
Non-Clausal Redundancy Properties�

Lee A. Barnett[0000−0003−1282−8596] and Armin Biere[0000−0001−7170−9242]

Johannes Kepler University Linz
Altenbergerstraße 69, 4040 Linz, Austria
{lee.barnett,armin.biere}@jku.at

Abstract. State-of-the-art refutation systems for SAT are largely based
on the derivation of clauses meeting some redundancy criteria, ensuring
their addition to a formula does not alter its satisfiability. However, there
are strong propositional reasoning techniques whose inferences are not
easily expressed in such systems. This paper extends the redundancy
framework beyond clauses to characterize redundancy for Boolean con-
straints in general. We show this characterization can be instantiated to
develop efficiently checkable refutation systems using redundancy prop-
erties for Binary Decision Diagrams (BDDs). Using a form of reverse
unit propagation over conjunctions of BDDs, these systems capture, for
instance, Gaussian elimination reasoning over XOR constraints encoded
in a formula, without the need for clausal translations or extension vari-
ables. Notably, these systems generalize those based on the strong Prop-
agation Redundancy (PR) property, without an increase in complexity.

1 Introduction

The correctness and reliability of Boolean satisfiability (SAT) solvers is critical
for many applications. For instance SAT solvers are used for verifying hardware
and software systems (e.g. [18,27,43]), to search for solutions to open problems
in mathematics (e.g. [37,45]), and as subroutines of other logical reasoning tools
(e.g. [6,66]). Solvers should be able to provide solution certificates that are easily
and externally checkable. For a satisfiable formula, any satisfying assignment is
a suitable certificate and typically can be easily produced by a solver. For an
unsatisfiable formula, a solver should be able to produce a refutation proof.

Modern SAT solvers primarily refute unsatisfiable formulas using clausal
proof systems, such as the popular DRAT system [68] used by the annual SAT
competition in recent years [4], or newer systems based on the surprisingly strong
Propagation Redundancy (PR) property [32]. Clausal proof systems iteratively
extend a formula, typically given in conjunctive normal form (CNF), by adding
clauses that are redundant; that is, their addition to the formula does not affect
whether it is satisfiable. Systems are distinguished by their underlying redun-
dancy properties, restricted but efficiently-decidable forms of redundancy.
� Supported by the Linz Institute of Technology AI Lab funded by the State of Upper

Austria, as well as the Austrian Science Fund (FWF) under project W1255-N23, the
LogiCS Doctoral College on Logical Methods in Computer Science.

https://doi.org/10.35011/fmvtr.2021-2
Technical Report 21/2, April 2021, FMV Reports Series
Institute for Formal Models and Verification, Johannes Kepler University
Altenbergerstr. 69, 4040 Linz, Austria

This paper may be used under the Creative Commons Attribution 4.0 licence.

(Extended Version)

2 L. A. Barnett, A. Biere

Redundancy is a useful notion in SAT as it captures most inferences made
by state-of-the-art solvers. This includes clauses implied by the current formula,
such as the resolvent of two clauses or clauses learned during conflict-driven
clause learning (CDCL) [7,50], as well as clauses which are not implied but de-
rived nonetheless by certain preprocessing and inprocessing techniques [42], such
as those based on blocked clauses [41,44,47]. Further, clausal proof systems based
on properties like PR include short refutations for several hard families of formu-
las, such as those encoding the pigeonhole principle, that have no polynomial-
length refutations in resolution [2] (see [15] for an overview). These redundancy
properties, seen as inference systems, thus potentially offer significant improve-
ments in efficiency, as the CDCL algorithm at the core of most solvers searches
only for refutations in resolution [8]. While the recent satisfaction-driven clause
learning (SDCL) paradigm has shown some initial success [34,36], it is still un-
clear how to design solving techniques which take full advantage of this potential.

Conversely, there are existing strong reasoning techniques which similarly ex-
ceed the abilities of CDCL alone, but are difficult to express using clausal proof
systems. Important examples include procedures for reasoning over CNF formu-
las encoding pseudo-Boolean and cardinality constraints (see [57]), as well as
Gaussian elimination (see [11,60,61,67]), which has been highlighted as a chal-
lenge for clausal proof systems [30]. Gaussian elimination, applied to sets of
“exclusive-or” (XOR) constraints, is a crucial technique for many problems from
cryptographic applications [61], and can efficiently solve, for example, Tseitin for-
mulas hard for resolution [63,65]. This procedure, implemented by CryptoMin-
iSAT [61], Lingeling [9], and Coprocessor [49] for example, can be polynomially
simulated by extended resolution, allowing inferences over new variables, and
similar systems (see [55,59]). However due to the difficulty of such simulations
they are not typically implemented. Instead solvers supporting these techniques
simply prevent them from running when proof output is required, preferring less
efficient techniques whose inferences can be more easily represented.

This paper extends the redundancy framework for clausal proof systems to
include non-clausal constraints, such as XOR or cardinality constraints, pre-
senting a characterization of redundancy for Boolean functions in general. We
demonstrate a particular use of this characterization by instantiating it for func-
tions represented by Binary Decision Diagrams [12], a powerful representation
with a long history in SAT solving (e.g. [13,22,23,51,53]) and other areas of au-
tomated reasoning (e.g. [14,28,46,56]). We show the resulting refutation systems
succinctly express Gaussian elimination while also generalizing existing clausal
systems. Results using a prototype implementation confirm these systems al-
low compact and efficiently checkable refutations of CNF formulas that include
embedded XOR constraints solvable by Gaussian elimination.

