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Abstract. Stochastic Local Search (SLS) solvers are considered one of
the best solving technique for randomly generated problems and more
recently also have shown great promise for several types of hard combi-
natorial problems. Within this work, we provide a thorough analysis of
different implementation variants of SLS solvers on random and on hard
combinatorial problems. By analyzing existing SLS implementations, we
are able to discover new improvements inspired by CDCL solvers, which
can speed up the search of all types of SLS solvers. Further, our anal-
ysis reveals that the multilevel break values of variables can be easily
computed and used within the decision heuristic. By augmenting the
probSAT solver with the new heuristic, we are able to reach new state-
of-the-art performance on several types of SAT problems, especially on
those with long clauses. We further provide a detailed analysis of the
clause selection policy used in focused search SLS solvers.

1 Introduction

The Satisfiability problem (SAT) is one of the best known NP-complete prob-
lems. Besides its theoretical importance, it has also many practical applications
in different domains such as software and hardware verification. Two of the best
known solving approaches for the SAT problem are Conflict Driven Clause Learn-
ing (CDCL) and Stochastic Local Search (SLS). Solvers based on the CDCL
solving approach have a very good performance on structured and application
problems, and they are highly engineered for this type of problems. Stochastic
Local Search solvers, on the other side, are good at solving randomly generated
problems and several types of hard combinatorial problems.

The wide use of CDCL solvers in different applications has led to highly ef-
ficient implementations for these type of solvers. In contrast, SLS solvers do not
have many practical applications, and their implementations have not been op-
timized as excessively as those of CDCL solvers. We think that SLS solvers have
a high potential on hard combinatorial problems and that it is worth investing
effort in improving algorithmic aspects of their implementation.



The contribution of this paper are three-fold. First we propose an improve-
ment of the implementations techniques used in SLS solvers inspired from the
CDCL solver NanoSAT. During the analysis of implementation techniques we
discovered that the multilevel break value can be computed cheaply and can
speed-up the search of SLS solvers when used in decision heuristics, this being
our second contribution. Further we observed that the selection of unsatisfied
clauses influences the performance of SLS solvers considerably. Our third con-
tribution consists in the analysis of the clause selection heuristics.

1.1 Related Work

Implementation methods play a crucial role for SAT solvers and can influence
their performance considerably. Fukunaga analyzed different implementations of
common SLS solvers in [1]. He observed that during search the transition of
clauses from having one satisfied to having two satisfied literals, or backwards
occurs in structured problems very often. As a consequence, he proposed to
introduce the 2-watched literals scheme for SLS solvers.

Multilevel properties of variables like the makel and breakl values were first
considered in [2], where the level one and two make value were combined as a
linear function in order to break ties in WalkSAT. They were able to show that
the performance of the WalkSAT solver can be considerably increased with this
new tie breaking mechanism on 5-SAT and 7-SAT problems. The possible use of
the break2 value was also mentioned, but was not practically applied, probably
due to the involved implementation complexity. In [3] the second level score
value is being used (score2 = make2 − break2) in the clause weighting solver
CScoreSAT. The use of higher levels is considered but was not analyzed.

Within a caching implementation, the make2 value can be computed with
little overhead, while the break2 value needs additional data structures. As one
result of our implementation analysis, we have figured out that the breakl value
can be computed very easily within the non-caching implementations and conse-
quently analyzed its role in the probSAT solver. The authors of [2] also mention
that the role of make should not be neglected as was shown in [4]. This is of
course true for their findings, but as the make and break value are complements
of each other, it is sufficient to consider only the break value.

The importance of clause selection is strongly related to the class of GSAT
solvers [5] and to those of weighted solvers [6,7,8]. Though, we are not aware
of any analysis performed for focused random walk solvers like WalkSAT or
probSAT. The pseudo breadth first search (PBFS) scheme was proposed in [9,
p. 93] and only analyzed on a small set of randomly generated 3-SAT problems.

