
Advanced Unit Testing

How to Scale up a Unit Test Framework

Cyrille Artho
∗

Nat. Inst. of Informatics
Tokyo, Japan

cartho@nii.ac.jp

Armin Biere
Johannes Kepler University

Linz, Austria
biere@jku.at

ABSTRACT
Unit testing is a scalable and effective way to uncover soft-
ware faults. In the JNuke project, automated regression
tests combined with coverage measurement ensured high
code quality throughout the project. By using a custom test-
ing environment, functionality was extended beyond what is
commonly available by unit test frameworks. Low-overhead
memory leak detection was implemented through wrapping.
Automated support for log files made it possible to track the
internal state of objects, which is often much more expedient
than writing test code. These extensions allowed the easy-
to-use unit test framework to scale up to large-scale tests.
The techniques can be ported to existing test frameworks.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Measurement, Reliability, Verification

Keywords
Unit testing, system testing, test framework

1. INTRODUCTION
Today, testing is the most widespread way of uncover-

ing faults in software. This is attributed to its applicability
to a wide range of projects, its scalability and its effective-
ness [19]. In the last few years, unit testing, which tar-
gets small, self-contained sections of code, has been widely
adopted, mainly thanks to JUnit [15]. JUnit has been de-
veloped for Java [10] and has been ported to a large variety
of programming languages. It targets testing of individual
methods and classes, allowing for a hierarchical structure
and fully automated execution of tests. Automation enables

∗Full address: National Institute of Informatics, Hitotsub-
ashi 2–1–2, Chiyoda-ku, Tokyo 101–8430, Japan

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AST ’06 May 23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

regression testing, i.e., rerunning tests after each change,
which can uncover defects introduced in existing code.

Unfortunately, classical unit testing has several shortcom-
ings, as confirmed by a software developer with several years
of experience in industry [11]:

1. Functions that change the state of a complex compo-
nent are difficult to test individually. Sometimes, it is
impossible to tell if a certain internal state is correct.

2. Some tests require a complex context that is difficult
to set up.

3. Other tests rely heavily on other modules that are still
under development.

The third issue cannot be addressed directly, but JUnit
fails to remedy the first two problems as well. Most impor-
tantly, it lacks support for log and error log files. Such log-
ging allows tracking the internal state of a component much
more easily and is the key to larger-scale integration testing,
which concerns the interaction between different classes or
between entire subsystems. In JUnit, support for file-based
test data was omitted on purpose:

“It generally takes less time in the long run to
codify expectations in the form of an automated
JUnit test that retains its value over time [13].”

We think that this statement holds for unit tests, but not
for integration tests. Codified comparisons are not practical
for large, nested data structures. Log files can be analyzed
and modified much more quickly. Hence, we found that our
extensions allowed us to push the original design of JUnit
to cover most kinds of integration tests.

We have used this development environment over four
years with seven developers in the JNuke project [2, 5]. The
core team included an Assistant Professor and a Ph.D. stu-
dent, both of which had several years of experience in writ-
ing industrial software. Developers worked full-time (as
Ph.D. students or Master’s students) or part-time (as under-
graduate students) on the project, with contributions rang-
ing from two to 18 man-months. The project size amounted
to three man-years.

We had established a policy of thorough component test-
ing from the very beginning of the project. Students who
participate in such a project often have little practical ex-
perience with development of larger systems; strong guide-
lines helped them to structure their development process
and achieve higher-quality results. During development,

Java JNuke (in C)
(1) Integer Num; (1) JNukeObj *Num;

int value; int value;
(2) Num = new Integer(8); (2) Num = JNukeInt new (mem);

JNukeInt set (Num, 8);
(3) value = (3) value =

Num.getInteger(); JNukeInt value (Num);
(4) JNukeObj delete (Num);

Figure 1: JNuke’s OO model.

unit tests of former developers also served as documenta-
tion. To really take advantage of this, it was indispensible to
impose a rigorous code coverage policy, which was accepted
by all developers after having gathered initial experience.
Despite extra work involved in testing, each component was
always delivered on time, and, with a single exception, to
specification. Therefore, we will repeat development prac-
tices described here in future projects. We think our ideas
generalize to other non-interactive systems.