In the rest of the paper, Section 2 includes preliminaries and Section 3
presents the characterization of redundancy for Boolean functions. Section 4
introduces redundancy properties for BDDs, and Section 5 demonstrates their
use for Gaussian elimination. Section 6 presents the results of our preliminary
implementation, and Section 7 concludes.

Non-Clausal Redundancy Properties 3

2 Preliminaries

We assume a set of Boolean variables V under a fixed order ≺ and use standard
SAT terminology. The set of truth values is B = {0, 1}. An assignment is a
function τ : V → B and the set of assignments is BV . A function f : BV → B
is Boolean. If f(τ) = 1 for some τ ∈ BV then f is satisfiable, otherwise f is
unsatisfiable. Formulas express Boolean functions as usual, are assumed to be
in conjunctive normal form, and are written using capital letters F and G. A
clause can be represented by its set of literals and a formula by its set of clauses.

A partial assignment is a non-contradictory set of literals σ; that is, if l ∈ σ
then ¬l �∈ σ. The application of a partial assignment σ to a clause C is written
C|σ and defined by: C|σ = � if every τ ∈ BV that satisfies

�
l∈σ l also satisfies C,

otherwise C|τ = {l | l ∈ C and l,¬l �∈ σ}. For example, (x1 ∨ x2)|{¬x1,x2} = �,
and (x1 ∨ x2)|{¬x2,¬x3} = (x1). Similarly the application of σ to a formula F
is written F |σ and defined by: F |σ = � if C|σ = � for all C ∈ F , otherwise
F |σ = {C|σ | C ∈ F and C|σ �= �}. Unit propagation is the iterated replacement
of F with F |{l} for each unit clause (l) ∈ F , until F includes the empty clause
⊥, or F contains no unit clauses. A formula F implies a clause C by reverse unit
propagation (RUP) if unit propagation on F ∧ ¬C ends by producing ⊥ [26].

For a formula F and clause C, if F and F ∧ C are equisatisfiable (both sat-
isfiable or both unsatisfiable) then C is redundant with respect to F . Efficiently
identifiable redundant clauses are at the foundation of many formula simpli-
fication techniques and refutation systems (for instance, see [31,32,36,42]). In
general, deciding whether a clause is redundant is complete for the complement
of the class DP [5], containing both NP and co-NP [54], so solvers and proof sys-
tems rely on polynomially-decidable redundancy properties for checking specific
instances of redundancy. The following characterization of redundant clauses
provides a common framework for formulating such properties.

Theorem 1 (Heule, Kiesl, and Biere [35]). A clause C �= ⊥ is redundant
with respect to a formula F if and only if there is a partial assignment ω such
that C|ω = � and F |α � F |ω, for the partial assignment α = {¬l | l ∈ C}.
The partial assignment ω, usually called a witness for C, includes at least one
of the literals occurring in C, while α is said to block the clause C. Redundancy
properties can be defined by replacing � in the theorem above with efficiently-
decidable relations R such that R ⊆ �. Propagation redundancy (PR) [32] re-
places � with �1, where F �1 G if and only if F implies each D ∈ G by RUP.
The property PR gives rise to a refutation system, in which a refutation is a
list of clauses C1, . . . , Cn and witnesses ω1, . . . ,ωn such that Ck|ωk

= � and
(F

�k−1
i=1 Ci)|αk

�1 (F
�k−1

i=1 Ci)|ωk
for all 1 ≤ k ≤ n, and F

�n
i=1 Ci �1 ⊥.

Most redundancy properties used in SAT solving can be understood as re-
stricted forms of propagation redundancy. The RAT property [42] is equivalent
to literal propagation redundancy, where the witness ω for any clause C may
differ from the associated α on only one literal; that is, ω = (α \ {¬l}) ∪ {l} for
some l ∈ C [35]. The DRAT system [68] is based on RAT, with the added ability
to remove clauses from the accumulated formula F

�
Ci.

4 L. A. Barnett, A. Biere

Rf

RBDD

R

RCNF+XOR

RCNF+Card

. . .

PRBDD

PR [32] RAT [42] RUP [26]

RUPBDD

GE [67]

CR [38]

Fig. 1: Different notions of redundancy and their relationships. An arrow from A
to B indicates A generalizes B. Properties to the right of the thick dashed line
are polynomially checkable; those to the right of the thin dotted line only derive
logical consequences. Novel properties defined in this paper are grey.

3 Redundancy for Boolean Functions

Theorem 1 provides a foundation for clausal proof systems by characterizing re-
dundant clauses in a convenient way. However, the restriction to clauses places
limitations on these systems, making some forms of non-clausal reasoning diffi-
cult to express. For solvers aiming to construct refutations in these systems, this
translates directly to restrictions on which solving techniques can be used.

