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Abstract

Data races are a common problem in concurrent and multi-threaded programming. Experience shows that
the classical notion of data race is not powerful enough to capture certain types of inconsistencies occurring in
practice. This paper investigates data races on a higher abstraction layer. This enables detection of inconsistent
uses of shared variables, even if no classical race condition occurs. For example, a data structure representing
a coordinate pair may have to be treated atomically. By lifting the meaning of a data race to a higher level, such
problems can now be covered. The paper defines the concepts view and view consistency to give a notation
for this novel kind of property. It describes what kinds of errors can be detected with this new definition,
and where its limitations are. It also gives a formal guideline for using data structures in a multi-threaded
environment.

1 Introduction

Multi-threaded, or concurrent, programming is becoming increasingly popular in enterprise applications and
information systems [AB01, Sun02]. The Java programming language [AG96] explicitly supports this paradigm
[Lea97]. Multi-threaded programming, however, provides a potential for introducing intermittent concurrency
errors that are hard to find using traditional testing. The main source of this problem is that a multi-threaded
program may execute differently from one run to another due to the apparent randomness in the way threads are
scheduled. Since testing typically cannot explore all schedules, some bad schedules may never be discovered.
One kind of error that often occurs in multi-threaded programsiista race as defined below. This paper shall

go beyond the traditional notion of what shall be referred to as low-level data races, and introduce high-level
data races, together with an algorithm for detecting them. Low-level as well as high-level data races can be
characterized as occurring when two or more threads access a shared region simultaneously, the definition of
region being dependent on what kind of data race is referred to.

Data races are very hard to detect with traditional testing techniques. Not only does a simultaneous access
from two or more threads to a particular region have to occur, but this should additionally result in corrupted
data, which violate some user-provided assertion. They are usually harder to detect than deadlocks, which often
cause some visible activity to halt. The suggested algorithm, first presented in [AHBO03], analyzes a single
execution trace obtained by running an instrumented version of the program. In this context, single execution
means the program is run once. While running, it emits a series of events which consitute the exection trace.



The analysis algorithm which analyzes the execution trace is, for practical purposes, mostly independent of the
thread interleavings during program execution. Hence the program only needs to be run once.

The algorithm requires no user-provided requirement specification, and hence is in line with the Eraser
algorithm [SBN-97] for detecting low-level data races. This means that the algorithm is totally automated,
requiring no user guidance at all beyond normal input. The algorithm looks for certain patterns in the execution
trace, and raises a warning in case such are detected. A data race does not have to occur in the run that
generated the execution trace, which is why the algorithm is more powerful than traditional testing techniques.
The algorithm is neither sound, nor complete, and may yield false positives (false warnings) and false negatives
(missed errors). However, it is our opinion that the increased probability of detecting errors strongly out-
balances this, in particular considering that it is fully automated. In addition, practice seems to support that the
rates of false positives as well as false negatives are low.

The algorithm has been implemented in the Java PathExplorer (JPaX) tool [HRO1, GHO3, BH03], which
provides a general framework for instrumenting Java programs, and for monitoring and analyzing execution
traces. In particular JPaX contains algorithms for detecting problems in multi-threaded programs, such as data
races and deadlocks [BHO03]. Although JPaX analyzes Java programs, the principles and theory presented here
are universal and apply in full to concurrent programs written in languages like C and C++ as well [NBF98].

1.1 Low-level Data Races
The traditional definition of a data race is as follows [SBN]:

A data race can occur when two concurrent threads access a shared variable and when at least one
access is a write, and the threads use no explicit mechanism to prevent the accesses from being
simultaneous.

Consider for example two threads, that both access a shared object containing a counteryannabdssume

that both threads call aimcrease()method on the object, which increaseby 1. Theincrease()method is
compiled into a sequence of bytecode instructions (bo&mthe operand stack, add 1, write back the result).
The Java Virtual Machine (JVM) executes this sequence non-atomically. Suppose the two threaceeaat()

at nearly the same time and that each of the threads executathiastruction first, which loads the value »f

to the thread-local operand stack. Then they will both add 1 to the original value, which results in a combined
increment of 1 instead of 2. This traditional notion of data race shall be referred ttoaslevel data race

since it focuses on a single variable.

The standard way to avoid low-level data races on a variable is to protect the variable with a lock: all
accessing threads must acquire this lock before accessing the variable, and release it again after. In Java,
methods can be defined agnchronized  which causes a call to such a method to lock the current ob-
ject instance. Return from the method will release the lock. Java also provides an explicit statement form
synchronized(  obj) {stm#, for taking a lock on the objeaibj, and executing statemestimtprotected un-
der that lock. If the above mentionéttrease()method is declaredynchronized , the low-level data race
cannot occur.

Several algorithms and tools have been developed for analyzing multi-threaded programs for low-level data
races. The Eraser algorithm [SBN7], which has been implemented in the Visual Threads tool [Har00] to
analyze C and C++ programs, is an example of a dynamic algorithm that examines a program execution trace



for locking patterns and variable accesses in order to predict potential data races. The Eraser algorithm maintains
alock setfor eachvariable, which is the set of locks that have been owned by all threads accessing the variable

in the past. Each new access causes a refinement of the lock set to the intersection of the lock set with the set
of locks currently owned by the accessing thread. The set is initialized to the set of locks owned by the first
accessing thread. If the set ever becomes empty, a data race is possible. JPaX implements the Eraser algorithm
[HRO1, Hav00]. Another commercial tool performing low-level data race analysis is JProbe [Sit00].

1.2 High-level Data Races

A program may contain a potential for concurrency errors, even when it is free of low-level data races and dead-
locks. Low-level data races concern unprotected accesses to shared fields. The notion of high-level data races
refers to sequences in a program where each access to shared data is protected by a lock, but the program still
behaves incorrectly because operations that should be carried out atomically can be interleaved with conflicting
operations.