This paper is organized as follows: Section 2 describes
JNuke, and how we implemented object orientation in C.
Section 3 shows how unit tests are organized, and how ad-
vanced features are supported. Section 4 describes our expe-
rience with that framework, and Section 5 gives an overview
of how test extensions can be applied to other unit test
frameworks. Section 6 concludes.

2. JNUKE
JNuke is a framework for verification and model check-

ing of Java programs [2]. It is a novel combination of run-
time verification [21], explicit-state model checking [8], and
counter-example exploration [22]. Efficiency is crucial in
dynamic verification. Therefore JNuke has been written in
C, improving performance and memory usage by an order of
magnitude compared to competing approaches and tools [5].
Static analysis was added to JNuke at a later stage [2, 3].
At the time of writing, JNuke encompasses about 130,000
lines of code including 1,800 unit tests.

The libraries in JNuke implement some commonly used
container classes which are not available by the standard
C libraries, such as sets, hash tables, and semi-automatic
memory management by reference counting. Iterators with
standard semantics are used for data access. This paper
only describes testing-related aspects of JNuke. More about
JNuke, the technologies used, and their implementation can
be read in the corresponding Ph.D. thesis [2].

2.1 Object orientation in C
Thanks to its structured encapsulation of data and actions

on data, object-oriented (OO) programming has become the
prevalent programming style in the last two decades. Many
populaMany popular OO programming languages [10, 16,
17] do not allow the kinds of low-level optimizations avail-
able in C or C++ [14, 23]. We decided to create our a
custom, simple OO extension for C in order to avoid the
complexity of C++ while still enjoying the performance ben-
efits of C. Figure 1 shows a comparison between Java’s and
JNuke’s OO model.

1. In JNuke, any object is generically declared to be of
type JNukeObj *. There is no possibility to explic-
itly declare a (statically type safe) object of a specific

type. Type data encapsulated in JNukeObj includes
a pointer to instance data and a pointer to a set of
functions. These functions include commonly used op-
erations such as hash or delete. They were used to
implement a low-overhead polymorphism for a few key
functions, which were sufficient for most data types.
A more fine-grained polymorphism was added later by
chaining type data with subtype pointers.

2. Constructors are very similar. In JNuke, operand new

is written as a function. Each constructor explicitly
requires the memory manager as its single argument.
Optional arguments in constructors are not possible.
Instead, set methods have to be used. This choice was
taken to simplify serialization and deserialization [6].

3. Statically typed methods are invoked by appending
methodname to the class name. The object instance
itself (this in Java) is always written explicitly as the
first argument of the method. Static methods, which
do not use instance data, do not need that argument.
Polymorphic typing is implemented by dereferencing
subtype pointers.

4. Unlike in Java but like in C++, a destructor is re-
quired for each class. This method is polymorphic and
is wrapped with JNukeObj delete. That function re-
solves the dynamic type and calls the appropriate de-
structor.

The callee, which is not shown in the figure, accesses in-
stance data after casting pointer this of type JNukeObj *

to the appropriate subtype. In order to make typecasting
more convenient and safer, a macro was implemented that
performs an optional type check when resolving the type.
Thanks to the flexible preprocessor capabilities, the pro-
grammer can use a very compact macro JNuke cast (type,

reference) which returns a pointer of the desired subtype
pointed to by reference.

2.2 String representation of the object state
Like Java library classes, most classes in JNuke also imple-

ment their own toString function [10]. This function con-
verts the key components of the object state into a human-
readable form. Unlike in the Java library, we imposed some
strict requirements on the string representation in order to
make it machine readable as well. Specifically, any output
has to follow a Lisp-like representation, using nested brack-
ets to express the nesting of data structures. We chose this
style over XML-like tags for its conciseness, which makes
short strings much more readable.

This string representation allowed us to analyze the inter-
nal object state at a glance, which was extremely useful for
debugging. Moreover, states of objects can be logged easily.
Nested data is logged recursively, with brackets indicating
the level of nesting. Still, deeply nested data structures are
not very readable in this format. To ameliorate this, a pretty
printer was created which parses the input string and auto-
matically indents the output according to the nesting level,
making even long strings readable [6].