We show this characterization can be broadened to include redundancy for
non-clausal constraints, and can be used to define useful redundancy properties
and refutation systems. The contributions of this paper are divided into three
corresponding levels of generality. The top level, covered in the current section,
is the direct extension of Theorem 1 from redundancy for clauses, written R,
to redundancy for Boolean functions, written Rf . The middle level, the focus of
Section 4, instantiates the resulting Theorem 2 to define the refutation systems
RUPBDD and PRBDD based on redundancy for Binary Decision Diagrams. At
the bottom level, these systems are shown to easily handle Gaussian elimination
(GE) in Section 5, as well as some aspects of cardinality reasoning (CR). The
relationships between these notions of redundancy are shown in Figure 1.

Each level of generality is individually important to this work. At the bottom
level, the straightforward expression of Gaussian elimination by RUPBDD and
PRBDD makes it more feasible for solvers to use this efficient technique with
proof production, especially as these systems generalize their clausal analogs
already in use. The results in Section 6 confirm the usefulness of RUPBDD for
this purpose. At the middle level, we show the notion of redundancy instantiated

Non-Clausal Redundancy Properties 5

for BDDs in this way may be capable of other strong forms of reasoning as well.
Finally, the top level provides a very general form of redundancy, independent
of function representation. This may make possible the design of redundancy
properties and refutation systems in contexts where the BDD representation
of constraints is too large; for example, it is known that some pseudo-Boolean
constraints can in general have exponential size BDD representations [1,40].

This section presents in Theorem 2 a characterization of redundancy for
Boolean functions in general. One way of instantiating this characterization is
demonstrated in Section 4 where the functions are represented by Binary Deci-
sion Diagrams; the resulting refutation systems are shown in Section 5 to easily
express Gaussian elimination. However, the applicability of Theorem 2 is much
broader, providing a foundation for redundancy-based refutation systems inde-
pendent of the representation used.

Proofs of theoretical results not included in the text can be found in the
appendix. We begin with the definition corresponding to the property Rf .

Definition 1. A Boolean function g is redundant with respect to a Boolean
function f if the functions f and f ∧ g are both satisfiable, or both unsatisfiable.

As we will see, extending Theorem 1 to the non-clausal case relies on the notion
of a Boolean transformation, or just transformation: a function ϕ : BV → BV ,
mapping assignments to assignments. Importantly, for a function f and trans-
formation ϕ, in fact f ◦ ϕ : BV → B is a function as well, where as usual
f ◦ ϕ (τ) = f(ϕ(τ)). For instance let F = x1 ∧ x2 and for all τ ∈ BV , the
transformation ϕ flips x1, so that ϕ(τ)(x1) = ¬τ(x1), and ignores x2, that is,
ϕ(τ)(x2) = τ(x2). Then in fact F ◦ ϕ is expressed by the formula ¬x1 ∧ x2.

Composing a function with a transformation can be seen as a generalization
of the application of a partial assignment to a formula or clause as defined in
the previous section. Specifically, for a partial assignment σ let σ̂ refer to the
following transformation: for any assignment τ , the assignment σ̂(τ) satisfies�

l∈σ l, and σ̂ ignores any x ∈ V such that x,¬x �∈ σ. Then for any formula F
the formula F |σ expresses exactly the function F ◦ σ̂. In particular, if α is the
partial assignment blocking a clause C then notice C ◦ α̂(τ) = 0 for all τ , but α̂
ignores variables not appearing in C; consequently α̂(τ) = τ if τ already falsifies
C. Generalizing this idea to transformations that block non-clausal constraints is
more complicated. In particular, there may be multiple blocking transformations.

Example 1. Let g be the function g(τ) = 1 if and only if τ(a) �= τ(b) (i.e. g is
an XOR constraint). Transformations α1, α2 are shown in the table below.

τ(a) τ(b) g α1(τ)(a) α1(τ)(b) g ◦ α1 α2(τ)(a) α2(τ)(b) g ◦ α2

0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 1 1 0
1 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0

Both transformations ignore all x �= a, b. Notice if g(τ) = 0 then τ is unaffected
by either transformation, and g ◦ α1(τ) = g ◦ α2(τ) = 0 for any assignment τ .

6 L. A. Barnett, A. Biere

However α1 and α2 are different, so that, for example, if F = ¬a∧ (b∨ c) and τ
satisfies the literals ¬a, b, and c then F ◦ α1(τ) = 1 but F ◦ α2(τ) = 0.

Motivated by this we define transformations blocking a function as follows.

Definition 2. A transformation α blocks a function g if g ◦ α is unsatisfiable,
and for any assignment τ if g(τ) = 0 then α(τ) = τ .

Notice any g not equal to the constant function 1 has blocking transformations;
for example, by mapping every τ satisfying g to a particular assignment falsifying
it. Using this definition, the following theorem shows how the redundancy of a
Boolean function g with respect to another function f can be demonstrated.
This is a direct generalization of Theorem 1, using a transformation blocking g
in the place of the partial assignment blocking a clause, and a transformation ω
such that g ◦ω is the constant function 1 in place of the witnessing assignment.

Theorem 2. Let f be a function and g a non-constant function. Then g is
redundant with respect to f if and only if there exist transformations α and ω
such that α blocks g and g◦ω is the constant function 1, and further f ◦α � f ◦ω.