2 Implementations of SLS solvers

SLS solvers work on complete assignments as opposed to partial assignments
used by CDCL solvers. Starting from a random generated assignment, an SLS
solver selects a variable according to some heuristic (pickV ar) and then changes



its value (a flip). This process is repeated until a satisfying assignment has been
found or some limits have been reached.

The input to the SLS solver is a formula F in conjunctive normal form
(CNF), i.e., a conjunction of clauses. A clause is a disjunction of literals, which
are defined as variables or negation of these. An assignment α is called satisfying
for formula F if every clause contains at least one satisfying literal. A literal l
within a clause is satisfying if the value within the assignment α corresponds to
its polarity (i.e. false for negated and true for positive literals).

The complexity of an SLS solver is completely dominated by two operations:
pickV ar() and flip(var). The complexity of the pickV ar method depends on the
heuristic used by the SLS solver, while the complexity of the flip(var) method
depends on the computation of the information that has to be updated.

For the moment, we will restrict our analysis to simple SLS solvers like Walk-
SAT [5] and probSAT [4], and later extend it to other more complex solvers like
Sparrow [10]. The information needed by WalkSAT and probSAT is identical.
Both need the set of unsatisfied clauses under the current assignment and the
break value of variables from those clauses. The break(x) value is the number of
clauses that become unsatisfied after flipping x. Within their pickV ar method,
both solvers randomly select an unsatisfied clause and then pick a variable from
this clause according to their particular heuristic.

For each variable x in the selected clause, the probSAT solver uses a flip
probability proportional to cb−break(x) or, alternatively, to (break(x) + ε)−cb.
The WalkSAT solver randomly selects a variable x with break(x) = 0 if such
a variable exists in the selected clause. Otherwise, it picks a variable randomly
from selected clause with probability p and the best variable with respect to the
break value with probability 1− p.

In general, SLS solvers keep track of the transition of clauses from different
satisfaction states. By applying an assignment α to the formula F , denoted by
F |α, we can categorize clauses according to their satisfaction status. If a clause
has t true literals, we say that the clause is t-satisfied.

To maintain the set of unsatisfied clauses falseClause, an SLS solver keeps
track of the clause transitions from 0-satisfied to 1-satisfied and back. For a
variable x, the value of break(x) is equal to the cardinality of the set of 1-
satisfied clauses that contain x as a satisfying literal, because by flipping x these
clauses will get 0-satisfied (unsatisfied). Further, break(x) changes if and only if
any of these clauses become 0-satisfied or 2-satisfied.

The break value of variables can be either maintained incrementally (also
called caching) or computed in every iteration (also called non-caching). The
original implementation of WalkSAT and of probSAT uses the caching scheme
while the WalkSAT implementation within the UBCSAT framework [11] is using
the non-caching implementation.

To monitor the satisfaction status of clauses, SLS solvers use an array trueLit
that stores for each clause the number of true literals and maintains it incremen-
tally. Besides the before mentioned data structures, an SLS solver additionally
needs the occurrence list for each literal, which is the set of clauses where a literal



occurs. Further, for each 1-satisfied clause, also the satisfying variable is stored
(this is also known as the critical variable critV ar, or as the watch1 scheme).

Having introduced these data structures, we can now describe the standard
implementation [1] of SLS solvers that use caching of the break value and of
falseClause. The flip(var) method using caching is described in Algorithm 1.

Algorithm 1: Variable flip including caching (see also [1]).

Input: Variable to flip v
1 α[v] = ¬α[v]; /* change variable value */

2 satisfyingLiteral = α[v] ? v : ¬v;
3 falsifyingLiteral = α[v] ? ¬v : v;
4 for clause in occurrenceList[satisfyingLiteral] do
5 if numTrueLit[clause] == 0 then /* transition 0→ 1 */

6 remove clause from falseClause ;
7 break[v] + +;
8 critV ar[clause] = v

9 else
10 if numTrueLit[clause] == 1 then /* transition 1→ 2 */

11 break[critVar[clause]]- -;

12 numTrueLit[clause]++;