A problem that was detected in NASARemote Agerspace craft controller [PGKO7] shall serve as a
realistic example of a high-level data race situation. The problem was originally detected using model checking
[HLPO1]. The error was very subtle, and was originally regarded hard to find without actually exploring all
execution traces as done by a model checker. Because only very particular thread interleavings result in a data
race and hence corrupted data, a single execution trace does usually not exhibit this error. As it turns out, itis an
example of a high-level data race, and can therefore be detected with the low-complexity algorithm presented
in this paper.

The Remote Agent is an artificial-intelligence-based software system for generating and executing plans on
board a space craft. A plan essentially specifies a set of tasks to be executed within certain time constraints.
The plan execution is performed by tBxecutive A sub-component of the Executive, thesk manageris
responsible for managing the execution of tasks, once the tasks have been activated. The data structures used
by the task manager are illustrated in Fig. 1.

The state of the spacecraft (at any particular point) can be considered as consisting of a set of properties,
each being an assignment of a value to a variable corresponding to a component on board the space craft. The
values of variables are continuously read by sensors and recordsgistea stateA task running on board the
space craft may require that specific properties hold during its execution, and it notifies the task manager about
such requirements before start. That is, upon the start of the task, it first tries to lock those properties it requires
in alock table telling the task manager that its execution is only safe if they hold throughout the execution.
For example, a task may requiBeto be ON (assuming thaB is some system variable). Now other threads
cannot requedB to be OFF as long as the property is locked in the lock table. Next, the task tries to achieve
this property (changing the state of the space craft, and thereby the system state through sensor readings), and
when it is achieved, the task sets a fldhieved associated with that variable, tae in the lock table. This
flag is true whenever the system state is expected to contain the property. These flags are initially set to false
at system initialization, are set to true in the just described scenario, and are set back to false once the task no
longer requires the property to hold.

A Daemonconstantly monitors that the system state is consistent with the lock table in the sense that
properties that are required to hold, as stated in the lock table, are actually also contained in the system state.
That is, it checks thatif a task has locked a value to some variable, and the correspondingdlaigvedis
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Figure 1: The Remote Agent Executive

true, then it must be a true property of the space craft, and hence true in the systenvatéagons of this

property may occur by unexpected events on board the space craft, which cause the system state to be updated.
The daemon wakes up whenever events occur, such as when the lock table or the system state are modified. In
case an inconsistency is detected, the involved tasks are interrupted.

Task Daemon
synchroni zed(tabl e) { synchroni zed(tabl e) {
tabl e[ N].value =V, if (table[ N .achieved &&
} systemstate[N != table[N.value) {
i ssueWarni ng();
/* achi eve property */ }
}

synchroni zed(tabl e) {
tabl e[ N] . achi eved = true;

}

Figure 2: The synchronization inconsistency between a task and the daemon.

The relevant code from the task and the daemon is illustrated in Fig. 2, using Java syntax (The Remote
Agent was coded in LISP). The task contains two separate accesses to the lock table, one where it updates the
value and one where it updates flaghieved The daemon on the other hand accesses all these fields in one
atomic block. This can be described as an inconsistency in lock views, as described below, and actually presents
an error potential.

The error scenario is as follows: suppose the task has just achieved the property, and is about to execute
the second synchronized block, setting flachievedto true. Suppose now however, that suddenly, due to



unpredicted events, the property is destroyed on board the space craft, and hence in the system state, and that
the daemon wakes up, and performs all checks. Sinceaftagevedis false, the daemon reasons incorrectly

that the property is not supposed to hold in the system state, and hence it does not detect any inconsistency with
the lock table (although conceptually now there is one). Only then the task continues, and satkiéagdo

true. The result is that the violation has been missed by the daemon. The nature of this error can be described
as follows:

The daemon accesses the value anddtdgevedn one atomic block, while the task accesses them
in two different blocks. These two different ways of accessing tfipdue achieved, atomically
and as a compound operation, is a inconsistency ceaitedinconsistency

The seriousness of the error scenario depends on the frequency with which the daemon gets activated. If events
updating the lock table or the system state occur often, the daemon will just detect the problem later, and hope-
fully soon enough. However, if such events are far apart, the task may execute for a while without its required
property holding. In the above example the view inconsistency is in itself not an error, but a symptom that if
pointed out may direct the programmer’s attention to the real problem, that property achievement and setting
the flagachievedare not done in one atomic block. More formal and generic definitions of view inconsistency
are presented in Sec. 2 and 3. Note that repairing this situation is non-trivial since achieving properties may
take several clock cycles, and it is therefore not desirable to hold the lock on the table during this process.

Detecting this error using normal testing is very hard since it requires not only to execute the just described
interleaving (or a similar one), but it also requires the formulation of a correctness property that can be tested
for, and which is violated in the above scenario. However, regarding this as a view inconsistency problem makes
it possible to find the error without actually executing this particular interleaving, and without a requirement
specification.

Both aspects are very important. The success of the Eraser algorithmlEBNonfirms this. Data races,
both low-level or high-level ones, occur only rarely in a concrete run, because they only appear under a certain
schedule. This makes them very hard to observe using traditional testing. Therefore one tries to observe the
locking behavior of a program and infer potential errors from that. The locking behavior of each thread does
not change across different schedules (it is only dependent on the input, which can be automated), and therefore
it is a reliable base for fault-finding algorithms.