Proof. (⇒) Suppose g is redundant with respect to f and let α be any transfor-
mation blocking g. If f is unsatisfiable then f ◦α is as well, so that f ◦α � f ◦ω
holds for any ω. Thus we can take as ω the transformation ω(τ) = τ ∗ for all
τ ∈ BV , where τ∗ is some assignment satisfying g. If instead f is satisfiable, by
redundancy so is f ∧ g. Here we can take as ω the transformation ω(τ) = τ ∗ for
all τ ∈ BV , where τ∗ is some assignment satisfying f ∧ g. Then both f ◦ ω and
g ◦ω are the constant function 1, so that f ◦α � f ◦ω holds in this case as well.

(⇐) Suppose α,ω meet the criteria stated in the theorem. We show that g
is redundant by demonstrating that if f is satisfiable, then so is f ∧ g. Suppose
τ is an assignment satisfying f . If also g(τ) = 1, then of course τ satisfies
f ∧ g. If instead g(τ) = 0, then α(τ) = τ as α blocks the function g. Thus
f ◦ α (τ) = f(α(τ)) = f(τ) = 1. As f ◦ α � f ◦ ω, this means f(ω(τ)) = 1. As
g ◦ ω is the constant function 1 then g(ω(τ)) = 1, so ω(τ) satisfies f ∧ g. ��

The clausal characterization in Theorem 1 shows that the redundancy of a
clause can be evidenced by providing a witnessing assignment and demonstrating
that an implication holds, providing a foundation for refutations based on the
iterative conjunction of clauses. Theorem 2 above shows that the redundancy of
a function in general can be seen in the same way by providing transformations
α and ω. Consequently this suggests how to construct refutations based on the
iterative conjunction of Boolean functions.

Definition 3. A sequence σ = (g1,α1,ω1), . . . , (gn,αn,ωn) is a redundancy se-
quence for a Boolean function f if:

1. αk blocks gk and gk ◦ ωk is the constant function 1, for all 1 ≤ k ≤ n,
2. (f ∧�k−1

i=1 gi) ◦ αk � (f ∧�k−1
i=1 gi) ◦ ωk, for all 1 ≤ k ≤ n.

Non-Clausal Redundancy Properties 7

As for clausal redundancy, refutations are intuitively based on the following: if
g1 is redundant with respect to f , and g2 is redundant with respect to f ∧ g1,
then f and f∧g1∧g2 are equisatisfiable; that is, g1∧g2 is redundant with respect
to f . The following holds as a direct consequence.

Proposition 1. Let f be a Boolean function. If (g1,α1,ω1), . . . , (gn,αn,ωn) is
a redundancy sequence for f , and f ∧�n

i=1 gi is unsatisfiable, then so is f .

This shows, abstractly, how redundant Boolean functions can be used as a ba-
sis for refutations in the same way as redundant clauses. To define practical, and
polynomially-checkable, refutation systems based on non-clausal redundancy in
this way, we focus on a representation of Boolean functions that can be used
within the framework described above. Specifically, we consider sets of BDDs in
conjunction, just as formulas are sets of clauses in conjunction. Clauses are easily
expressed by BDDs, and thus this representation easily expresses (CNF) formu-
las; this is necessary as we are typically interested in proving the unsatisfiability
not of functions in general, but of (CNF) formulas. It is important to notice this
is only a particular instantiation of Theorem 2, and that other representations
of Boolean functions may give rise to useful and efficient systems as well.

BDDs [3,12,48] are compact expressions of Boolean functions in the form of
rooted, directed, acyclic graphs consisting of decision nodes, each labeled by a
variable x ∈ V and having two children, and two terminal nodes, labeled by 0
and 1. The BDD for a function f : BV → B is based on its Shannon expansion,

f = (¬x ∧ f ◦ σ̂0) ∨ (x ∧ f ◦ σ̂1)

where σ0 = {¬x} and σ1 = {x}, for x ∈ V . As is common we assume BDDs are
ordered and reduced : if a node with variable label x precedes a node with label
y in the graph then x ≺ y, and the graph has no distinct, isomorphic subgraphs.
Representation this way is canonical up to variable order, so that no two distinct
BDDs with the same variable order represent the same Boolean function [12].

Our use of BDDs for representing non-clausal redundancy relies on the con-
cept of cofactors as developed in BDD literature. The functions f ◦ σ̂0 and f ◦ σ̂1

are called literal cofactors of f by ¬x and x, respectively, and are usually written
f |¬x and f |x. The cofactor of f by a conjunction of literals c = l1∧ · · ·∧ ln can be
defined similarly, so that f |c = f◦σ̂c, for the partial assignment σc = {l1, . . . , ln}.
This notation is the same as for the application of a partial assignment to a clause
or formula from Section 2, as the notions coincide. More precisely, if a formula
F and BDD f express the same function, so do the formula F |σc and BDD f |c.