13 for clause in occurrenceList[falsifyingLiteral] do
14 if numTrueLit[clause] == 1 then /* transition 0← 1 */

15 add clause to falseClause ;
16 break[v]- -;
17 critV ar[clause] = v

18 else
19 if numTrueLit[clause] == 2 then /* transition 1← 2 */

20 for var in clause do /* find the critical variable */

21 if var is satisying literal in clause then
22 critVar[clause]=var;
23 break[var]++;

24 numTrueLit[clause]- -;

Except for transition 1 ← 2, all others have constant complexity. Whenever
the number of satisfied literals decreases from two to one, we have to search for
the critical variable in the clause, thus rendering the complexity of this transition
to be O(len(C)), where len(C) denotes the length of the clause. This is the
previous state-of-the-art and was first toroughly analyzed in [1].

With a simple trick, first introduced in the CDCL solver NanoSAT [12], we
can reduce the complexity of this step to O(1). Instead of storing the critical
variable for each clause, we store the XOR concatenation of all satisfying vari-
ables trueV arX. As alternative one can maintain the sum of the literals, using



addition and subtraction during updates, while for the XOR scheme only the
XOR operation is needed.

If there is only one satisfying variable per clause, trueV arX(clause) will
contain this variable. If there are two satisfying variables in a clause C, i.e.
trueV arX[C] = xi ⊕ xj , then we can obtain the second variable in constant
many steps if we know the first variable. This is the case in the transition 1← 2.
Consequently, we can obtain xj by removing xi from trueV arX[C], i.e., xj =
xi ⊕ trueV arX[C]. This new flip method is described in Algorithm 2

Algorithm 2: Variable flip with XOR caching

Input: Variable to flip v
1 α[v] = ¬α[v]; /* change variable value */

2 satisfyingLiteral = α[v] ? v : ¬v;
3 falsifyingLiteral = α[v] ? ¬v : v;
4 for clause in occurrenceList[satisfyingLiteral] do
5 if numTrueLit[clause] == 0 then /* transition 0→ 1 */

6 remove clause from falseClause ;
7 break[v] + +;
8 trueV arX[clause] = 0

9 else
10 if numTrueLit[clause] == 1 then /* transition 1→ 2 */

11 break[trueVarX[clause]]- -;

12 numTrueLit[clause]++;
13 trueVarX[clause] ⊕= v;

14 for clause in occurrenceList[falsifyingLiteral] do
15 trueVarX[clause] ⊕= v;
16 if numTrueLit[clause] == 1 then /* transition 0← 1 */

17 add clause to falseClause ;
18 break[v]- -;

19 else
20 if numTrueLit[clause] == 2 then /* transition 1← 2 */

21 break[trueVarX[clause]]++;

22 numTrueLit[clause]- -;

The XOR scheme can be used in all types of solvers which need the break
value and compute it incrementally. This is the case for almost all SLS solvers.
Note, in CDCL solvers lazy data structures [13,14] have proven to be superior
to schemes based on counting assigned literals. Counting, as well as the XOR
scheme, both need full occurrence lists and their traversal for every assignment
is too costly for those long clauses learned in CDCL [15].

To show the practical relevance of this implementation improvement, we have
implemented the XOR scheme in probSAT and also in the way more complex
SLS solver Sparrow.
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Fig. 1: Scatter plot between the caching implementation of probSAT (left side)
and Sparrow (right side) and their respective XOR caching implementation on
the set of random problems from the SAT Challenge 2012.

We have evaluated the standard and the XOR implementation on the ran-
dom and hard combinatorial benchmarks of the SAT Challenge 2012 3. We have
opted to use this benchmark set instead of the latest, because it contains more
benchmarks and is designed for lower run times of 900 seconds. All solvers have
been started with the same seed, i.e. their implementation variants are seman-
tically identical and produce the exact same search trace. The only difference is
the complexity of a search step, which will cause the runtime to vary.