Requiring no annotations is not only important when it comes to the usability of a tool. Tools like ESC/Java
suffered from having a high initial overhead due to the required annotations in a progrant §BRLAIgo-
rithms that do not require annotations are also more interesting from a research point of view: It is attempted to
extract as much information as possible from the program itself rather than having the user specify (possibly in-
correct or redundant) information. Of course such approaches are sometimes inherently more limited than ones
requiring annotations. The goal is to find algorithms that still capture the underlying problems with sufficient
precision.

The algorithm presented in this paper achieves this to a high degree. In the Eraser algorithth@7$BN
for detecting low-level data races, the set of locks protecting a single variable, referred tolasktkef is
considered. In this paper this idea is turned upside downvahable setassociated to Bckis now of interest.
This notion makes it possible to detect what shall be referrediigaslevel data racesThe inspiration for this
problem was originally due to a small example provided by Doug Lea [Lea00]. It is presented in modified form
in Sec. 2. It defines a simple class representing a coordinate pair with two compgrartg. All accesses



are protected by synchronization tns , usingsynchronized  methods. Therefore, data race conditions

on a low level are not possible. As this example will illustrate, there can, however, still be data races on a
higher level, and this can be detected as inconsistencies in the granularéyiaifle setsassociated to locks

in different threads. The algorithm for detecting high-level data races is a dynamic execution trace analysis
algorithm like the Eraser algorithm [SBN7].

1.3 Outline

The paper is organized as follows. Sec. 2 introduces the problem of high-level data races. A formal definition
of high-level data races is given in Sec. 3. Sec. 4 describes the JPaX framework for analyzing Java programs.
Experiments carried out are described in Sec. 5. Sec. 6 gives an overview of related work. Sec. 7 outlines future
work and Sec. 8 concludes the paper.

2 Informal Definition of High-level Data Races

Consistent lock protection for a shared field ensures that no concurrent modification is possible. However, this
only refers to low-level access to the fields, not their entire use or their use in conjunction with other fields. The
remainder of this paper assumes detection of low-level data races is covered by the Eraser algorithB7[SBN
which can be applied in conjunction with the analysis described in this paper. This section introduces a more
precise definition of high-level data races. First a very basic example is presented, followed by more pathologi-
cal ones, which at first sight may appear as high-level data races, but which shall not be classified as such.

2.1 Basic Definition

Fig. 3 shows a class implementing a two-dimensional coordinate pair with two fieldswvhich are guarded
by a single lock.

class Coord {
doubl e x, v;
publ i c Coord(doubl e px, double py) { x =
synchroni zed double getX() { return x; }
synchroni zed double getY() { returny; }
synchroni zed Coord get XY() { return new Coord(x, y); }
synchroni zed voi d set X(double px) { x = px; }
synchroni zed void setY(double py) { v = py; }
synchroni zed void setXY(Coord c) { x =c¢c.Xx; y =¢c.y; }

Figure 3: TheCoord class encapsulating points with x and y coordinates.

If only getXY , setXY , and the constructor are used by any thread, the pair is treated atomically by all accessing
threads. However, the versatility offered by the other accegstr/éet ) methods is dangerous: if one thread
only usegjetXY andsetXY and relies on complete atomicity of these operations, other threads using the other
accessor methodgétX , setX , getY , setY ) may falsify this assumption.

Imagine for example a case where one threadeads both coordinates while another threadsets them
to zero. Assume that. reads the variables withetXY , but thatt,,’s write operation occurs in two phases,



setX andsetY . The thread,. may then read amtermediate resultvhich contains the value of already
set to zero by, but still the originaly value (not zeroed yet by,). This is clearly an undesired and often
unexpected behavior. In this paper, the térigh-level data racavill describe this kind of scenario:

A high-level data race can occur when two concurrent threads acces¥ aofshared variables,
which should be accessed atomically, but at least one of the threads does not access the variables in
V atomically.

In the coordinate pair example above, thedes {z, y}, and thread,, violates the atomicity requirement. Of
course, a main question is how one determines whether a set of variables are to be treated atomically, assuming
that the user does not specify that explicitly. For now it is assumed that an oracle determines this. In Sec. 3 an
approximation to this oracle will be suggested, which does not require any kind of specification to be provided
by the user. Of course it is an undecidable problem in practice, and furthermore requires a specification of the
expected behavior of the program. For instance, in the above coordinate pair example, atomicity might not be
required at all if the reader only wants to sampleraralue and a value without them being related.

2.2 Refinement of Basic Definition

Although the definition above may be useful, it yields false positives (false warnings). Using the coordinate
example, any use of the methogistX , setX , getY , andsetY will cause a high-level data race. However,
there exist scenarios where some of these access methods are allowed without the occurence of high-level data
races. Hence the notion of high-level data race needs to be refined. This is analog to the refinement in Eraser
[SBNT97] of the notion of low-level data races in order to reduce the number of false positives.

The refinement of the definition will be motivated with the example in Fig. 4, which shows four threads
working in parallel on a shared coordinate paiThreadt, writes toc (and is similar tat,, from Subsec. 2.1)
while the other threads,, t3 andt, read fromce (3 is similar tot,. from Subsec. 2.1). The threads use local
variablesxi andyi of typedouble anddi of typeCoord , wherei identifies the thread.

Threadt; Threadt, Threadts Threadt,
x4 = c.get X();
use(x4);
dl = new Coord(1,2); x2 = c.getX(); x3 = c.getX(); d4 = c.get XY();
c. set XY(dl); use(x2); y3 = c.getY(); x4 = d4. get X();
use(x3,y3); y4 = d4.getY();
use(x4,y4);

Figure 4: One thread updating a pair of fields and three other threads reading fields individually.

Initially, only threadst; andt; are considered, the situation already described in Sec. 2.1. Inconsistencies might
arise with threads, which readse in one operation ang in another operation, releasing the lock in between.
Hence, thread, may write tox andy in between, anés may therefore obtain inconsistent values corresponding
to two differentglobal states.

