Turbo-Charging Lemmas on Demand
with Don't Care Reasoning

Aina Niemetz, Mathias Preiner and Armin Biere

Institute for Formal Models and Verification (FMV)
Johannes Kepler University, Linz, Austria
http://fmv. jku.at/

FMCAD 2014
October 21 - 24, 2014
Lausanne, Switzerland

http://fmv.jku.at/

Introduction

Lemmas on Demand

e so-called lazy SMT approach

e our SMT solver Boolector
o implements Lemmas on Demand for
o the quantifier-free theory of

o fixed-size bit vectors
® arrays

e recently: Lemmas on Demand for Lambdas [DIFTS'13]

generalization of Lemmas on Demand for Arrays [JSAT'09]
arrays represented as uninterpreted functions

array operations represented as lambda-terms

reads represented as function applications

o O O O

Lemmas on Demand
Workflow: Original Procedure LOD

0oD

L
& —>| Preprocessing r— | Formul e bit vector formula abstraction
Abstraction

(bit vector skeleton)

o,
@fZ{Z}AE " e enumeration of truth assignments
(candidate models)
L2 a(m) AE
g& l e iterative refinement with lemmas
e ola(m)n€) <=4 DPg until convergence

consistent
unsat

sat unsat

Lemmas on Demand
Workflow: Original Procedure LOD

LOD

¢7r4. — each candidate model is a full
Abstraction

truth assignment of the formula

a(m) abstraction
Refinement b—* E={l}n¢ ’——i .
— full candidate model needs to
a(m) A€

i
515
9|8
ca
gt

be checked for consistency w.r.t.
theories

)
l

Consistency
Check

unsat

Full

consistent

Candidate Model

sat unsat

Lemmas on Demand
Workflow: Original Procedure LOD

LOD

¢7r4. — abstraction refinement usually
Abstraction

the most costly part of LOD

= .
Refinement E= ARG — cost generally <.:orre|ates with
number of refinements
— checking the full candidate
Consi: .
Check @ model often not required

— small subset responsible for
satisfying formula abstraction

o
c
5]
]
.2
@
c
]
o

sat unsat

Lemmas on Demand

Workflow: Optimized Procedure LOD,;

LOD

. Formula
Preprocessin, T N
{b Abstraction

consistent

sat

a(m)

'
c
]
o
S

Consistency

Check o(a(m) A &)

sistent

unsat

op(a(r) A E) Partial Mode! Optimization

unsat

Partial

Candidate Model

e focus LOD on the relevant parts
of the input formula

e exploit a posteriori observability
don’t cares

e partial model extraction prior to

consistency checking

— subsequently reduces the cost
for consistency checking

Lemmas on Demand

Example: Input Formula

Example. 1 =i#kA(f(i) =eV f(k) =v) Av=ite(i = j,e,9(j))

Lemmas on Demand

Example: Formula Abstraction

Example. Bit Vector Skeleton

a(applys)

Lemmas on Demand

Example: Formula Abstraction

Example. Full Candidate Model

a(apply1)

00 00 00 00 00 00 00 01

Lemmas on Demand
Example: Formula Abstraction

Example. Full Candidate Model

Check consistency:
{apply1, apply2, applys}

Lemmas on Demand
Example: Formula Abstraction

Example. Partial Candidate Model

Check consistency:
{apply1}

a(apply1)

00 00 00 00 00 01

Partial Model Extraction

Most intuitive: use justification-based approach

— Justification-based techniques in the context of

e SMT
o prune the search space of DPLL(T) [ENTCS'05, MSRTR'07]

e Model checking
o prune the search space of BMC [CAV'02]
o generalize proof obligations in PDR [EénFMCAD'11, ChoFMCAD'11]
o generalize candidate counter examples (CEGAR) [LPAR'08]

Partial Model Extraction

Our approach: Dual propagation-based partial model extraction

o exploiting the duality of a formula abstraction ¥

— assignments satisfying ¢ (the primal channel)
falsify its negation —) (the dual channel)

e motivated by dual propagation techniques in QBF [AAAI'10]
o one solver with two channels (online approach)
o symmetric propagation between primal and dual channel

o here: offline dual propagation
o two solvers, one solver per channel
o consecutive propagation between primal and dual channel
—— primal generates full assignment before dual enables partial model extraction
based on the primal assignment