3. UNIT TESTS IN JNUKE
Unit tests in JNuke are organized in several test suites.

Each package has its own test suite. Test suites are divided

int
JNuke_sys_JNukeInt_0 (JNukeTestEnv * env)
{
 /* creation and deletion */
 JNukeObj *Int;
 int res;

 Int = JNukeInt_new (env->mem);
 JNukeInt_set (Int, 1 << 31);
 res = (Int != NULL);
 res = res &&
 (JNukeInt_value (Int) == 1 << 31);
 if (Int != NULL)
 JNukeObj_delete (Int);

 return res;
}

Figure 2: A simple test case.

into test groups. Normally there is one group for each class.
Within a class, several tests can be registered in its group.
This hierarchy is similar to the one in JUnit [15].

Each unit test is a function with a name representing its
place in the hierarchy of tests: JNuke pkg class name . Test
cases are registered at the test driver by package name, suite
name, and test name. This gives a three-tiered structure.
Figure 2 shows the code of a simple unit test which creates
a JNuke Int object and deletes it again, checking the class
against simple memory leaks. Each test case is a function
taking a single JNukeTestEnv * argument and returning an
integer. Member env->mem of struct JNukeTestEnv points
to the memory manager. The return value is non-zero for a
successful test and zero for a failed one.

When running tests from the command line, a directory-
like syntax can be used to choose subsets of all unit tests.
Within each hierarchy level, a simple pattern-matching op-
erator allows to specify subsets of test more easily. In ad-
dition to that, test cases are always classified as “fast” or
“slow”. By convention, fast test cases do not take more
than 0.01 s to run on an unloaded “fast” workstation (such
as the ones used in the research labs). This ensures that a
large subset of all unit tests can be run quickly even when
extra checking tools, such as valgrind [18], are active. Fast
tests were run after each compilation, while slow tests were
used to prevent regression errors after a new feature was
implemented. The hierarchy can also be used to select only
the relevant subset of all tests to run after a code change,
allowing for change-sensitive testing.

3.1 Testable design
Our development process is bottom-up and test-centered.

In particular it always tries to maximize testability even if it
implies increased code complexity. Sometimes this required
components to be split into separate entities where this may
not have been necessary otherwise. Therefore design itself
was guided by the question how the intended functionality
can be tested.

On a higher level, any configuration or setting was man-
aged by an intermediate layer that allows for local changes.
Unit tests could thus override certain configurations for sep-
arate testing. Furthermore, as described above, classes had

if (res)
 {
 res = 0;
 if (cond)
 {
 /* do something conditionally */
 ...
 /* perhaps more checks */
 res = 1;
 }
 }

Figure 3: A construct ensuring maximal coverage.

to support a special string representation in order to facili-
tate testing. Some classes also included internal consistency
check functions for the same purpose. Such extensions only
served the purpose of testing.

The fact that code should be designed to be testable also
expresses itself at statement level. Testability includes the
ability to execute all statements in unit testing, avoiding
dead code. Therefore, some of the test code was following
certain idioms to achieve this. Typically, a unit test starts
by initializing an integer res to 1, which indicates a success-
ful test up to this point. When tests are being run, variable
res is updated each time a condition is checked. The id-
iom res = res && cond ensures that res is set to 0 upon
failure. At the same time, this line will always be executed
for successful tests, ensuring full statement coverage in that
case. If it is not possible to express cond in a single line, a
construct like the one in Figure 3 should be used. This en-
sures that there are no statements which are skipped when
the test case is successful and makes it possible to achieve
100 % statement coverage for a successful test.

Code using switch and case statement was similarly mod-
ified in order to be usable for coverage measurement. Fig-
ure 4 shows an example. If the allowed value range of the
switch argument is limited, good coding practice checks
against illegal values. Out-of-range values should never oc-
cur in a correct program. Therefore the program is to be
aborted when this happens, because the failure is so severe
that the program state is undefined at this point. The left
hand side of Figure 4 shows how such code that guards
against corrupt states is usually written.