Now consider the two threads andt,. It is not trivial to see whether an access conflict occurs or not.
However, this situation is safe. As long asdoes not use; as well, it does not violate the first thread’s



assumption that the coordinates are treated atomically. Even thpaghesses the entire péir, y } atomically
andt, does not, the access toalone inty can be seen as a partial read. That is, the read accessi&y be
interpreted as readinfr, y} and discarding. So both threads, andt, behave in a consistent manner. Each
thread is allowed to use only a part of the coordinates, as long as that use is consistent.

The difficulty in analyzing such inconsistencies lies in the wish to still allow such partial accesses to sets of
fields, like the access to of threadt,. The situation betweety and¢, serves as another, more complicated,
example of a situation which at first sight appears to provide a conflict, but which shall be regarded as safe.
Regard thread, as consisting of two operations: the first consisting of the first two statements, including
use(x4) , and the second operation consisiting of the remaining four statements. The second operation is
completely self-contained, and accesses in addition éverything the first operation accesses (namgly
Consequently, the first operationn likely represents an operation that does not ngedherefore, the two
operations are unrelated and can be interleaved with the atomic update statemevithiout interfering with
the operations of, onx andy. On a more formal basig, is safe because the set of variables accessed in the
first operation ot, is a subset of the set of variables accessed in its second operation; the variable sets form a
chain When they do not form a chain, theljwerge On the basis of this example, the definition of high-level
data races can be refined as follows:

A high-level data race can occur when two concurrent threads acces¥ aoéshared variables,
which should be accessed atomically, but at least one of the threads adcesadilly several
times such that those partial accesses diverge.

This definition is adopted for the remainder of the paper. It can, however, still lead to false positives and false
negatives as is described in Sec. 3.4.

The algorithm presented in the remainder of this paper does not distinguish between read and write accesses.
This abstraction is sufficiently precise because view consistency is independent of the whether the access is a
read or a write: A non-atomic read access may result in inconsistent values among the tuple read, because other
threads may update the tuple between reads. A write access that is carried out non-atomically allows other
threads to read partial updates between write operations. Note that it is assumed that at least one write access
occurs; constant values can be ignored in this analysis.

3 Formal Definition of High-Level Data Races

This section definegiew consistencyit lifts the common notion of a data race on a single shared variable to a
higher level, covering sets of shared variables and their uses. This definition assumes that the specification of
what fields have to be treated atomically is not provided by the user. It is instead extracted by program analysis.
This analysis turns the problem of high-level data races into a testable property, using view consistency. The
definition of this analysis is precise but allows for false positives and false negatives. This is discussed at the
end of this section.

3.1 Views

A lock guardsa shared field if it is held during an access to that field. The same lock may guard several shared
fields. Views express what fields are guarded by a lock. ILle¢ the set of object instances generated by a



particular run of a Java program. Théhis the set of all fields of all instances in

A viewwv € P(F) is a subset of’. Let! be a lock,t a thread, and3(t, ) the set of allsynchronized
blocks using lock executed by threatl Forb € B(t,1), a viewgenerated by with respect td, is defined as
the set of fields accessediimy t. Theset of generated viewid(t) C P(F') of a thread is the set of all views
v generated by. In the previous example in Fig. 4, threadusing both coordinates atomically generates view
v; = {x,y} under lockl = c. Threadt, only accesses alone undei, having viewv, = {x}. Threadt;
generates two viewd? (t3) = {{z},{y}}. Threadt, also generates two views:(t,) = {{z}, {z,y}}.

3.2 Views in Different Threads
A view v,,, generated by a threads amaximal viewiff it is maximal with respect to set inclusion ¥ (¢):
Vv € V(t) [Um C v — vy, = 7]

Let M (¢) denote the set of all maximal views of threadOnly two views which have fields in common can

be responsible for a conflict. This observation is the motivation for the following definition. Given a set of
views V' (t) generated by and a viewv’ generated by another thread, theerlapping viewsf ¢ with v’ are all
non-empty intersections of views I(¢) with v':

overlap(t,v') = {v'Nv | (v e V() A(vNv #0)}

A set of viewsV/ (t) is compatiblewith the maximal viewv,,, of another thread iff all overlapping views of
with v,,, form a chain:

compatible(t, v,,) iff Vouq, vy € overlap(t, vy,) [v1 C v V vy C 0]

View consistencis defined as mutual compatibility between all threads: A thread is only allowed to use views
that are compatible with the maximal views of all other threads.

Vi1 # ta, vy € M(t1) [compatible(ta, v,,)]

In the example in Fig. 4, the views were

V(t) = M(t) = {{z,y}}
Vta) = M(t2) = {{z}}
Vits) = M(ts) = {{=}, {y}}
V(ta) = {{z}, {2, y}}
M(ts) = {{z,y}}

There is a conflict betweenandts as stated, sincér,y} € M(t1) intersects with the elements 1(¢3) to
{z} and{y}, which do not form a chain. A similar conflict exists betwegmndt,.