More broadly, for BDDs f and g, a generalized cofactor of f by g is a BDD
h such that f ∧ g = h ∧ g; that is, f and h agree on all assignments satisfying
g. This leaves unspecified what value h(τ) should take when g(τ) = 0, and vari-
ous different BDD operations have been developed for constructing generalized
cofactors [19,20,21] The constrain operation [20] produces for f and g, with g
not equal to the always false 0 BDD, a generalized cofactor which can be seen

8 L. A. Barnett, A. Biere

as the composition f ◦ πg, where πg is the transformation [62]:

πg(τ) =

τ if g(τ) = 1

arg min
{τ � | g(τ �)=1}

d(τ, τ �) otherwise.

The function d is defined as follows: d(τ, τ �) =
�n

i=1 |τ(xi)− τ �(xi)| ·2n−i, where
V = {x1, . . . , xn} with x1 ≺ · · · ≺ xn. Intuitively, d is a measure of distance
between two assignments based on the variables on which they disagree, weighted
by their position in the variable order. It is important to notice then that the
transformation πg and the resulting f ◦ πg depend on the variable order, and
may differ for distinct orders. For a conjunction of literals c, though, f ◦πc = f |c
regardless of the order, so that f |g refers to f ◦ πg in general.

As the transformation πg maps an assignment falsifying the function g to
the nearest assignment (with respect to d) satisfying it, a transformation that
blocks the function g can surely be obtained as follows.

Lemma 1. If g is not equal to the constant function 1 then π¬g blocks g.

This form of generalized cofactor, as computed by the constrain operation,
is well suited for use in redundancy-based reasoning as described above, as the
transformation π¬g depends only on g. As a consequence, for BDDs f1 and f2
in fact (f1 ∧ f2)|¬g ≡ f1|¬g ∧ f2|¬g; that is, the BDD (f1 ∧ f2)|¬g expresses the
same function as the BDD for the conjunction f1|¬g ∧ f2|¬g. Thus given a set of
BDDs f1, . . . , fn we can represent (f1∧ · · ·∧fn)|¬g simply by the set of cofactors
fi|¬g and without constructing the BDD for the conjunction f1 ∧ · · ·∧ fn, which
is NP-hard in general. In particular, given a formula F = C1 ∧ · · · ∧ Cn and a
Boolean constraint g, the function F |¬g can be represented simply by applying
the constrain operation to each of the BDDs representing Ci. Therefore, from
Theorem 2 we can characterize redundancy for conjunctions of BDDs, written
RBDD, as follows.

Proposition 2. Suppose f1, . . . , fn are BDDs and g is a non-constant BDD. If
there is a partial assignment {l1, . . . , lk} such that for ω =

�k
i=1 li,

f1|¬g ∧ · · · ∧ fn|¬g � f1|ω ∧ · · · ∧ fn|ω

and g|ω = 1 then g is redundant with respect to f1 ∧ . . . ∧ fn.

4 BDD Redundancy Properties

The previous section provided a characterization of redundancy for Boolean
functions, and showed how this could be instantiated for BDDs. In this section we
develop polynomially-checkable properties for showing that a BDD is redundant
with respect to a conjunction of BDDs, and describe their use in refutation
systems for proving the unsatisfiability of formulas.

Non-Clausal Redundancy Properties 9

UnitProp(f1, . . . , fn)
1 repeat
2 if fi = 0 or fi = ¬fj for some 1 ≤ i, j ≤ n then
3 return “conflict”
4 if U (fi) �= ∅ for some 1 ≤ i ≤ n then
5 fj := fj |�U (fi) for all 1 ≤ j ≤ n

6 until no update to f1, . . . , fn

Fig. 2: A procedure for unit propagation over a set of BDDs

As Theorem 1 is used for defining clausal redundancy properties, Proposi-
tion 2 gives rise to BDD redundancy properties by replacing � with polynomially-
decidable relations. Similar to the use of the unit propagation procedure by the
clausal properties RUP and PR, we describe a unit propagation procedure for
use with a set of BDDs and derive analogous properties RUPBDD and PRBDD.

For a BDD f , the Shannon expansion shows that if f |¬l = 0 (i.e. f |¬l is the
always false 0 BDD) for some literal l, then f = l∧ fl, and therefore f � l. Then
the units implied by f , written U (f), can be defined as follows.

Definition 4. U (f) = {l | var(l) ∈ V and f |¬l = 0}, for f : BV → B.

As f |¬l can be computed in O(|f |), where |f | is the number of nodes in the BDD
for f [58], then U (f) can certainly be computed in O(|V | · |f |) ⊆ O(|f |2), though
this can be reduced to O(|f |). We write

�
U (f) to mean

�
l∈U (f) l.

Figure 2 provides a sketch of the unit propagation procedure. Whenever U (f)
is non-empty for some f in a set of BDDs, each BDD in the set can be replaced
with its cofactor by

�
U (f). This approach to unit propagation is largely similar

to that of Olivo and Emerson [52], except we consider two conflict situations: if
some BDD becomes 0, or if two BDDs are the negations of each other.

For N = |f1| + · · · + |fn| the procedure UnitProp(f1, . . . , fn) can be per-
formed in time O(N2). In line 5, if fj and

�
U (fi) share no variables, then

fj = fj |�U (fi), otherwise the BDD for fj |�U (fi) can be constructed in time
O(|fj |) and further |fj |�U (fi)| < |fj |. This procedure is correct: “conflict” is
only returned when

�n
i=1 fi is unsatisfiable (see the appendix for the proof).

