) = {i =00, j = 00, e = 00, v = 00, k = 01,
a(apply1) = 00, a(apply2) = 00, a(applys) = 00}
Failed assumptions: Consistency Check
{i =00, j =00, e =00, v =00, k = 01,(c(apply1) = 00}



Experimental Evaluation

Configuration

Four Configurations:

e Boolectors.
— version entering SMTCOMP'12, winner of the QF_AUFBYV track

e Boolectorp,

— current Boolector base version (new LOD for Lambdas engine)

e Boolectory,

— with dual propagation-based partial model extraction enabled

e Boolector;,

— justification-based partial model extraction approach for comparison
o determine a posteriori observability don't cares

—— skip lines that do not influence the output of an and-gate
under its current assignment

o if both inputs of an and-gate are controlling (L)
—— skip either one based on a minimum cost heuristic



Experimental Evaluation

Configuration

Two Benchmark Sets:

e SMT'12: 149 benchmarks
all non-extensional QF_AUFBV benchmarks in SMTCOMP'12

o Selected: 173 benchmarks
all non-extensional QF_AUFBYV benchmarks (13696) in the SMT-LIB

(pre-SMTCOMP’14) for which Boolectors. required at least 10 seconds

—— 58 benchmarks shared between both sets

— all experiments on 2.83 GHz Intel Core 2 Quad machines with 8GB RAM
running Ubuntu 12.04

— time limit: 1200 seconds, memory limit: 7GB



Experimental Evaluation

Overview
Overall results on sets SMT'12 and Selected.

Solver (sast(;t/::at) TO MO | Time[s] | DS [s]
o | Boolectorsc | 140 (83/57) 9 0 15882 -
E Boolector,, | 141 (83/58) 8 0 19312 -
S | Boolectorj, | 142 (84/58) 7 0 15709 -
“ | Boolectory, | 142 (84/58) 7 0 20992 5045
w | Boolectorsc | 116 (72/44) 50 7 85863 -
£ | Boolector,, | 121 (76/45) 45 7 76104 -
< | Boolector;, | 130 (85/45) 36 7 63202 -
Y | Boolectory, | 130 (85/45) 36 7 66991 4705

TO ... time out

Time ..

. total CPU time

MO ... memory out
DS ... dual solver overhead



Experimental Evaluation

Overview
Overall results on sets SMT'12 and Selected.
Solver (Sast%’:;‘at) TO MO | Timel[s] | DS [s]
o | Boolectorsc | 140 (83/57) 9 0 15882 -
i [ Boolector,, | 141 (83/58) 8 0 19312 -
S | Boolector,, | 142 (84/58) | 7 0| 15709 -
Y | Boolectory, | 142 (84/58) 7 0 20992 5045
w | Boolectorsc | 116 (72/44) 50 7 85363 -
8 [ Boolector,, | 121 (76/45) | 45 7 76104 )
< | Boolector;, | 130 (85/45) 36 7 63202 -
¥ | Boolectory, | 130 (85/45) 36 7 66991 4705 |

TO ... time out
Time ... total CPU time

MO ... memory out
DS ... dual solver overhead

e SMT'12: 1 additional instance (sat)

e Selected: 9 additional instances (all sat)



Experimental Evaluation

Commonly Solved Instances

Results for commonly solved instances on sets SMT'12 and Selected.

Solver Time [s] SAT [s] DS overhead [s] LOD
Total Avg. Med. Total Avg. Med. | Total Avg. Med. Total Avg. Med.
« | Boolectors 4129 29 2| 3662 26 0 - - - | 30741 221 0
'»': Boolectory,, 8564 61 6 | 7262 52 1 - - - | 33013 237 0
S | Boolectorj, 6362 45 4| 5226 37 0 - - - | 23660 170 0
Y | Boolectorg, | 10145 72 5 | 4700 33 0 | 4109 29 0 | 33402 240 0
— | Boolectorse | 15037 133 35 | 12836 113 34 - - - | 104646 926 175
% Boolector,, | 10001 88 35 | 8330 73 22 - - - | 31752 280 88
% Boolectorj, 8182 72 29 6639 58 19 - - - 28215 249 28
Y | Boolectory, | 10838 95 30 | 6164 54 15 | 3036 26 0| 24866 220 29
Time ... total CPU time SAT ... SAT solver runtime (primal solver)
DS overhead ... dual solver overhead LOD ... number of lemmas generated

e SMT'12: 139 (out of 149) benchmarks, 82 sat, 57 unsat

—— not representative:
~50% solved without a single refinement iteration

e Selected: 113 (out of 173) benchmarks, 70 sat, 43 unsat




Results for commonly solved instances on sets SMT'12 and Selected.

Experimental Evaluation

Commonly Solved Instances

Solver Time [s] SAT [s] DS overhead [s] LOD

Total Avg. Med. Total Avg. Med. | Total Avg. Med. Total Avg. Med.
~ (Boo\ecrom 4129 29 2 3662 26 0 - - - 30741 221 0
E Boolector, 8564 61 6 7262 52 1 - - - 33013 237 0
S | Boolector;, 6362 45 4| 5226 37 0 - - - | 23660 170 0
Y | Boolectorg, | 10145 72 5 | 4700 33 0 | 4109 29 0| 33492 240 0
~ | Boolector,. | 15037 133 35 | 12836 113 34 - - - | 104646 926 175
% Boolector,, | 10001 88 35 | 8330 73 22 - - - | 31752 280 88
% Boolectorj, 8182 72 29 6639 58 19 - - - 28215 249 28
Y | Boolectory, | 10838 95 30 | 6164 54 15 | 3036 26 0| 24866 220 29

Time ... total CPU time

DS overhead ... dual solver overhead

SAT ... SAT solver runtime (primal solver)
LOD ...

number of lemmas generated

e Boolectorsc implements old LOD engine

— new engine (Boolectory,) struggles on a
small set of benchmarks

— needs further investigation




Results for commonly solved instances on sets SMT'12 and Selected.