In this example, the default clause calling abort creates
an artefact in the program that only serves failure detec-
tion. In a successful run, this statement is never executed.
Statement coverage of such code therefore never reaches
100 %. Fortunately, there is a way around this problem.
The default clause can by used for the last correct case
instead, replacing the final case statement. An assertion is
used instead of the abort call to ensure that data values are
always in the expected range. The right-hand side of Fig-
ure 4 shows this new implementation. Note that the code
behaves in exactly the same way; error detection is carried
out by the assert statement. Unlike in the first version,
though, executing each correct case leads to full statement
coverage, without any artefacts being uncovered.

3.2 Log Files
The success of a test case is determined by its return value.

In addition to that, the output of the standard error chan-

switch (ternary)
 {
 case 0:
 // first case
 break;
 case 1:
 // ...
 break;
 case 2:
 // last case
 break;
 default:
 // illegal value!
 abort();
 }

switch (ternary)
 {
 case 0:
 // first case
 break;
 case 1:
 // ...
 break;
 default:
 assert (ternary == 2);
 // last case
 }

Normal way of using Modified code allowing for
switch/case. full statement coverage.

Figure 4: Modifying switch statements for coverage.

nel and log files written can also be used to determine the
outcome of a unit test. The location of a log files mirrors
its place in the hierarchy of the test cases. If a given output
file (template) exists, the output of a test will be compared
to this file after execution. If the output does not match, or
the current test produced no output where an output was
expected, the test fails. We call this application of logging
verified logging.

This logging facility goes beyond functional descriptions
commonly used to validate test data. It allows testing of
large data structures by writing their content to a log file
and then manually inspecting it. If the data is correct, the
file is simply renamed and used as a template in the fu-
ture. This prevents the need for codifying each data element
stored, and greatly simplifies the creation of certain complex
test cases. It was the key for allowing us to run and evalu-
ate large-scale tests in a unit test framework. Even if this
representation of a state became too complex to analyze in
detail, it could be used to compare changes in equivalent
states between two test runs. Because changes can be ana-
lyzed with standard text-based tools such as diff and are
usually much smaller than the entire state, this state logging
allowed for much easier change management.

When using this approach, it is crucial that any such a
data dump is performed in a text-based format. While a
graphical representation would often be easier to read for
a human, the text-based format is a good compromise be-
tween human-readability and machine-readability. By us-
ing the pretty printer module, the output can be formatted
for better readability. The formatted output also allows for
an element-by-element comparison using commonly avail-
able command line tools.

We used this methodology to analyze complex changes in
data structures such bytecode sequences before and after the
inlining of subroutines [4]. As instruction indices typically
are no longer comparable, filters such as the Unix tools tr

and sed were sometimes used to preprocess the log files. Af-
ter that, one could pinpoint structural changes easily. Then,
it could be decided whether the new output corresponded
to a correct change of the algorithm, or whether the change
in output was introduced due to an error in development.
Without our text-based verified logging facility, we would

have had to resort to bytecode disassemblers for viewing
data. Therefore verified logging precludes the need for aux-
iliary tools to handle complex binary data, which are often
only kept in memory and never written to a file.

3.3 Memory Management
For a better control of memory management, the standard

memory allocation functions have been replaced. The key
difference is that the size of allocated blocks is managed by
the caller, not by the library. This can save space and make
allocations of small blocks more efficient. Because block size
is managed by the library user, functions JNuke realloc and
JNuke free also expect as an extra argument the size of the
currently allocated block at the address the pointer refers
to. When compiling JNuke with the standard options, the
size of each allocated memory block is stored internally and
validated when it is reallocated or freed. When compiling
optimized code, that validation is turned off, resulting in a
performance improvement over the standard memory allo-
cation library, which maintains that data on its own.

This extra size information is used in each unit test to
ensure the absence of memory leaks. When a memory leak
is detected, the test is repeated using a memory analysis
tool such as valgrind [18] or purify [12], to find the precise
location of the allocation that caused the memory leak.

3.4 Coverage measurement
The tight integration of coverage measurement with the

GNU C compiler [9] allowed us to automate coverage mea-
surement across several platforms. Statement coverage eval-
uation detected untested and, hence, possibly dead code.
Further testing of such code finds potential faults early.
While many kinds of faults cannot be detected using state-
ment coverage alone, we found that statement coverage is
achievable with a suitable effort and detects many faults.
While other, stricter, measures for coverage exist [19], they
are much harder to achieve, not yet supported as well by
tools, and not as well understood by developers. There-
fore we refrained from using stricter coverage criteria. In-
stead, we invested time into specifying more properties for
test cases. No coverage metrics can detect missing code to
handle certain unexpected scenarios. Assertions and other
consistency checks, on the other hand, can express assump-
tions and invariants of algorithms, and are just as essential
as good test coverage.