The above definition ofiew consistencyses three concepts: the notionméximal viewsthe notion of
overlaps and finally thecompatiblenotion, also referred to as tlebainproperty. The chain property is the core



# Threadt, Threadt, Incompatible views
Views V(7] @ | L none
Maximal viewsM (t) {z},{y} {z},{y}
, | Views V(1) {z,y} (e} Ay} | {2} = {w,9} N (@} € M(t) N V(&)
Maximal viewsM (t) {z,y} {z},{y} | {y}={z,y}n{y} € M(t,) NV (ts)
5 | Views V(1) (g ok, ) | leh vy | o) = @y} N {a) € M) NV (@)
Maximal viewsM (t) {z,y} {a}b {yy [ {y} ={=y}tn{y} € M(t.) NV (ts)
4 Views V() {z,y,z} {z,y}, {z} none
Maximal viewsM (t) {z,y,2} {z,y}
Table 1: Examples wittwo threads illustrating the principle of view consistency.
# Threadt,. Threadt, Threadt, Incompatible views
V(t) {z,y} {«} {z} {y} {z} =A{z,y} n{z} e M(t:) NV (L)
M((t)) }my{ ?v{ {x? %y} {y} ={z,y} n{y} e M(t;) N V(L)
V(t T,y x Y
: M((t)) { %x{y% {v} | { }{?{:}} {z} | { }{l{/}} {«} —
Vit x,yh{xt {y v, 25 {y} {2 z, e}, {z},{x
v ey {v.2) {z.7} none
glVO | = yh Azt {y, 2h | {y,2h {uh Azt | {z2h {25 {e} | {u} = {y, 2} 0 {y} € M(tc) NV (ta)
M) A{zy}{y. 2} {y, 2} {z 2} {z} ={y, 2z} n{z} € M(tc) NV (ta)

Table 2: Examples witthreethreads illustrating the principle of view consistency.

concept. Maximal views do not really contribute to the solution other than to make it more efficient to calculate
and reduce the number of warnings if a violation is found. The notion of overlaps is used to filter out irrelevant
variables.

3.3 Examples

A few examples help to illustrate the concept. Table 1 contains examples involving two threads. Note that the
outermost brackets for the set of sets are omitted for better readability. Example 1 is the trivial case where no
thread treats the two fieldsc} and{y} atomically. Therefore there is no inconsistency. However, if thrgad
treats{z, y} as a pair, and threag does not, there is a conflict as shown in example 2. This even holds if the
first thread itself uses partial accesses{oh or {y}, since this does not change its maximal view. Example 3
shows that case. Finally, example 4 illustrates the case where threads a three-dimensional coordinate set
atomically and thread, reads or updates different subsets of it. Since the subsets are compatible as defined in
Sec. 3.2, there is no inconsistency.

Table 2 shows four cases with three threads. The first entry, example 5, corresponds to the first three threads
in Fig. 4. There, thread. violates the assumption @f about the atomicity ofz,y}. Example 6 shows
a “fixed” version, where,, does not accessc}. More complex circular dependencies can occur with three
threads. Such a case is shown in example 7. Out of three fields, each thread only uses two, but these two fields
are used atomically. Because the accesses of any thread only overlap in one field with each other thread, there is
no inconsistency. This example only requires a minor change, shown in example 8, to make it faulty: Assume
the third view oft. were{y, z} instead of{y}. This would contribute another maximal viely, z}, which



conflicts with the viewqy} and{z} of ¢,.

3.4 Soundness and Completeness

Essentially, this approach tries to infer what the developer intended when writing the multi-threaded code, by
collecting views. The sets of shared fields which must be accessed atomically are not available in the program
code. Therefore views are used to detect the most likely candidates, or maximal views. View consistency is
used to detect violations of accesses to these sets. The underlying assumption behind the algorithm is that an
atomic access to a set of shared fields is an indication of atomicity. Under this assumption, a view consistency
violation indicates a high-level data race.

However, sets of fields may be used atomically even if there is no requirement for atomic access. Therefore,
an inconsistency may not automatically imply a fault in the software. An inconsistency that does not correspond
to a fault is referred to asfalse positivgspurious warning). Similarly, lack of a reported inconsistency does
not automatically imply lack of a fault. Such a missing inconsistency report for an existing fault is referred to
as afalse negativémissed fault).

False positives are possible if a thread uses a coarser locking than actually required by operation semantics.
This may be used to make the code shorter or faster, since locking and unlocking can be expensive. Releasing
the lock between two independent operations requires splittingymehronized  block into two blocks.

False negatives are possible if all views are consistent, but locking is still insufficient. Assume a set of
fields that must be accessed atomically, but is only accessed one element at a time by every thread. Then no
view of any thread includes all variables as one set, and the view consistency approach cannot find the problem.
Another source of false negatives is the fact that a particular (random) run through the program may not reveal
the inconsistent views, if the corresponding code sections are not executed even once.

The fact that false positives are possible means that the solution is not sound. Similarly, the possibility of
false negatives means that the solution neither is complete. This may seem surprising, but actually also char-
acterizes the Eraser low-level data race detection algorithm fSBNimplemented in the commercial Visual
Threads tool [Har00], as well as the deadlock detection algorithm also implemented in the same tool. The same
holds for the similar algorithms implemented in JPaX. For Eraser, it is very hard to determine automatically
whether a warning is a false positive or a false negative [Bur00]. Furthermore, it is an unsolved problem to
prove soundness and completeness properties about the Eraser algorithm. In real software programs, there are
always situations where having program threads use inconsistent values is acceptable. For example, a moni-
toring thread may just “sample” a value at a given time; it is not crucial that this value is obtained with proper
synchronization, because it does not have to be up-to-date.

The reason for the usefulness of such algorithms is that they still have a much higher chance of detecting an
error than if one relies on actually executing the particular interleaving that leads to an error, without requiring
much computational resource. These algorithms are essentially based on turning the property to be verified (in
this case: no high-level data races) into a more testable property (view consistency). This aspect is discussed in
more detail in [BHO3] in relation to deadlock detection.