Proposition 3. If UnitProp(f1, . . . , fn) returns “conflict” then f1∧ · · ·∧fn ≡ 0.

UnitProp generalizes the usual unit propagation procedure on a formula: if
C is a clause, then U (C) �= ∅ implies C is a unit clause and

�
l∈U (C) l = C. We

extend the relation �1 and the definition of RUP accordingly.

Definition 5. Let f1, . . . , fn and g �= 0 be BDDs. Then f1 ∧ · · · ∧ fn implies g
by RUPBDD if UnitProp(f1|¬g, . . . , fn|¬g) returns “conflict.”

Example 2. Let F = {C1 = b∨ c, C2 = a∨ b, C3 = a∨ c}, and assume a ≺ b ≺ c.
Consider g as shown in Figure 3, expressing the cardinality constraint g(τ) = 1
if and only if τ satisfies at least two a, b, c; also written {a, b, c} ≥ 2. Figure 3

10 L. A. Barnett, A. Biere

a

bb

c

10

(a) The constraint g

(b ∨ c)|¬g (a ∨ b)|¬g (a ∨ c)|¬g

a

b

c

10

a

b

10

a

b

c

10

Unit: ¬a

b

c

10

b

10

b

c

10

Unit: b

1 1 0

conflict

(b) UnitProp((b ∨ c)|¬g, (a ∨ b)|¬g, (a ∨ c)|¬g)

Fig. 3: Example derivation of a constraint g, shown in (a), using RUPBDD. In (b),
the top line shows the BDDs for each of the clauses (b ∨ c), (a ∨ c), (a ∨ b) after
cofactoring by g. The second line shows each of these BDDs after cofactoring
by the unit ¬a ∈ U((b ∨ c)|¬g). Here, the middle BDD becomes simply the unit
b, and the third line shows each BDD cofactored by the unit b. In this line, the
third BDD has become 0, so a conflict is returned.

shows the updates made throughout UnitProp(C1|¬g, C2|¬g, C3|¬g). Notice that
U (C1|¬g) = {¬a}, and U ((C2|¬g)|¬a) = {b}. Then C3|¬g after cofactoring by
¬a and b becomes the constant BDD 0, so the procedure returns “conflict.” As
a result, F implies the BDD g by RUPBDD.

We show that RUPBDD is a redundancy property. Given BDDs f1, . . . , fn, g,
checking whether g is implied by RUPBDD primarily consists of the UnitProp
procedure, though each fi|¬g must first be constructed, which can be done in
time O(|fi| · |g|) [20]. The size of this BDD may in some cases be larger than the
size of fi, though it is typically smaller [20,62] and at worst |fi|¬g| ≤ |fi| · |g|.
Consequently it can be decided in time O(|g|2 · N2) whether g is implied by
RUPBDD. Finally if g is implied by RUPBDD then it is redundant with respect to
f1∧ · · ·∧fn; in fact, it is a logical consequence (proof available in the appendix).

Proposition 4. If f1 ∧ · · · ∧ fn �1 g, then f1 ∧ · · · ∧ fn � g.

Non-Clausal Redundancy Properties 11

From RUPBDD the property PR can be directly generalized to this setting as
well. Specifically, we define the redundancy property PRBDD as follows.

Definition 6. Suppose f1, . . . , fn are BDDs and g is a non-constant BDD. Then
g is PRBDD with respect to

�n
i=1 fi if there is partial assignment {l1, . . . , lk} such

that g|ω = 1 and
�n

i=1 fi|¬g �1 fj |ω for all 1 ≤ j ≤ n, where ω =
�k

i=1 li.

Proposition 2 shows if g is PRBDD with respect to f = f1 ∧ · · · ∧ fn then g is
redundant with respect to f , thus PRBDD is a redundancy property.

Notice these properties and derivations directly generalize their clausal equiv-
alents; for example, if C is PR with respect to a formula F , then (the BDD
expressing) C is PRBDD with respect to (the set of BDDs expressing) F . Decid-
ing whether a clause C is PR with respect to a formula F is NP-complete [36].
As PRBDD generalizes PR, then PRBDD is NP-hard as well. Further, checking
whether g is PRBDD with respect to f1 ∧ · · · ∧ fn by some candidate ω can be
done polynomially as argued above, thus the following holds.

Proposition 5. Deciding whether g is PRBDD with respect to f1∧ · · ·∧fn, given
the BDDs g, f1, . . . , fn, is NP-complete.

In other words, the decision problems for PR and PRBDD are of equal complexity.
The properties RUPBDD and PRBDD as defined in this section can be used

to show that a BDD can be added to a set of BDDs in a satisfiability-preserving
way. Of course, any clause has a straightforward and simple representation as a
BDD, so that a formula can be easily represented this way as a set of BDDs. As
a result RUPBDD and PRBDD can be used as systems for refuting unsatisfiable
formulas. In the following, we identify a clause with its representation as a BDD,
and a formula with its representation as a set of such BDDs.

To simplify the presentation of derivations based on RUPBDD and PRBDD
we introduce an additional redundancy property, allowing derivations to include
steps to directly derive certain BDDs path-wise in the following way.