Coverage measurement was fully automated: Whenever a
class had 100 % statement coverage, it was excluded from
the output by a shell script that wrapped the output of the
gcov tool. This simple post-processing streamlined routine
checks after regression testing, because no external coverage
viewer has to be invoked when the desired full coverage was
reached. Furthermore, per-package coverage measurement
is also possible. Testing coverage of a single package does
thus not require running the entire test suite.

3.5 Automatic indentation
In order to facilitate editing code, and to improve the qual-

ity of the coverage output, automatic indentation was used.
After evaluation of several tools, we chose GNU indent be-
cause of its wide availability and maturity. The process was
eventually fully automated, such that indent would be run
on all source files prior to each CVS commit command. This
decision coincided with the observation that versions 2.2.7

and higher of GNU indent were mature enough such that
indentation would always reach a stable point, as opposed
to alternating between two possible solutions. While the
latter problem does not affect the functionality of the code,
it still creates a change which causes a spurious patch to be
committed to the code repository after each indentation.

4. EXPERIENCE
How our unit test extensions can be used to facilitate de-

bugging has been described above. This section details our
overall experience with the development process, and gives
statistics on project progress.

4.1 Development process
Unit tests are the core of the quality assurance effort for

JNuke. Work on JNuke was not continuous due to varying
student participation and work at NASA during summer
2002 and 2003. Overall, about three man-years of work went
into producing JNuke and its unit tests. Due to varying
degrees of experience among co-developers, and sometimes
rather short participation times, unit tests were essential to
keep the project well-documented and well-structured, and
to allow for long-term use of crucial modules developed in
student projects.

The organizational setting was as follows: An assistant
professor and a Ph.D. student were the lead developers, their
contributions to the code being roughly 10 % and 40 %, re-
spectively. Another Ph.D. student contributed to certain
modules and also supervised student projects. The 40 %
contribution by the main developer stretches over four years,
amounting to roughly 18 man-months during that time.
During this time, and partially in the meantime, undergrad-
uate and Master’s students worked on separate modules,
contributing between two and six man-months per project.
Certain students successively worked on several projects.
Student work was usually supervised by weekly or bi-weekly
meetings and status reports, regular code inspection, and
program analysis with code coverage and memory error de-
tection tools. The key difference to industrial projects was
the fact that student projects required a self-contained re-
port to be written. This affected project organization but
did not touch actual program development.

Because the projects were graded, supervision by Ph.D.
students was limited to important decisions, and except for
important quality issues, few implementation problems were
directly managed by the supervisors. The students were
encouraged to use the unit test process to discover defects
on their own. In two cases, our research budget allowed us
to hire a student for about two months of part-time work on
extra modules. This kind of work-for-hire can be compared
to industrial settings.

A requirement specification phase preceeded software de-
sign. Due to the open-ended nature of research, many re-
quirements were not absolutely detailed when the initial de-
sign was made. Therefore both requirements and design had
to be updated as early implementation efforts revealed new
problems. Our development model is thus close to the chaos
model [20]. This model acknowledges that requirement spec-
ification, design, implementation, and testing/maintenance
are phases that can never be strictly separated. As a project
matures, more effort shifts towards the later stages, but fun-
damental changes are still needed whenever design decisions
have to be revised as a project grows.

This fact motivated a bottom-up, test-centered develop-
ment process allowing for expedient changes in the design
without introducing new errors. A test-driven methodology
was used for unit tests, while integration tests were typically
added after a given functionality was implemented. This
mostly corresponds to the test-first approach from extreme
programming [7]. Whenever a task was clear enough in ad-
vance such that the outcome could be described in code,
test cases to describe the output were created before imple-
mentation was started. When this was not possible, such as
in larger tests, our test framework was used to execute tests
generating a log file. These log files were then inspected and
subsequently used for regression testing. Extreme program-
ming uses the term refactoring to denote changes in code
that have major implications on the design. For instance,
a class may be split into several classes, or a fundamental
change may require new interactions between objects. Two
good examples to describe such occurrences in the JNuke
project are multi-threading and garbage collection.