4 Implementation

For detecting high-level data races in software, a program analysis algorithm that extracts the views generated
by all threads has to be implemented. This analysis can be static, analyzing the code, or dynamic, analyzing
an execution trace. The implementation used in the experiments is a dynamic analysis. The experiments were
carried out with JPaX [HR01, GHO03], a run-time verification tool consisting of two parts: an instrumentation
module and an observer module. The instrumentation module produces an instrumented version of the program,
which when executed, generates an event log with the information for the observer to determine the correctness
of examined properties. Fig. 5 illustrates the situation.

Observer
Instrumented | Events | Event .
. Interpretation
program analysis

Figure 5: Structure of the run-time analysis.

The observation of events generated by the instrumented program is divided into two stages: an event
analysis and an interpretation of events. The former reconstructs the context required for the event interpretation,
while the latter contains the actual observation algorithms. The observer used here only checks for high-level
data races. For these experiments, a new and yet totally un-optimized version of JPaX was used. It instruments
every field access, regardless of whether it can be statically proven to be thread-safe. This is the reason why
some data-intensive applications created log files which grew prohibitively lar@e5 GB) and could not be
analyzed.

4.1 Java Bytecode Instrumentation

Part of JPaX is a very general and powerful instrumentation package for instrumenting Java bytecode [GHO3].
The requirements of the instrumentation package include power, flexibility, ease of use, portability, and effi-
ciency. Alternative approaches were rejected, such as instrumenting Java source code, using the debugging
interface, and modifying the Java Virtual Machine because they violated one or another of these requirements.

It is essential to minimize the impact of the instrumentation on program execution. This is especially the
case for real time applications, which may particularly benefit from this approach. Low-impact instrumentation
may require careful trade-offs between the local computation of the instrumentation and the amount of data
transmitted to the observer. The instrumentation package allows such trades to be made by allowing seamless
insertion of Java code at any program point.

Code is instrumented based on iastrument specificatiosonsisting of a collection of predicate-action
rules. A predicate is a filter on source code statements. These predicates are conjunctions of atomic predicates
including predicates that distinguish statement types, presence of method invocations, pattern-matched refer-
ences to fields and local variables, etc. The actions are specifications describing the inserted instrumentation
code. Actions are inserted where predicates evaluate to true. The actions include reporting the program point
(method, and source statement number), a time stamp, the executing thread, the statement type, the value of
variables or an expression, and invocation of auxiliary methods. Values of primitive types are recorded in the
event log. If the value is an object, a unique integer descriptor of the object is recorded.



The instrumentation has been implemented using Jtrek [Coh99], a Java API that provides lower-level instru-
mentation functionality. In general, use of bytecode instrumentation, and use of Jtrek in particular, has worked
out well, but there are some remaining challenges with respect to instrumenting the concurrency aspects of
program execution.

4.2 Event Stream Format

All operations in the instrumented application which write to the event log have to be as fast as possible. Among
other factors, light-weight locking, incurring as little lock contention as possible, helps achieving this goal.
When several pieces of information are logged by the instrumentation, they are therefore recorded separately,
not atomically. As a result of this, one event can generate several log entries. Log entries of different threads
may therefore be interleaved.

In order to allow a faithful reconstruction of the events, each log entry includes the hash code of the active
thread creating the log entry. Therefore the events can all be assigned to the original threads. The contextual
information in events includes thread names, code locations, and reentrant acquisitions of locks (lock counts).
The event analysis package maintains a database with the full context of the event log.

4.3 Observer Architecture

As described above, run-time analysis is divided into two parts: instrumenting and running the instrumented
program, which produces a series of events, and observing these events. The second part, event observation,
can be split into two stages: event analysis, which reads the events and reconstructs the run-time context, and
event interpretation (see Fig. 6). Note that there may be many event interpreters.

Observer

Events
Instrumented Bvent | | terpretation
program analysis

Event analysis

/'

Interpretation ———»
Result

Internal events
R
Events

Filtering

Observable events

Figure 6: The observer architecture.

Reusing the context reconstruction module allows for writing simpler event interpreters, which can subscribe



to particular event types made accessible through an observer interface [GHJV95] and which are completely
decoupled from each other.

Each event interpreter builds its own model of the event trace, which may consist of dependency graphs or
other data structures. It is up to the event interpreter to record all relevant information for keeping a history of
events, since the context maintained by the event analysis changes dynamically with the event evaluation. Any
information that needs to be kept for the final output, in addition to context information, needs to be stored by
the event interpreter. If an analysis detects violations of its rules in the model, it can then show the results using
stored data.

Besides clearly separating two aspects of event evaluation, this approach has other advantages: Many algo-
rithms dealing with multi-threading problems require very similar information, namely lock and field accesses.

If alog generated by an instrumented program includes at least this information, then several analysis algorithms
can share the same events. Furthermore, splitting event observation into two steps also allows writing an event
analysis front-end for event logs generated by tools other than JPaX, reusing the back-end, event interpretation.

5 Experiments

Before analyzing applications, the implementation of the algorithm was tested using ten hand-crafted programs
exhibiting different combinations of tuple accesses, such as the ones shown in Sec. 3.3. The test set included
applications which contain high-level data races and others that do not. The primary purpose of this test set
was to test the implementation of the view consistency algorithm. Furthermore, the tests served to fine-tune the
output so it is presented in an easily readable manner. This makes evaluation of warnings fairly easy, as long as
the semantics of fields used in conflicting views is known and it can be inferred whether these fields have to be
used as an atomic tuple or not.