Definition 7. f1 ∧ · · · ∧ fn implies g by RUPpath if (1) f1 ∧ · · · ∧ fn �1 ¬c for
every c = l1 ∧ · · · ∧ lm such that l1, . . . , lm is a path from the root of g to the 0
terminal, and (2) |g| ≤ log2(|f1|+ · · ·+ |fn|).
If f1∧· · ·∧fn implies g by RUPpath then it is a logical consequence of f1∧· · ·∧fn,
as this checks that no assignment satisfies both ¬g and f1∧ · · ·∧fn. The number
of paths in a BDD g can however be exponential in |g|, as in the BDD for an XOR
constraint, so the second condition ensures RUPpath is polynomially-checkable.

The property RUPpath is primarily useful as it allows the derivation of a
BDD g whose representation as a set of clauses is included in {f1, . . . , fn}: if c
corresponds to a path to 0 in g, the clause ¬c is included in the direct clausal
translation of g. In this context, the restrictive condition (2) in Definition 7 can
in fact be removed, since the number of paths in g is then at most n.

Definition 8. A sequence of BDDs g1, . . . , gn is a RUPBDD derivation from
a formula F if F ∧ �k−1

i=1 gi implies gk by RUPBDD, or by RUPpath, for all
1 ≤ k ≤ n. A sequence of BDD and assignment pairs (g1,ω1), . . . , (gn,ωn) is

12 L. A. Barnett, A. Biere

a PRBDD derivation from a formula F if F ∧�k−1
i=1 gi implies gk by RUPpath, or

ωk is a PRBDD-witness for gk with respect to F ∧�k−1
i=1 gi, for all 1 ≤ k ≤ n.

As RUPBDD, RUPpath, and PRBDD are redundancy properties, any RUPBDD or
PRBDD derivation corresponds to a redundancy sequence of the same length.

Example 3. Consider the formula F = {a∨ b, a∨ c, b∨c, a∨d, b∨d, c∨d} and let
g be the BDD such that g(τ) = 1 if and only if τ satisfies at least 3 of a, b, c, d;
that is, g is the cardinality constraint {a, b, c, d} ≥ 3. As seen in Example 2, the
constraint g1 = {a, b, c} ≥ 2 is RUPBDD with respect to F ; similarly so are the
constraints, g2 = {a, c, d} ≥ 2, and g3 = {b, c, d} ≥ 2. Now, ¬a ∈ U (g3|¬g): for
any τ the assignment π¬g(τ) satisfies at most 2 of a, b, c, d, and if a is one of
them then π¬g(τ) surely falsifies g3. As a result, (g3|¬g)|a = 0. In a similar way
¬b ∈ U (g2|¬g). Since g1|¬g cofactored by the units ¬a and ¬b is falsified, then
UnitProp(g1|¬g, g2|¬g, g3|¬g) returns “conflict.” Consequently g is RUPBDD with
respect to F ∧ g1 ∧ g2 ∧ g3, and g1, g2, g3, g is a RUPBDD derivation from F .

This example can be generalized to show that RUPBDD is capable of expressing
an inference rule for cardinality constraints called the diagonal sum [39]. For
L = {l1, . . . , ln} let Li = L \ {li}; the diagonal sum derives L ≥ k + 1 from the
set of all n constraints Li ≥ k.

While the properties and refutation systems RUPBDD and PRBDD easily ex-
tend their clausal counterparts, it is important to notice that redundancy-based
systems using BDDs can be defined in other ways. For instance, say

�n
i=1 fi im-

plies g by IMPpair if fi|¬g ∧ fj |¬g = 0 for some i, j. Then IMPpair is polynomially
checkable, computing the conjunction for each pair i, j. Moreover, it is clear that
f1 ∧ f2 � g if and only if f1 ∧ f2 implies g by IMPpair. As many logical inference
rules have this form, it is possible that systems based on IMPpair are very strong.

5 Gaussian Elimination

Next, we show how the Gaussian elimination technique for simplifying XOR
constraints embedded in a formula is captured by the redundancy properties
defined in the previous section. Specifically, if an XOR constraint X is derivable
from a formula F by Gaussian elimination, we show there is a RUPBDD derivation
from F including the BDD expressing X with only a linear size increase.

An XOR clause [x1, . . . , xn]
p expresses the function f : BV → B, where

V = {x1, . . . , xn} and p is 0 or 1, such that f(τ) = 1 if and only if the number
of xi ∈ V satisfied by τ is equal modulo 2 to p. In other words, p expresses the
parity of the positive literals xi an assignment must satisfy in order to satisfy
the XOR clause. As [x, y, y]p and [x]p express the same function, we assume no
variable occurs more than once in an XOR clause. Notice that []0 expresses the
constant function 1, while []1 expresses 0.

The Gaussian elimination procedure begins by detecting XOR clauses en-
coded in a formula F . The direct encoding D(X) of X = [x1, . . . , xn]

p is the
collection of clauses of the form C = {l1, . . . , ln}, where each li is either xi or

Non-Clausal Redundancy Properties 13

¬xi and the number of negated literals in each C is not equal modulo 2 to p The
formula D(X) expresses the same function as X, containing the clauses prevent-
ing each assignment over the variables in X not satisfying X. As a result, D(X)
implies the BDD expressing X by RUPpath (see appendix for proof).