Partial Model Extraction
Dual Propagation-Based Approach

Example. Boolean Level

Primal channel: Y2 =(aAb)V (cAd)
Dual channel: —ha = (—a V =b) A (—e V —d)

Partial Model Extraction
Dual Propagation-Based Approach

Example. Boolean Level
Primal channel: Y2 =(aAb)V (cAd)
Dual channel: —ha = (—a V =b) A (—e V —d)

Primal assignment: o(¢2) ={o(a) =T, o) =T, 0(c)=T,0(d) =T}

Partial Model Extraction
Dual Propagation-Based Approach

Example. Boolean Level
Primal channel: Y2 =(aAb)V (cAd)
Dual channel: —ha = (—a V =b) A (—e V —d)

Primal assignment: o(¢2) ={o(a) =T, o) =T, 0(c)=T,0(d) =T}

Fix values of inputs via assumptions to the dual solver:
Dual assumptions: {a=T,b=T,c=T,d=T}

Partial Model Extraction
Dual Propagation-Based Approach

Example. Boolean Level
Primal channel: Y2 =(aAb)V (cAd)
Dual channel: —ha = (—a V =b) A (—e V —d)

Primal assignment: o(¢2) ={o(a) =T, o) =T, 0(c)=T,0(d) =T}

Fix values of inputs via assumptions to the dual solver:
Dual assumptions: {a=T,b=T,c=T,d=T}

Failed assumptions: {a=T, b=T}

— sufficient to falsify =12
— sufficient to satisfy 12

Partial Model Extraction
Dual Propagation-Based Approach

Example. Boolean Level
Primal channel: Y2 =(aAb)V (cAd)
Dual channel: —ha = (—a V =b) A (—e V —d)

Primal assignment: o(¢2) ={o(a) =T, o) =T, 0(c)=T,0(d) =T}

Fix values of inputs via assumptions to the dual solver:
Dual assumptions: {a=T,b=T,c=T,d=T}

Partial Model

Failed assumptions: {a=T, b=T}

ien 0 (5]

— sufficient to satisfy 12

Partial Model Extraction
Dual Propagation-Based Approach

— structural don’t care reasoning simulated via the dual solver

— no structural SAT solver necessary

Example. (ctd)

Input formula: o = (aADb)V(cAd) =T
Primal SAT solver: CNF(y2) = (-oVaVy)A(—z Vo)A =7
(my Vo) A(—zVa)A
(mx VD) A(—aV-bVax)A
(my V) A (my VA
(meV—=dVy)
Dual SAT solver: CNF(—t2) = (—a VvV =b) A (—eV ~d) =1
Dual assumptions: {a=T,b=T,c=T,d=T}
Partial Model: {a=T,0=T}

— in contrast to partial model extraction techniques based on iterative
removal of unnecessary assignments on the CNF level [FMCAD'13]

Partial Model Extraction
Dual Propagation-Based Approach

— we lift this approach to the word level
Primal channel: I'=a(m)AE = alm) Al A ALisa

Dual channel: -

—— one SMT solver per channel

— one single dual solver instance to maintain —I" over all iterations

Partial Model Extraction
Dual Propagation-Based Approach

Example. Word Level

vr=i#kA(f) =eV f(k) =v) Av=ite(i = j, e, g(5))
a(1) =i # kA (a(applyr) = eV a(apply2) = v) Av =ite(i = j, e, a(applys))

Primal solver: a(t1)

Formula abstraction and its negation
Dual solver: —a(1) } &

Primal assignment:
o(12) = {o(¢) = 00, o(j) = 00, o(e) = 00, o(v) = 00, o(k) = 01,
a(apply:) = 00, a(apply2) = 00, a(applys) = 00}

Fix values of inputs via assumptions to the dual solver:
Dual assumptions:
o(1h2) = {i = 00, j = 00, e = 00, v = 00, k = 01,
a(apply1) = 00, a(apply2) = 00, a(applys) = 00}