Once these tests ran successfully, four real applications were analyzed. Those applications include a
discrete-event elevator simulator, and two task-parallel applications: SOR (Successive Over-Relaxation over
a 2D grid), and a Travelling Salesman Problem (TSP) application [vPGO1]. The latter two use worker threads
[Lea97] to solve the global problem. In addition, a Java model of a NASA planetary rover controller, named
K9, was analyzed. The original code is written in C++ and contains about 35,000 lines of code, while the Java
model is a heavily abstracted version with 7,000 lines. Nevertheless, it still includes the original, very complex,
synchronization patterns. Note that all Java foundation classes were excluded from the analysis. This would
have increased the overlapping sets to a point where the analysis would have produced too many warnings: Ev-
ery print statement usingystem.out  would have resulted in overlapping sets with any other view containing
an access t8ystem.out

Table 3 summarizes the results of the experiments. All experiments were run on a Pentium Il with a clock
frequency of 750 MHz using Sun’s Java 1.4 Virtual Machine, given 1 GB of memory. Only applications which
could complete without running out of memory were considered. It should be noted that the overhead of the
built-in Just-In-Time (JIT) compiler amounts to 0.4 s, so a run time of 0.6 s actually means only about 0.2 s
were used for executing the Java application. The Rover application could not be executed on the same machine
where the other tests were run, so no time is given there.

It is obvious that certain applications using large data sets incurred a disproportionately high overhead in
their instrumented version. Many examples passed the view consistency checks without any warnings reported.



Application Size | Number| Runtime [s],| Runtime [s],| Log size | Warnings

[LOC] | of classes| uninstrumented instrumented [MB] issued
Elevator 500 5 16.7 17.5 1.9 2
SOR 250 3 0.8 343.2 123.5 0
TSP, very small run (4 cities 700 4 0.6 1.8 0.2 0
TSP, larger run (10 cities) 0.6 28.1 2.3 0
NASA's K9 Rover controller| 7000 82 — — — 1

Table 3: Analysis results for the given example applications.

For the elevator example, two false warnings referred to two symmetrical cases. In both cases, three fields
were involved in the conflict. In thread, the viewsV (¢1) = {{1, 3}, {3},{2,3}} were inconsistent with

the maximal viewv,,, = {1, 2,3} of . While this looks like a simple case, the interesting aspect is that one
method in¢; included aconditionalaccess to field. If that branch had been executed, the vigy3} would

actually have beefi1, 2,3}, and there would have been no inconsistency reported. Since not executing the
branch corresponds to reading data and discarding the result, both warnings are false positives.

One warning was also reported for the NASA K9 rover code. It concerned six fields which were accessed
by two threads in three methods. The responsible developer explained the large scope of the maximal view with
six fields as an optimization, and hence it was not considered an error. The Remote Agent space craft controller
was only available in LISP, so it could not be directly tested. However, the tool used was successfully applied
to test cases reflecting different constellations including that particular high-level data race.

So far, experiments indicate that experienced programmers intuitively adhere to the principle of view con-
sistency. Violations can be found, but are not very common, as shown in the experiments. Some optimizations
produce warnings that constitute no error. Finally, the two false positives from the elevator example show that
the definition of view consistency still needs some refinement.

6 Related Work

As described in Sec. 1, view consistency was partially inspired by the Eraser algorithrir @8BNBeyond this
algorithm, related work does not only exist in software analysis, but also in database and hardware concurrency
theory.

6.1 Static Analysis and Model Checking

Beyond Eraser, several static analysis tools exist that examine a program for low-level data races. The Jlint
tool [ABO1] is such an example. The ESC [DRE8] tool is also based on static analysis, or more generally

on theorem proving. It, however, requires annotation of the program, and does not appear to be as efficient as
the Eraser algorithm in finding low-level data races. Dynamic tools have the advantage of having more precise
information available in the execution trace. More heavyweight dynamic approaches include model checking,
which explores all possible schedules in a program. Recently, model checkers have been developed that ap-
ply directly to programs (instead of just on models thereof). For example, the Java PathFinder system (JPF)
developed by NASA [HP0O, VHBPOO], and similar systems [God97, €¢D® HS99, BPRO1, Sto00]. Such



systems, however, suffer from the state space explosion problem. An extension of Java PathFinder performs
low-level data race analysis (and deadlock analysis) in simulation mode, whereafter the model checker is used to
demonstrate whether the data race (deadlock) warnings are real or not [Hav00]. However, a data race, low-level
as well as high-level, can be hard to find with model checking since it typically needs to cause a violation of
some explicitly stated property.

High-level data races cover inconsistencies in value accesses. Another kind of fault that is closely related
to high-level data races is the ideaatbmicity of sequences of operations, such as an entire method [FQO3].
High-level data races do not cover such atomicity violations, although it is possible that an atomicity violation
can lead to a high-level data race. Figure 7 shows a possible scenario where reading the value, performing an
operation using it, and writing the result back are not carried out atomically. The result will be based on a
possibly outdated value, because other threads may have updated the sharedfi¢ghd meantime. Because
view consistency deals with sets of values, it cannot capture this kind of error, as shown by Wang and Stoller
[WS03]. Only full knowledge about the desired atomicity can achieve this. A static analysis algorithm checking
an implementation against an atomicity specification is presented in [FQO03]. Recently von Praun has shown
that an extension of view consistency can be used to detect similar faults [vPGO03]. Itrastsoa viewvhich
assumes that all shared fields accessed within the scope of a method should be used atomically.

synchroni zed( 1 ock) {
tnp = x.getVal ue();

}

t np++;

synchroni zed(| ock) {
X. set Val ue(tnp);

}

Figure 7: A non-atomic operation that does not violate view consistency.

6.2 Database Concurrency

In database theory, shared data is stored in a database and accessed by different processes. Each process per-
forms transactions sequences of read and write operations, on the data. A sequence of these operations cor-
responding to several transaction is calletlistory. Based on this history, it can be inferred whether each
transaction isserializable i.e., whether its outcome corresponds to having run that transaction in isolation
[Pap79, BHG87]. Database accesses try to avoid conflicts by construction, by structuring operations into trans-
actions. The view consistency approach attempts to analyze behavior patterns in multi-threaded programs and
to verify a similar behavior in an existing program.