The results of our evaluations on the random instances can be seen in Fig. 1.
The solvers were evaluated on the same hardware as the SAT Challenge and we
used a cutoff of 900 seconds. In most cases, the XOR implementation is faster
than the standard implementation. The quantity of improvement of the XOR
implementation over the standard implementation seems to be in inverse pro-
portional to k (the clause length of the problem in uniform randomly generated
problems), i.e. the best improvement could be achieved for 3-SAT problems,
while the XOR implementation is actually slower for 7-SAT problems.

This phenomenon can be explained by analyzing the number of clause tran-
sitions from 2-satisfied to 1-satisfied. The more transitions of this kind take
place during search, the better the XOR implementation, because this is the
step where the XOR implementation reduces the complexity. During search on
3-SAT problems, almost 30% of the transitions are of the type 2→ 1. On 7-SAT
problems, only 5% are of this kind. Further, the occurrence list of a variable in
7-SAT problems contains on average 600 clauses, which means that we have to
perform as many XOR operations to update the trueV arX values. The over-
head introduced by the XOR operations cannot be compensated by constant
complexity of the 2→ 1 transition, which occurs rarely.

3 http://baldur.iti.kit.edu/SAT-Challenge-2012/

http://baldur.iti.kit.edu/SAT-Challenge-2012/
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Fig. 2: Scatter plot between the caching implementation of probSAT (left side)
and Sparrow (right side) and their respective XOR caching implementation on
the set of hard combinatorial problems from the SAT Challenge 2012.

Hard combinatorial problems and structured problems are known to contain
many 2 → 1 transitions [1]. We evaluated the different implementations on the
hard combinatorial satisfiable problems from the SAT Challenge 2012. The XOR
implementation of probSAT and of Sparrow is always faster than their standard
implementation as can be seen from Fig. 2. Moreover, the XOR implementation
of probSAT and Sparrow are able to solve four and six additional instances,
respectively. The speed-up with respect to solving time was on some instances
more than a factor of two. During the search on these instances, almost 50% of
the steps were 2→ 1 transitions.

3 Incorporating multilevel break

Most modern SLS solvers use the make and break value of variables or the
combination of both, e.g. given by the score. For a given variable x, the score is
defined by score(x) := make(x) − break(x). Solvers like probSAT or WalkSAT
only use the break value within their decision heuristic. Within the non-caching
implementations of theses solvers, the break value is computed from scratch. If
we want to compute the break value of a literal l, occuring within a non-satisfied
clause, we have to traverse the occurrence list of ¬l (the clauses that contain l as
a satisfying literal) and count the number of clauses with numTrueLit = 1. The
break value is defined as the number of clauses that change their satisfiability
status from 1-satisfied to 0-satisfied. In the following, we will also refer to this
break value as the break1 value. Accordingly, we can define the breakl value of
a variable x as the number of clauses that are l-satisfied and will become l − 1
satisfied when x is flipped. The makel value can be defined similarly. Within
the non-caching implementations, we can compute the breakl value with little



overhead. Instead of counting only the number of 1-satisfied clauses, we also
count the number of l-satisfied clauses.

The question that arises now, is how to integrate these break values into the
heuristic of the solvers. In [2], the make1 and make2 values were used in the form
lmake = w1 ·make1 +w2 ·make2. The lmake value was used as a tie breaker in
the WalkSATlm solver. In [3] the score2 = make2 − break2 value is being used
in the solver CScoreSAT within the score function score = score1 + bscore2c.