Failed assumptions:
{i =00, j =00, e =00, v =00, k =01, a(apply1) = 00}

Partial Model Extraction
Dual Propagation-Based Approach

Example. Word Level

U1 Ez#k/\(f(l) :e\/f(k) :U)/\’U:ite(i:jv € g(]))
a(P1) =i # kA (a(apply1) = eV a(apply2) = v) Av =ite(i = j, e, a(applys))

Primal solver: a(t1)

Formula abstraction and its negation
Dual solver: —a(1) } &

Primal assignment:
o(12) = {o(¢) = 00, o(j) = 00, o(e) = 00, o(v) = 00, o(k) = 01,
a(apply:) = 00, a(apply2) = 00, a(applys) = 00}

Fix values of inputs via assumptions to the dual solver:
Dual assumptions:
o(1h2) = {i = 00, j = 00, e = 00, v = 00, k = 01,
a(apply1) = 00, a(apply2) = 00, a(applys) = 00}

Failed assumptions: Partial Model
{i =00, j =00, e = 00, v = 00, k = 01, a(apply:) = 00}

Partial Model Extraction
Dual Propagation-Based Approach

Example. Word Level

br=i#E kA (fi) =eV f(k)=v) Av=ite(i = j, e, g(j))
a(yr) =i # kA (a(apply:) = e V a(applyz) = v) Av = ite(i = j, e, a(applys))

Primal solver: a(t1)

Formula abstraction and its negation
Dual solver: —a(1) } &

Primal assignment:
o(12) = {o(¢) = 00, o(j) = 00, o(e) = 00, o(v) = 00, o(k) = 01,
a(apply:) = 00, a(apply2) = 00, a(applys) = 00}
Fix values of inputs via assumptions to the dual solver:
Dual assumptions:
o(yp2) = {i =00, j = 00, e = 00, v = 00, k = 01,
a(apply1) = 00, a(apply2) = 00, a(applys) = 00}
Failed assumptions: Consistency Check
{i =00, j =00, e =00, v =00, k = 01,(c(apply1) = 00}

Experimental Evaluation

Configuration

Four Configurations:

e Boolectors.
— version entering SMTCOMP'12, winner of the QF_AUFBYV track

e Boolectorp,

— current Boolector base version (new LOD for Lambdas engine)

e Boolectory,

— with dual propagation-based partial model extraction enabled

e Boolector;,

— justification-based partial model extraction approach for comparison
o determine a posteriori observability don't cares

—— skip lines that do not influence the output of an and-gate
under its current assignment

o if both inputs of an and-gate are controlling (L)
—— skip either one based on a minimum cost heuristic

Experimental Evaluation

Configuration

Two Benchmark Sets:

e SMT'12: 149 benchmarks
all non-extensional QF_AUFBV benchmarks in SMTCOMP'12

o Selected: 173 benchmarks
all non-extensional QF_AUFBYV benchmarks (13696) in the SMT-LIB

(pre-SMTCOMP’14) for which Boolectors. required at least 10 seconds

—— 58 benchmarks shared between both sets

— all experiments on 2.83 GHz Intel Core 2 Quad machines with 8GB RAM
running Ubuntu 12.04

— time limit: 1200 seconds, memory limit: 7GB

Experimental Evaluation

Overview
Overall results on sets SMT'12 and Selected.

Solver (sast(;t/::at) TO MO | Time[s] | DS [s]
o | Boolectorsc | 140 (83/57) 9 0 15882 -
E Boolector,, | 141 (83/58) 8 0 19312 -
S | Boolectorj, | 142 (84/58) 7 0 15709 -
“ | Boolectory, | 142 (84/58) 7 0 20992 5045
w | Boolectorsc | 116 (72/44) 50 7 85863 -
£ | Boolector,, | 121 (76/45) 45 7 76104 -
< | Boolector;, | 130 (85/45) 36 7 63202 -
Y | Boolectory, | 130 (85/45) 36 7 66991 4705

TO ... time out

Time ..