There are several parallels to multi-threaded programs, which share their data in memory instead of in a
database. Data races on shared fields in a multi-threaded program can be be mapped to database access conflicts
on shared records. Lock protection in a multi-threaded program corresponds to an encapsulation of read and
write accesses in a transaction. The key problem addressed by this paper, having intermediate states accessible
when writing non-atomically a set of fields, maps to theonsistent retrievaproblem in databases. In such
a history, one transaction reads some data items in between another transaction’s updates on these items. A
correcttransaction schedulewill prevent such an access conflict, as long as the accesses of each process are



correctly encapsulated in transactions.

High-level data races concern accesses to sets of fields, where different accesses use different sets. Similar
problems may be seen in databases, if the programmer incorrectly defines transactions which are too fine-
grained. For example, assume a system consists of a global database and an application using reading and
writing threads. The writing threads use two transactions to update the database, the reading threads access
everything in a single transaction. Here, the reader’s view is inconsistent, since it may read an intermediate
state of the system. If the writer uses a single transaction, the fault is corrected. It is likely that the abstraction
provided by database query languages such as SQL [CB76] prevents some of these problems occurring.

Furthermore, concurrency theory as used for databases and transaction systems is moving towards richer
semantics and more general operations, calletivities [SABS02]. Activities are atomic events in such a
system. Like in classical transactions, low-level access conflicts are prevented by a scheduler which orders
these operations.

Finally, database theory also uses the tefewunder different meanings. Specifically, the two teniew
equivalenceandview serializabilityare used [BHG87]. These two terms are independent of view consistency
as defined in this paper.

So far, only single database systems have been coveratisttibuted databaseghe virtual partitioning
algorithm exhibits a problem very similar to the view consistency problem presented here: Each transaction
on an item operates ons&t of entriesthe set of all database entries for a single item, which is distributed on
different sites. Aviewin this context is the set of sites with which a transaction is able to communicate [BHG87].
Ideally, a transaction has a view including all sites, so all updates are “atomic” on a global scale. However,
communication delays and failures prevent this from being a practical solution. The virtual partitioning protocol
[ASCS85] ensures that all transactions have the same view of the copies of data that are functioning and those
that are unavailable. Whereas a view in a distributed database corresponds to one data item which should be
accessed atomically, a view as described in this paper encompasses sets of distinct data items. The applicability
of ideas from this protocol to the view consistency model in the multi-threading domain looks promising.

6.3 Hardware Concurrency

In hardware design and compiler construction, Lamport has made a major step towards correct shared memory
architectures for multiprocessors [Lam79]. He usaguential consisten@g a criterion for ensuring correctness
of interleaved operations. It requires all data operations to appear to have executed atomically. The order in
which these operations execute has to be consistent with the order seen by individual processes.

Herlihy and Wing use a different correctness condition cdltezghrizability [HW9O0]. It provides the illusion
that each operation applied by concurrent processes takes effect instantaneously at some point between its
invocation and response. Linearizability is a stronger property than sequential consistency and has the advantage
that it preserves real-time ordering of operations. Although the theory is very general, it is geared towards
hardware and compiler construction because it allows exploiting special properties of concurrent objects where
transactions would be too restrictive. However, it is not directly applicable to multi-valued objects and seems to
be incapable of capturing such high-level problems.

Lamport’s notion of sequential consistency is rather restrictive and can be relaxed such that processors are
allowed to read older copies of data as long as the observed behavior is indistinguishable from a conventional
shared memory system [ABM93]. Mittal and Garg extended this work and Herlihy’s linearizability [HW90]



to multi-object operations, such as double-register compare and swap operations [MG98]. Problems occurring
with such multi-object operations are very much alike to high-level data races. Unlike the approach shown in
this paper, which deals with access patterns, their approach is concerned with the interleaving of operations and
based on histories as known in database literature.

7 Future Work

The most urgent problem is to make the run-time analysis more scalable. The instrumentation in the run-time
analysis tool JPaX has to be optimized with respect to statically provable thread-safety. For instance, read-only
or thread-local variables do not have to be monitored. Of course such an optimization has to be conservative
and take possible aliasing of references into account. Another optimization is to execute logging instructions
only a few times, instead of every time they are reached. A few executions of each instruction (one by each
involved thread) are often enough to detect a problem.

Apart from that, the observer analysis could run on-the-fly without event logging. This would certainly
eliminate most scalability problems. In addition to that, the current version reports the same conflict for different
instances of the same object class. This results in a large error log, which contains redundant information.

On the theoretical side, it is not yet fully understood how to properly deal with nested locks. The views of the
inner locks cause conflicts with the larger views of outer locks. These conflicts are spurious. The elevator case
study has shown that a control-flow independent definition of view consistency is needed. Furthermore, data
flow between field accesses has to be considered to refine the notion of high-level data races. A combination of
static and dynamic analysis may be better suited to check such a revised definition. Finally, there is a need to
study the relationship to database concurrency and hardware concurrency theory in more detail.

8 Conclusions

Data races denote concurrent access to shared variables with insufficient lock protection, leading to a corrupted
program state. Classical, or low-level, data races concern accesses to single fields. The notion of high-level data
races deals with accesses to sets of related fields which should be accessed atomically.

View consistency is a novel concept considering the association of variable sets to locks. This permits
detecting high-level data races that can lead to an inconsistent program state, similar to classical low-level data
races. Experiments on a small set of applications have shown that developers seem to follow the guideline of
view consistency to a surprisingly large extent. Thus view consistency captures an important idea in multi-
threading design.
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