Multi-threaded code may lead to data races when initial-
izing a newly loaded class. A virtual machine (VM) has to
use an elaborate protocol to prevent this [10]. Resolving
issues related to this became very difficult when rollback
and model checking capabilities were added to JNuke. For-
tunately they could be fixed after having been revealed by
system tests, which were retained as regression tests to en-
sure the absence of such data races in the future.

Garbage collection had an impact on run-time verifica-
tion algorithms implemented earlier. Such algorithms may
use references to data which is no longer accessible by the
running Java program. Because of such references, data may
not be garbage collected. Solving this problem required an
interaction between the virtual machine and run-time veri-
fication event listeners. Previously, the virtual machine had
been completely isolated from event listeners.

Large tests used our test harness for system test. Such
tests usually include parts of JNuke’s own VM. When test-
ing a feature such as dynamic generation of class instances in
Java, it is often extremely difficult to write this as a unit test.
The reason is that the test setup itself is too complex, requir-
ing initialization of most parts of the VM, loading of several
bootstrap classes, and execution of thousands of bytecode
instructions to initialize these classes. It is nearly impos-
sible, and certainly not expedient, to “codify” the current
state of the VM. Similar reasoning can be applied to the
state of the VM after test execution. Instead, our test setup
used the VM as a whole: It starts a very small Java pro-
gram, whose execution produces the desired output if the
feature under test is correctly implemented in the VM. As
the sample programs can be executed in the standard VM,
comparison of JNuke’s output to a default output is trivial.

Another adopted practice from extreme programming was
the creation of test cases from detected failures. A special-
ized test case would provide a simpler way of reproducing
it. After repairing the defect, a successful test provided a
certain confidence in the correctness of the new implemen-
tation. Without having a test case to confirm this, one often
only relies on intuition to ensure that the program is “fixed”.

We also emphasized testing JNuke on several platforms.
JNuke runs on the 32-bit and 64-bit variants of Mac OS
X, Linux (x86 and Alpha), and Solaris. This revealed pro-
grammer errors relating to endianness or assumptions about
pointer sizes early.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

07/01 01/02 07/02 01/03 07/03 01/04 07/04 01/05 07/05
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

LO
C

N
um

be
r

of
 u

ni
t t

es
ts

Date

JNuke: total size in LOC, number of test cases

Figure 5: Project size in lines of code (solid) and
number of test cases (dashed).

Because of frequently changing developers, good docu-
mentation was vital, not only concerning the high-level de-
sign and the tasks solved, but also concerning the concrete
implementation. Unit tests are an excellent way of doc-
umenting code, providing examples of how to use certain
classes or methods.

Although no coverage measurement policy is established
by extreme programming, we see it as an essential part of
unit testing. In the extreme case, code that has not been
tested renders that function unusable once the programmer
who wrote it has left the project. Statements that are not
covered by tests are often referred to as “dead code”. When
encountering such dead code, it is not sure whether the code
is truly dead code or simply untested. If the code is indeed
reachable, then the likelihood of a failure under a future test
is very high. Without a prior unit test showing an example
of failed code working correctly, it is much more difficult
to analyze the failure. Therefore, a strict enforcement of
statement coverage is vital for a project in the long run.

4.2 Statistics
As mentioned above, the coverage goal was to achive 100 %

statement coverage, in order to find most errors early and to
avoid dead code. This goal was almost achieved, with over
99.9 % statement coverage in general and 100 % coverage
for those modules that are considered finished.