. total CPU time

MO ... memory out
DS ... dual solver overhead

Experimental Evaluation

Overview
Overall results on sets SMT'12 and Selected.
Solver (Sast%’:;‘at) TO MO | Timel[s] | DS [s]
o | Boolectorsc | 140 (83/57) 9 0 15882 -
i [Boolector,, | 141 (83/58) 8 0 19312 -
S | Boolector,, | 142 (84/58) | 7 0| 15709 -
Y | Boolectory, | 142 (84/58) 7 0 20992 5045
w | Boolectorsc | 116 (72/44) 50 7 85363 -
8 [Boolector,, | 121 (76/45) | 45 7 76104)
< | Boolector;, | 130 (85/45) 36 7 63202 -
¥ | Boolectory, | 130 (85/45) 36 7 66991 4705 |

TO ... time out
Time ... total CPU time

MO ... memory out
DS ... dual solver overhead

e SMT'12: 1 additional instance (sat)

e Selected: 9 additional instances (all sat)

Experimental Evaluation

Commonly Solved Instances

Results for commonly solved instances on sets SMT'12 and Selected.

Solver Time [s] SAT [s] DS overhead [s] LOD
Total Avg. Med. Total Avg. Med. | Total Avg. Med. Total Avg. Med.
« | Boolectors 4129 29 2| 3662 26 0 - - - | 30741 221 0
'»': Boolectory,, 8564 61 6 | 7262 52 1 - - - | 33013 237 0
S | Boolectorj, 6362 45 4| 5226 37 0 - - - | 23660 170 0
Y | Boolectorg, | 10145 72 5 | 4700 33 0 | 4109 29 0 | 33402 240 0
— | Boolectorse | 15037 133 35 | 12836 113 34 - - - | 104646 926 175
% Boolector,, | 10001 88 35 | 8330 73 22 - - - | 31752 280 88
% Boolectorj, 8182 72 29 6639 58 19 - - - 28215 249 28
Y | Boolectory, | 10838 95 30 | 6164 54 15 | 3036 26 0| 24866 220 29
Time ... total CPU time SAT ... SAT solver runtime (primal solver)
DS overhead ... dual solver overhead LOD ... number of lemmas generated

e SMT'12: 139 (out of 149) benchmarks, 82 sat, 57 unsat

—— not representative:
~50% solved without a single refinement iteration

e Selected: 113 (out of 173) benchmarks, 70 sat, 43 unsat

Results for commonly solved instances on sets SMT'12 and Selected.

Experimental Evaluation

Commonly Solved Instances

Solver Time [s] SAT [s] DS overhead [s] LOD

Total Avg. Med. Total Avg. Med. | Total Avg. Med. Total Avg. Med.
~ (Boo\ecrom 4129 29 2 3662 26 0 - - - 30741 221 0
E Boolector, 8564 61 6 7262 52 1 - - - 33013 237 0
S | Boolector;, 6362 45 4| 5226 37 0 - - - | 23660 170 0
Y | Boolectorg, | 10145 72 5 | 4700 33 0 | 4109 29 0| 33492 240 0
~ | Boolector,. | 15037 133 35 | 12836 113 34 - - - | 104646 926 175
% Boolector,, | 10001 88 35 | 8330 73 22 - - - | 31752 280 88
% Boolectorj, 8182 72 29 6639 58 19 - - - 28215 249 28
Y | Boolectory, | 10838 95 30 | 6164 54 15 | 3036 26 0| 24866 220 29

Time ... total CPU time

DS overhead ... dual solver overhead

SAT ... SAT solver runtime (primal solver)
LOD ...

number of lemmas generated

e Boolectorsc implements old LOD engine

— new engine (Boolectory,) struggles on a
small set of benchmarks

— needs further investigation

Results for commonly solved instances on sets SMT'12 and Selected.