Experimental Evaluation
Commonly Solved Instances

Solver Time [s] SAT [s] DS overhead [s] LOD

Total Avg. Med. Total Avg. Med. | Total Avg. Med. Total Avg. Med.
« | Boolectors 4129 29 2 | 3662 26 0 - - - | 30741 221 0
E [ Boolectory, 8564 61 6 7262 52 1 - - - 33013 237 0
S | Boolectorj, 6362 45 4| 5226 37 0 - - - | 23660 170 0
n \ Boolectory, | 10145 72 5 | 4700 33 0 | 4109 29 0| 33492 240 0
~ | Boolectors. | 15037 133 35 | 12836 113 34 - - - | 104646 926 175
% ("Boolectory, | 10001 88 35 8330 73 22 - - - | 31752 280 88 |
% Boolectorj, 8182 72 29 6639 58 19 - - - 28215 249 28
Y | Boolectory, | 10838 95 30 6164 54 15 | 3036 26 0| 24866 220 29

Time ... total CPU time

DS overhead ... dual solver overhead

SAT ... SAT solver runtime (primal solver)
LOD ...

e sat solver runtime (SAT)
— Boolectory, most notable improvement on both sets

number of lemmas generated



Results for commonly solved instances on sets SMT'12 and Selected.

Experimental Evaluation
Commonly Solved Instances

Solver Time [s] SAT [s] DS overhead [s] LOD

Total Avg. Med. Total Avg. Med. | Total Avg. Med. Total Avg. Med.
« | Boolectorsc | 4129 29 2 | 3662 26 0 - - - [ 30741 221 0
T [Boolector,, | 8564 61 6 | 7262 52 1 - - - | 33013 237 0
S | Boolectorj, 6362 45 4 5226 37 0 - - - 23660 170 0
Y | Boolectory, | 10145 72 5 | 4700 33 0 | 4109 29 0 | 33492 240 0 |
— | Boolector,. | 15037 133 35 | 12836 113 34 - - - | 104646 926 175
& [Boolector,, | 10001 88 35| 8330 73 22 - - - 31752 280 88
2 | Boolector;, | 8182 72 29 | 6639 58 19 - - - | 28215 249 28
Y | Boolectory, | 10838 95 30 | 6164 54 15 | 3036 26 0 | 24866 220 29

Time ... total CPU time

DS overhead ... dual solver overhead

SAT ... SAT solver runtime (primal solver)
LOD ...

number of lemmas generated

e number of lemmas generated (LOD)
o SMT'12:

e Boolectorj, least number of lemmas

® Boolectory, and Boolector,, approx. the same

— on 14 instances 1.5-2.6 x more lemmas than Boolectorp,

o Selected: Boolectory, most notable improvement



Results for commonly solved instances on sets SMT'12 and Selected.

Experimental Evaluation

Commonly Solved Instances

e dual solver overhead ~30-40% in total

e on <10% of the benchmarks 50-70% of the total runtime
e on >50% of the benchmarks <10% of the total runtime

— Boolectorg, outperforms others disregarding DS overhead

— online dual propagation approach: DS overhead negligible

Solver Time [s] SAT [s] DS overhead [s] LOD
Total Avg. Med. Total Avg. Med. | Total Avg. Med. Total Avg. Med.

« | Boolectors 4129 29 2 | 3662 26 0 - - - | 30741 221 0
E [ Boolectory, 8564 61 6 7262 52 1 - - - 33013 237 0
S | Boolectorj, 6362 45 4 5226 37 0 - - - 23660 170 0
n \ Boolectorg, | 10145 72 5 4700 33 0 | 4109 29 0 33492 240 0
~ | Boolectors. | 15037 133 35 | 12836 113 34 - - - | 104646 926 175
& [(Boolector,, | 10001 88 35| 8330 73 22 - - -] 31752 280 88
% Boolectorj, 8182 72 29 6639 58 19 - - - 28215 249 28
| Boolectory, | 10838 95 30 | 6164 54 15 | 3036 26 0| 24866 220 29

Time ... total CPU time SAT ... SAT solver runtime (primal solver)

DS overhead ... dual solver overhead LOD ... number of lemmas generated



Boolectordp runtime [s]

Experimental Evaluation

Boolectory, vs Boolectory,
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Conclusion

— dual propagation-based optimization for Lemmas on Demand

e don't care reasoning on full candidate models improves performance

e our offline dual propagation-based approach competitive
(in spite of introducing considerable overhead)

— Boolectorj, won QF_ABV track of SMTCOMP'14
— Boolectorg, came in close second

Future work: online dual propagation approach, promises

e negligible or no dual solver overhead

o further improvment of overall performance by enabling partial model
extraction even before a full candidate model has been generated

e requires interleaved execution between primal and dual solver



Boolectordp runtime [s]

Appendix

Boolectory, vs Boolectorj,
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Boolectordp runtime [s]
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