Within the probSAT solver, new variable properties can be included quite
easily by incorporating the property in the probability distribution. We propose
the following inclusion of higher level break values into the probability distribu-
tion function of probSAT:

p(x) = cb−break(x) −→ p(x) =
∏
l

cbl
−breakl(x)

p(x) = (1 + break(x))
−cb −→ p(x) =

∏
l

(1 + breakl(x))−cbl

The constants cbl specify the influence of the breakl value within the prob-
ability distribution. To figure out which values to take for the cbl variables, we
used an automated algorithm configurator. More specifically, we used a parallel
version of the SMAC configurator [16], which is implemented in the EDACC [17]
configuration framework. The instances of interest are the random k-SAT prob-
lems (k ∈ {3, 5, 7}), resulting in three scenarios. For each scenario, we have
performed two types of configuration experiments. First, we allowed the config-
uration of the cb1 and cb2 parameters (i.e. only include the break1 and break2
value). In the second experiment, we allowed the configuration of all cbl. For the
configuration instances, we have used the train sets of the benchmark sets used
in [18] and [4], which are two independent set of instances. Each set contains 250
instances of 3-SAT (n = 10.000, r = 4.2), 5-SAT (n = 500, r = 20) and 7-SAT
(n = 90, r = 85) problems. Each configuration scenario was allowed to use up
to 5 · 105 seconds and we optimized the PAR10 statistics which measures the
average runtime and counts unsuccessful runs with ten times the time limit.

3.1 Configuration of breakl

For 3-SAT problems, the configurator reported a cb2 value of one, meaning that
it could not improve upon the default configuration, which is not using the
break2 value. For the 5-SAT problems, the best configuration had cb1 = 3.7,
cb2 = 1.125, and for 7-SAT problems it was cb1 = 5.4, cb2 = 1.117. The low
values of cb2, when compared to those of cb1 shows that the break2 values have
a lower importance than break1 or that the break2 values are considerably larger
than those of break1. This motivates the analysis of the break2 values within the
search of the solver.

Similar as in the configuration of break2, for 3-SAT problems the configurator
could not find better configurations than the default configuration (that ignores



the break2 and break3 values). The best configuration found for 5-SAT problem
had the parameters:

cb1 = 3.729 cb2 = 1.124 cb3 = 1.021 cb4 = 0.990 cb5 = 1.099

The best configuration for 7-SAT had the parameters:

cb1 = 4.596 cb2 = 1.107 cb3 = 0.991 cb4 = 1.005 cb5 = 1.0 cb6 = 1.0 cb7 = 1.0

The value of the constants seems to be very low, but the high breakl values
that occur during search probably require such low cbl values.

3.2 Results

We compare the break2 and the breakl implementations with the XOR imple-
mentation of probSAT and with the solvers WalkSATlm [2] and CScoreSAT [3],
two solvers that established the latest state-of-the-art results in solving 5-SAT
and 7-SAT problems. The binaries of the latter two solvers were the ones submit-
ted to the SAT Competition 2013. We evaluate the solvers on the Competition
benchmarks from 2011, 2012 and 1013, which all together represent a very het-
erogeneous set of instances, as they were generated with different parameters. An
additional benchmark set of randomly generated 5-SAT problems with n = 4000
and a clause to variable ratio of r = 20 shall show where the limits of our new
approach lies. The results of our evaluation can be seen in Tab. 1.

probSATx probSAT2 probSATl WalkSATlm CScoreSAT
#sol. time #sol. time #sol. time #sol. time #sol. time

SC11-5-SAT 32 333s 40 34s 40 19s 39 108s 39 118s

SC12-5-SAT 67 578s 103 246s 107 207s 82 427s 77 465s

SC13-5-SAT 7 809s 5 836s 7 808s 6 817s 5 824s

5sat4000 0 900s 36 470s 41 382s 8 827s 0 900s

SC11-7-SAT 8 721s 10 521s 12 495s 11 571s 14 437s

SC12-7-SAT 49 633s 67 548s 69 488s 66 520s 73 462s

SC13-7-SAT 19 666s 17 671s 20 652s 16 673s 18 652s

Table 1: The evaluation results on different 5-SAT and 7-SAT benchmarks sets.
For each solver the number of solved instances (#sol.) and the average run time
(time) is reported (unsuccessful runs are also counted in the run time). Bold
values represents the best achieved results for that particular instance class.