Figure 5 shows how the project has grown over the nearly
four years so far, plotting the overall size of the code against
the number of test cases, where about 1800 test cases were
used at the end of the project. About 36 % of the code
was dedicated to testing. While unit testing was part of the
project from its very start, code coverage was not measured
initially. The goal of full statement coverage was added
later, because locating faults in old code can be very costly,
especially when said code was developed by people who no
longer participate in the project. Therefore we strongly be-
lieve that the effort of preventing such failures pays off in
the long term. Figure 6 shows that after a bit more than
a year, towards late 2002, a serious attempt was made to
achieve (and hold) the goal of full statement coverage. The
corresponding reorganization of one module temporarily re-

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

07/01 01/02 07/02 01/03 07/03 01/04 07/04 01/05 07/05
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

LO
C

N
um

be
r

of
 u

ni
t t

es
ts

Date

JNuke: Uncovered LOC, number of test cases

Figure 6: Uncovered lines of code (solid) and num-
ber of test cases (dashed).

sulted in a couple of disabled test cases, as can be seen by the
short-term increase of uncovered lines. Even though contin-
ued development kept introducing new, untested code, care
was taken to finish each project with a suite of test cases
that achieves full statement coverage.

4.3 Lessons learned
The extensions in our unit test framework allowed us to

track internal object states more efficiently, and enabled us
to scale the test framework to system-wide tests. This in
turn made it possible to impose a strict testing policy. While
it took some time for each developer to get familiar with the
test framework, the advantages gained eclipsed this minor
overhead. Benefits of our strict testing policy include: (1)
increased confidence in the implementation, (2) less need
for “micromanagement” of projects, (3) facilitated change
management, and (4) improved documentation.

The first argument is widely agreed upon, as regression
testing prevents old failures from re-occurring. Unit tests
also give a formal confirmation that the code fulfills certain
properties under given example scenarios.

Test-first development allows developers to work in incre-
mental steps, ensuring that each intermediate goal has been
reached. Unit tests validate each implementation step, re-
ducing the need for code reviews and supervision of design
changes. Of course these established practices were still car-
ried out frequently at early stages of a project to ensure that
quality expectations would be met in the future.

Refactoring allowed us to keep adapting the design to
changing requirements. Several new features required major
changes, which sometimes had to be performed by develop-
ers who had not written the module in question. Thanks to
existing unit tests, the changes could be carried out success-
fully. In this context, unit tests also served as documenta-
tion and as a “walkthrough” of the module.

Overall, our experience is that systematic testing on a
unit test level as well as integration level allowed us to find
many error earlier, led to more maintainable code, while at
the same time making other project management practices
more effective. We would therefore consider it reckless not
to use such a development process in future projects.

5. APPLICATION OF EXTENSIONS TO
OTHER TEST FRAMEWORKS

The following key features were added to basic unit testing
in the JNuke project:

1. Support for log files (verified logging).

2. Wrapping of memory management.

3. Integrated coverage measurement.

Memory management can be added by using a wrapper for
memory management. The test driver has to verify that all
memory allocated since the test was started has been freed
at the end. Coverage measurement is independent of the
test framework used. The idea of minor code style changes
to achieve full statement coverage can be carried over to
other programming languages as well.

This leaves log file support. Achieving a similar function-
ality in other test frameworks such as JUnit is not difficult.
Each class implements a well-structured representation of
its internal state as a text string. This string representation
may include only partial information about a state; the key
to a successful application of verified logging is that the in-
formation must be usable with automated filters while still
being human-readable. The implementation of verified log-
ging in the test suite is rather simple. Log files are set up
by the test harness before each test is run, and closed there-
after. Comparison of the log output to a template output
can be performed after each unit test or after completion
of the entire test suite. We believe that many project have
already implemented such a convention to some extent, for
use in debugging. Therefore such efforts can be re-used for
automated testing. When generalizing log files to common
test data, there exist similar projects that factor out test in-
put and output data into files. For instance, JXUnit [1] uses
XML files to describe test data. However, the usage of files
to describe any test data is not widely adapted, because it
separates test code from data, which makes unit tests harder
to read. We refrained from using files containing serialized
objects as test data to avoid this problem.

6. CONCLUSIONS
In the JNuke project, systematic unit testing ensured code

quality despite frequent changes of developers. Basic unit
testing was extended with rigorous coverage measurement,
low-overhead memory leak detection, and verified logging.
These techniques allowed us to scale unit tests to larger
parts of software, and to utilize the low-overhead unit test
infrastructure for system tests as well. Furthermore, cover-
age evaluation can be fully automated by following simple
coding practices. The ideas described in this paper can be
ported to other unit test frameworks. Thanks to our success
with such unit tests, we will continue to follow the practices
described in this document in future projects.