Experimental Evaluation
Commonly Solved Instances

Solver Time [s] SAT [s] DS overhead [s] LOD

Total Avg. Med. Total Avg. Med. | Total Avg. Med. Total Avg. Med.
« | Boolectors 4129 29 2 | 3662 26 0 - - - | 30741 221 0
E [Boolectory, 8564 61 6 7262 52 1 - - - 33013 237 0
S | Boolectorj, 6362 45 4| 5226 37 0 - - - | 23660 170 0
n \ Boolectory, | 10145 72 5 | 4700 33 0 | 4109 29 0| 33492 240 0
~ | Boolectors. | 15037 133 35 | 12836 113 34 - - - | 104646 926 175
% ("Boolectory, | 10001 88 35 8330 73 22 - - - | 31752 280 88 |
% Boolectorj, 8182 72 29 6639 58 19 - - - 28215 249 28
Y | Boolectory, | 10838 95 30 6164 54 15 | 3036 26 0| 24866 220 29

Time ... total CPU time

DS overhead ... dual solver overhead

SAT ... SAT solver runtime (primal solver)
LOD ...

e sat solver runtime (SAT)
— Boolectory, most notable improvement on both sets

number of lemmas generated

Results for commonly solved instances on sets SMT'12 and Selected.

Experimental Evaluation
Commonly Solved Instances

Solver Time [s] SAT [s] DS overhead [s] LOD

Total Avg. Med. Total Avg. Med. | Total Avg. Med. Total Avg. Med.
« | Boolectorsc | 4129 29 2 | 3662 26 0 - - - [30741 221 0
T [Boolector,, | 8564 61 6 | 7262 52 1 - - - | 33013 237 0
S | Boolectorj, 6362 45 4 5226 37 0 - - - 23660 170 0
Y | Boolectory, | 10145 72 5 | 4700 33 0 | 4109 29 0 | 33492 240 0 |
— | Boolector,. | 15037 133 35 | 12836 113 34 - - - | 104646 926 175
& [Boolector,, | 10001 88 35| 8330 73 22 - - - 31752 280 88
2 | Boolector;, | 8182 72 29 | 6639 58 19 - - - | 28215 249 28
Y | Boolectory, | 10838 95 30 | 6164 54 15 | 3036 26 0 | 24866 220 29

Time ... total CPU time

DS overhead ... dual solver overhead

SAT ... SAT solver runtime (primal solver)
LOD ...

number of lemmas generated

e number of lemmas generated (LOD)
o SMT'12:

e Boolectorj, least number of lemmas

® Boolectory, and Boolector,, approx. the same

— on 14 instances 1.5-2.6 x more lemmas than Boolectorp,

o Selected: Boolectory, most notable improvement

Results for commonly solved instances on sets SMT'12 and Selected.

Experimental Evaluation

Commonly Solved Instances

e dual solver overhead ~30-40% in total

e on <10% of the benchmarks 50-70% of the total runtime
e on >50% of the benchmarks <10% of the total runtime

— Boolectorg, outperforms others disregarding DS overhead

— online dual propagation approach: DS overhead negligible

Solver Time [s] SAT [s] DS overhead [s] LOD
Total Avg. Med. Total Avg. Med. | Total Avg. Med. Total Avg. Med.

« | Boolectors 4129 29 2 | 3662 26 0 - - - | 30741 221 0
E [Boolectory, 8564 61 6 7262 52 1 - - - 33013 237 0
S | Boolectorj, 6362 45 4 5226 37 0 - - - 23660 170 0
n \ Boolectorg, | 10145 72 5 4700 33 0 | 4109 29 0 33492 240 0
~ | Boolectors. | 15037 133 35 | 12836 113 34 - - - | 104646 926 175
& [(Boolector,, | 10001 88 35| 8330 73 22 - - -] 31752 280 88
% Boolectorj, 8182 72 29 6639 58 19 - - - 28215 249 28
| Boolectory, | 10838 95 30 | 6164 54 15 | 3036 26 0| 24866 220 29

Time ... total CPU time SAT ... SAT solver runtime (primal solver)

DS overhead ... dual solver overhead LOD ... number of lemmas generated

Boolectordp runtime [s]

Experimental Evaluation

Boolectory, vs Boolectory,

‘
1000 ¢ + /4 1000 & i
e oot +/+
+ +.
+ * i s
P +
+ o+ + 1 F+

100 T N 00} o "

s h L f

i * + N ’