By only incorporating the break2 values in the probability distribution im-
proves the performance of the probSAT solver considerably. On the SC12-5-SAT
instances probSAT2 is almost twice as fast as probSAT in terms of solved in-
stanced and also in terms of runtime. It also dominates the WalkSATlm solver,
which was shown to be the state-of-the-art solver for 5-SAT problems in [2]. The



break1 break2 break3 break4 break5 break6 break7
k-SAT th. pr. th. pr. th. pr. th. pr. th. pr. th. pr. th. pr.

3-SAT 1.6 1.7 3.2 3.7 1.6 1.6

4-SAT 2.4 2.2 7.1 7.4 7.1 7.2 2.4 2.3

5-SAT 3.1 2.8 12.5 13.1 18.6 19.5 12.5 12.7 3.1 3.2

6-SAT 3.9 3.6 19.7 19.4 39.4 38.9 39.4 38.9 19.7 19.5 3.9 3.9

7-SAT 4.6 4.5 27.9 28.8 69.7 72.2 93.0 96.7 69.7 72.9 27.9 29.2 4.6 4.9

Table 2: The theoretical (th.) expected number of l-satisfied clauses that contain
an arbitrary variable x in a randomly generated k-SAT formula and the average
breakl values (pr.) encountered during search for variables within a randomly
picked unsatisfied clause (value in brackets).

probSAT2 solver achieves better results also on the 7-SAT instances. One excep-
tion are the SC13 problems, that have been generated exactly on the threshold.
For these problems probSAT2 is worse than probSAT.

By allowing also higher level break values to influence the probability dis-
tribution further improvements can be achieved. The probSATl solver achieves
the best results on all 5-SAT and on SC13-7-SAT problems. On the remaining
7-SAT problems it is only slightly worse than the CScoreSAT solver but still
better than the WalkSATlm solver.

It is also worth mentioning that our non-caching implementation is on aver-
age about 30% slower than the caching implementation of the WalkSATlm and
CScoreSAT solver in terms of flips per second performed by the solver.

3.3 Theoretical distribution of breakl values

Given a randomly generated formula with constant clause length k and m = rkn
many clauses (where the ratios r3 = 4.2, r4 = 9.5, r5 = 20, r6 = 42, and r7 = 85
have been used) we are interested in the distribution and the expectation of the
breakl value for a given variable. The probability that a random clause contains
this variable (in the correct polarization) is k/(2n). Furthermore, for having l
satisfied literals in such a random clause we need that among the remaining
k − 1 literals exactly l − 1 of them are satisfied. This happens with probability(
k−1
l−1
)
/2k−1. Therefore, the breakl value is binomially distributed as Bin(m, p)

where m = rkn and p = k
2n ·

( l−1
k−1)
2k−1 . The expectation of the breakl value is

rkn ·
k

2n
·
(
l−1
k−1
)

2k−1
=
rk · k ·

(
k−1
l−1
)

2k

Table 2 lists these values for common k-SAT problems.
Comparing these two values (the theoretical breakl values and the actually

observed values) there is a very good agreement. Interestingly SLS solver take
into consideration only the transitions 0 ← 1 (break) and 0 → 1 (make). SLS



solvers are optimizers that try to minimize the number of 0-satisfied clauses to
zero, and thus only these two transitions play a role.

As we can see from Tab. 2 by far the largest breakl values occur in the middle
range, l ≈ k/2. Therefore, the cbl values even when they are relatively close to
1.0 should not be disregarded since they are raised to the breakl-th power, and
so play an important role for the success of the algorithm. These seems to open
up opportunities for further algorithmic improvements.

4 Clause selection

While there has been lots of work on different variable picking schemes, compar-
atively few work has considered clause selection so far. In a certain way, clause
weighting schemes [6,7,8] in combination with GSAT algorithms [5] relate to this
because they influence the likelihood of a clause to become satisfied in the cur-
rent step. However, this effect is rather indirect, and when it comes to WalkSAT
algorithms, most implementations simply select a clause randomly.