7. ADDITIONAL AUTHORS
Additional authors: Shinichi Honiden (National Insitute

of Informatics, Tokyo, Japan, e-mail: honiden@nii.ac.jp)
and Viktor Schuppan (ETH Zurich, Zürich, Switzerland,
e-mail: vschuppan@acm.org) and Pascal Eugster (Avaloq Evo-
lution, Zürich, Switzerland, e-mail: peugster@sysworks.ch)
and Marcel Baur (ETH Zurich, Zürich, Switzerland, e-mail:

marcel.baur@tik.ee.ethz.ch) and Boris Zweimüller (ETH
Zurich, Zürich, Switzerland, e-mail: zboris@student.ethz.ch)
and Peter Farkas (ETH Zurich, Zürich, Switzerland, e-mail:
pefarkas@student.ethz.ch).

8. REFERENCES
[1] JXUnit – Java/XML extension of JUnit, 2001.

http://sourceforge.net/projects/jxunit/.

[2] C. Artho. Combining Static and Dynamic Analysis to
Find Multi-threading Faults Beyond Data Races. PhD
thesis, ETH Zürich, 2005.

[3] C. Artho and A. Biere. Combined static and dynamic
analysis. In Proc. AIOOL 2005, ENTCS, Paris,
France, 2005. Elsevier.

[4] C. Artho and A. Biere. Subroutine inlining and
bytecode abstraction to simplify static and dynamic
analysis. In Proc. BYTECODE 2005, ENTCS, pages
98–115, Edinburgh, Scotland, 2005. Elsevier.

[5] C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur,
and B. Zweimüller. JNuke: Efficient Dynamic
Analysis for Java. In Proc. CAV 2004, volume 3114 of
LNCS, pages 462–465, Boston, USA, 2004. Springer.

[6] M. Baur. Pretty printing for JNuke. Technical report,
ETH Zürich, Zürich, Switzerland, 2002.

[7] K. Beck. Test driven development: By example, 2002.

[8] E. Clarke, O. Grumberg, and D. Peled. Model
checking. MIT Press, 1999.

[9] The Gnu Compiler Collection, 2005.
http://gcc.gnu.org/.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification, 3rd Ed. Addison-Wesley, 2005.

[11] X. Gu. Personal communication.

[12] R. Hastings and B. Joyce. Purify: Fast detection of
memory leaks and access errors. In Proc. USENIX
1992, San Francisco, USA, 1992. USENIX Association.

[13] JUnit FAQ, 2005.
http://junit.sourceforge.net/doc/faq/.

[14] B. Kernighan and D. Ritchie. The C Programming
Language. Prentice-Hall, 1988.

[15] J. Link and P. Fröhlich. Unit Testing in Java: How
Tests Drive the Code. Morgan Kaufmann, Inc., 2003.

[16] B. Meyer. Eiffel: the language. Prentice-Hall, Inc.,
Upper Saddle River, USA, 1992.

[17] Microsoft Corp. Microsoft Visual C# .NET Language
Reference. Microsoft Press, Redmond, USA, 2002.

[18] N. Nethercote and J. Seward. Valgrind: A program
supervision framework. In Proc. RV 2003, volume 89
of ENTCS, pages 22–43, Boulder, USA, 2003. Elsevier.

[19] D. Peled. Software Reliability Methods. Springer, 2001.

[20] L. Raccoon. The chaos model and the chaos cycle.
SIGSOFT Softw. Eng. Notes, 20(1):55–66, 1995.

[21] 1st to 5th Intl. Workshops on Run-time Verification
(RV 2001 – RV 2005), volume 55(2), 70(4), 89(2),
113, TBD of ENTCS. Elsevier, 2001 – 2005.

[22] V. Schuppan, M. Baur, and A. Biere.
JVM-independent replay in Java. In Proc. RV 2004,
volume 113 of ENTCS, pages 85–104, Málaga, Spain,
2004. Elsevier.

[23] B. Stroustrup. The C++ Programming Language,
Third Edition. Addison-Wesley Longman Publishing
Co., Inc., Boston, USA, 1997.