£+ " = b

+ o+ + : + N

+ A + A
e A .
10 b Ve + E 10 b s E
+ ++ - + .
. +
el * +, T *
.
+ + o+ + + o *
1 s s s 1 s s s

1 10 100 1000 1 10 100 1000

Boolectory,, runtime [s] Boolectory,, runtime [s]

DS overhead included DS overhead not included

Conclusion

— dual propagation-based optimization for Lemmas on Demand

e don't care reasoning on full candidate models improves performance

e our offline dual propagation-based approach competitive
(in spite of introducing considerable overhead)

— Boolectorj, won QF_ABV track of SMTCOMP'14
— Boolectorg, came in close second

Future work: online dual propagation approach, promises

e negligible or no dual solver overhead

o further improvment of overall performance by enabling partial model
extraction even before a full candidate model has been generated

e requires interleaved execution between primal and dual solver

Boolectordp runtime [s]

Appendix

Boolectory, vs Boolectorj,

1000 ¢

o
S
T

o
T

1000

100

T ¥
"
-
"
"
+
+
"
++ o+
+ + *
+
"
ALt
4+, +
“
o
. .
10 100

T Ty
.
.
.
R
L
e
o
7
L
.
+ +
+ A
FRES- +
oy
+
+
(O
‘ ‘
10 100

BooleclorJu runtime [s]

DS overhead included

1000

BoolectorJu runtime [s]

1000

DS overhead not included

Boolectordp runtime [s]

1000

o
S

o

Appendix

Boolectory, vs Boolectors.

T
T
. 1000 F o’
-
+ . +
+ + "
+ + -
.
+ 5 + + +
- R +
o+ + + +
+ + + +
+ + e +
Lt 100 | LTy 4
+ 4 + + S
* + + +
+ + + + + *
+ + + o+ +
3 + ey o+ PO
oy + + # 4 JREe -
&S > I
+ L,
4y, * Hp + + f
s + + G P + o+
£ . + 10 + 4
+ + + + + N +
+ + +
£ + 4+
IR +
* + + +
"
"
st o + + o+
v ¥
. . 1 . . .
10 100 1 10 100 1000

Boolectory, runtime [s]

DS overhead included

Boolectory, runtime [s]

DS overhead not included

[

B
[
B

=)

References |

J. D. Bingham and A. J. Hu. Semi-formal bounded model checking. In
CAV'02, volume 2404 of LNCS. Springer, 2002.

C. Barrett and J. Donham. Combining sat methods with non-clausal
decision heuristics. ENTCS, 125(3), 2005.

L. de Moura and N. Bjgrner. Relevancy propagation. Technical Report
MSR-TR-2007-140, Microsoft Research, 2007.

Z.S. Andraus, M. H. Liffiton, and K. A. Sakallah. Reveal: A formal
verification tool for Verilog designs. In LPAR'08, volume 5330 of LNCS.
Springer, 2008.

R. Brummayer and A. Biere. Lemmas on demand for the extensional
theory of arrays. JSAT, 6(1-3), 20009.

H. Chockler, A. lvrii, A. Matsliah, S. Moran, and Z. Nevo. Incremental
formal verification of hardware. In FMCAD’'11. FMCAD Inc., 2011.

N. Eén, A. Mishchenko, and R. K. Brayton. Efficient implementation of
property directed reachability. In FMCAD'11. FMCAD Inc., 2011.

References Il

@ D. Déharbe, P. Fontaine, D. Le Berre and B. Mazure. Computing prime
implicants. In FMCAD'13. |IEEE, 2013.

@ A. Goultiaeva and F. Bacchus. Exploiting QBF duality on a circuit
representation. In AAAI'10. AAAI Press, 2010.

@ M. Preiner, A. Niemetz and A. Biere. Lemmas on Demand for Lambdas.
In DIFTS'13, volume 1130 of CEUR Workshop Proceedings, 2013.

	Introduction
	Lemmas on Demand at a Glance
	Partial Model Extraction
	Experimental Evaluation
	Conclusion
	Appendix
	References