We propose to question this selection and analyze several alternative schemes.
For this, it is important to be aware of the data structures and algorithms
that are used to save possible candidate clauses (i.e. the unsatisfied ones in
a falseClause container). In most implementations, all unsatisfied clauses are
stored in a list which is then updated in each iteration. The update procedure
consists of removing newly satisfied clauses (the make-step) and adding newly
unsatisfied clauses (the break-step).

The list itself is usually implemented as an array with a non-fixed length
m′. If a new clause is added in the break-step, m′ is increased and the clause is
simply put at the last position. Whenever a clause is removed in the make-step,
the element from the last position is used to replace it and m′ is decreased. This
is an easy but very efficient implementation used in most SLS solvers. To select a
random clause during the clause selection phase, one can use a random number
r ∈ {0, . . . ,m′} and choose the clause at index r. We will call this approach RS,
which is short for random selection.

One alternative way to select a clause is by using the current flip count j
instead of choosing a clause at a random index. This was first proposed in [9, p.
93] and was the standard implementation of probSAT in the SAT Competition
2013. This version of probSAT selects the clause at index j mod m′ in each step.
Interestingly, this version of probSAT, denoted with pseudo breadth first search
(PBFS), performed much better than the original one from [4] (c.f. Fig. 3) which
used random selection. Note, that under the (unrealistic) assumption of using
real random numbers, this almost trivial change actually renders the original
state-less implementation of probSAT to rely on the search history now, more
precisely on the number of flipped clauses sofar.

Considering the success of DLS solvers compared to GSAT, it is not surprising
that clause selection policies can have a big influence on the performance of
WalkSAT solvers as well. Nevertheless, it is not fully clear why the particular



approach of using the flip count provides this remarkable increase in performance.
We therefore analyze this heuristic in more detail.

It is easy to see, that the candidate clauses are traversed in the same order
in which they are contained in the array. As already described, new clauses are
added to the end of the list in the break-step. This approach is somehow similar
to the behavior of a queue. On the other hand, it is obviously not a real queue
because the flip count is used for clause selection. Also, a certain shuffling takes
place whenever clauses are removed in the make-step.

As long as a clause is selected randomly, the order of the candidate list does
not matter. For PBFS, the situation is quite different. Once we start selecting
clauses according to their position in the array, where exactly they are put be-
comes important. For example, there is a difference in whether the make-step or
the break-step is performed first. Assume the list of unsatisfied clauses includes
[C0, C1, C2] in the given order in iteration 0. C0 will be selected. Further, assume
that by flipping a variable in C0, both C0 and C1 will get satisfied while previ-
ously satisfied clauses C3, C4, and C5, will become unsatisfied. If the make-step is
performed first, the list will change to [C2] and then to [C2, C3, C4, C5] after the
break-step. Therefore, C3 will be selected in iteration 1 while C2 is ”skipped”.
If the break-step is performed first, the list will contain [C0, C1, C2, C3, C4, C5]
and finally become [C5, C4, C2, C3] after the make-step. This leads to C4 being
selected in iteration 1. Obviously, this will also have an influence on the selection
process in all following iterations.

To distinguish between the different order of make-step and break-step, we
will use indices mf and bf to denote make-first and break-first, respectively. If
the index is omitted, we refer to the make-first implementation. In Fig. 3, the
performance of PBFSmf and PBFSbf is compared. We can see that PBFSmf

outperforms PBFSbf significantly. Actually, PBFSbf is even slower than RS.
Again, it is not clear why this is the case. Adding clauses to the end in

combination with the use of the modulo operator makes it hard to predict the
effect on the clause selection order. The closer the index is to the end of the
array, the sooner a newly added clause will be selected. Shuffling clauses in
the break-step obfuscates the order of the clauses even more. However, better
understanding the cause for this difference in performance might help us to
further improve clause selection heuristics.

One of our conjectures was that maybe PBFSmf resembles a true breadth first
search (BFS) more closely, leading to the increased performance. We therefore
implemented a real queue in our solver. The result of this BFS approach is also
shown in Fig. 3. Interestingly, BFS performs much worse than PBFSmf and even
worse than RS and PBFSbf. Apparently, the conjecture does not hold. Just for
reference, we also implemented a stack for the clauses in order to simulate a depth
first search (DFS). As expected, DFS performs very poorly and worse than all
other approaches. This confirms that, although pure BFS does not work out,
some kind of breadth first search seems to be beneficial.

Since a true BFS is too strict, we decided to use a modification inspired by
the example given in the context of comparing PBFSmf and PBFSbf. As pointed
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Fig. 3: Cactus plot showing the performance of a faithful reimplementation of
probSAT in our internal Yals SAT solver with various different clause selection
heuristics on the satisfiable instances from the SAT Competition 2013 hard com-
binatorial track (cutoff time ist 1000 seconds). The X-Axis and Y-Axis represent
the number of solved instances and the runtime (in seconds), respectively.

out in connection with the (better-performing) make-first version, clauses in this
kind of implementation sometimes are ”skipped”, i.e. they will only be visited in
the next full cycle. We simulated this in an implementation called unfair breadth
first search (UBFS) in the following way. The list of clauses is still saved in a
queue. When the first element is touched, we select it with probability pu. With
probability 1− pu, it is moved to the end of the queue and the second clause is
picked instead. For our experiments, we set pu = 1

2 . In Fig. 3, we can see that
this version performs much better than the previous queue implementations and
already comes close to the results of PBFS.

Finally, an additional remark considering the efficiency of the different data
structures. While it is easy to implement the array structure for RS and PBFS
efficiently, more care has to be taken when implementing a queue for the other
approaches. In our implementation we used a dedicated memory allocator and
moving garbage collector for defragmentation. This achieves, roughly the same
time efficiency as using the original array structure, considering average flips per
second but needs slightly more memory.



Our results show that clause selection can have a large impact on the perfor-
mance of WalkSAT solvers. There are still plenty of open questions. For example,
it is not clear yet which is the optimal value for pu. Also, it might be interesting
to combine UBFS-like heuristics with clause weights, assigning different prob-
abilities to clauses depending on different properties, such as its variable score
distribution, the number of flips since the last time it was touched, the number
of times it has been satisfied, or its length for non-uniform problems.

5 Summary and Future Work

We started with a detailed analysis of standard SLS implementations. This anal-
ysis revealed that there is room for improvement for the caching variants and
that the breakl property can be computed cheaply in the non-caching variants.

For caching implementations, we have shown that we can speed up the flip
procedure of SLS solvers by using an XOR implementation as done in NanoSAT.
This approach provides a great flexibility because it can be applied to all SLS
solvers that use the break value within their heuristics and compute it in an
incremental way. Our experimental results showed that the XOR implementa-
tion should be used for random k-SAT problems (except for 7-SAT problems)
and especially for structured problems. For future work, it will be interesting to
look at non-uniform problems more closely. As we have seen from random SAT,
the clause length is the crucial factor for determining whether an XOR imple-
mentation helps to increase performance. In non-uniform formulas, it might be
beneficial to combine XOR implementations with common ones and benefit from
both advantages. For short clauses the XOR scheme should be used, while for
long clauses the classical ones.

Within the non-caching implementations, it turned out that the multilevel
breakl value can be computed cheaply. By incorporating breakl into the prob-
SAT solver, we were able to discover better heuristics for 5-SAT and 7-SAT
problems that establish new state-of-the-art results, especially on 5-SAT prob-
lems. We further extended our practical results by giving a detailed theoretical
analysis regarding the distribution of different breakl values in random formulas,
providing a better understanding of their individual impact.

While most WalkSAT implementations simply select a random clause, we
proposed several alternative ways. Our experimental results clearly show that
selection heuristics influence the performance and picking a clause randomly is
not the best choice. For structured problems the PBFS scheme is currently the
best one and can be implemented very easily. Analyzing the impact of clause
selection heuristics in more detail is a another promising research direction for
future work. For example, clause weights might be one possible way to further
improve the quality of clause selection heuristics.
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