Lemma 2. D(X) implies X by RUPpath, for X = [x1, . . . , xn]
p.

Similar to the approach of Philipp and Rebola-Pardo [55], we represent
Gaussian elimination steps by deriving the addition X ⊕ Y of XOR clauses
X = [x1, . . . , xm, z1, . . . , zr]

p and Y = [y1, . . . , yn, z1, . . . , zr]
q, given by:

X ⊕ Y = [x1, . . . , xm, y1, . . . , yn]
p⊕q.

The following lemma shows that X ⊕ Y is RUPBDD with respect to X ∧ Y ; that
is, if a RUPBDD derivation includes X and Y then X⊕Y can be derived as well.
This is a result of the following observation: while the precise cofactors of X and
Y by ¬(X ⊕ Y) depend on the variable order ≺, they are the negations of one
another (proof is included in the appendix).

Lemma 3. Let v be the ≺-greatest variable in occurring in exactly one of X
and Y , and assume v occurs in Y . Then X|¬(X⊕Y) = X, and Y |¬(X⊕Y) = ¬X.

The above lemma shows that the procedure UnitProp(X|¬X⊕Y , Y |¬X⊕Y) re-
turns “conflict” immediately, and as a result X ⊕ Y is RUPBDD with respect to
f1 ∧ · · · ∧ fn ∧X ∧ Y for any set of BDDs f1, . . . , fn.

Define a Gaussian elimination derivation Π from a formula F as a sequence of
XOR clauses Π = X1, . . . , XN , such that for all 1 ≤ i ≤ N , either Xi = Xj ⊕Xk

for j, k < i, or D(Xi) ⊆ F . The size of the derivation is |Π| = �N
i=1 si, where

si is the number of variables occurring in Xi. We show that Π corresponds to a
RUPBDD derivation with only a linear size increase. This size increase is a result
of the fact that the BDD expressing an XOR clause X = [x1, . . . , xn]

p has size
2n+ 1 (proof of the following theorem is available in the appendix).

Theorem 3. Suppose Π = X1, . . . , XN is a Gaussian elimination derivation
from a formula F . Then there is a RUPBDD derivation from F with size O(|Π|).

A consequence of this theorem is that RUPBDD includes short refutations
for formulas whose unsatisfiability can be shown by Gaussian elimination. More
precisely, suppose a formula F includes the direct representations of an unsat-
isfiable collection of XOR clauses. Then there is a polynomial-length Gaussian
elimination derivation of the unsatisfiable XOR clause []1 from F [61], and by
Theorem 3, a polynomial-length RUPBDD derivation of the unsatisfiable BDD 0.

Notably, RUPBDD then includes short refutations of, for example, the Tseitin
formulas, for which no polynomial-length refutations exist in the resolution sys-
tem [63,65]. This limitation of resolution holds as well for the clausal RUP system,
without the ability to introduce new variables, as it can be polynomially simu-
lated by resolution [8,24]. As the translation into RUPBDD used to prove Theo-
rem 3 introduces no new variables, this demonstrates the strength of RUPBDD
compared to resolution and its clausal analog RUP.

14 L. A. Barnett, A. Biere

p cnf 4 10
-3 -1 2 0
-3 1 2 0
3 -1 -2 0
3 1 2 0

-4 -2 1 0
-4 2 -1 0
4 -2 -1 0
4 2 1 0

-3 -4 0
3 4 0

Lingeling

x 1 2 3 0
x 3 4 0
x -1 2 4 0

d x 1 2 3 0
x 1 2 4 0

0
dxddcheck

Fig. 4: Usage of the tool dxddcheck, showing an example formula and refutation.

6 Results

To begin to assess the practical usefulness of the systems introduced in Section 4,
we have implemented in Python a prototype of a tool called dxddcheck1 for
checking refutations in a subset of RUPBDD. In particular we focus on the result
of Section 5, that Gaussian elimination is succinctly captured by RUPBDD.

We ran the SAT solver Lingeling (version bcp) on a collection of crafted
unsatisfiable formulas, all of which can be solved using Gaussian elimination.
From Lingeling output we extract a list of XOR clause additions and deletions,
ending with the addition of the empty clause, as shown in Figure 4. This list is
passed directly to dxddcheck, which carries it out as a DRUPBDD refutation; that
is, a RUPBDD refutation also allowing steps which remove or “delete” BDDs from
the set. These deletion steps can be removed without affecting the correctness of
the refutation, though their inclusion can decrease the time required for checking
it, as is the case with DRUP and RUP.

Formula
number of
variables

number of
clauses

solving
time (s)

proof
lines

proof
size (KB)

checking
time (s)

rpar_50 148 394 0.1 297 7 0.34
rpar_100 298 794 0.1 597 15 1.35
rpar_200 598 1594 0.2 1197 35 6.67
mchess_19 680 2291 0.0 1077 41 4.07
mchess_21 836 2827 0.1 1317 50 5.09
mchess_23 1008 3419 0.1 1581 63 6.42

urquhart-s5-b2 107 742 0.0 150 7 0.95
urquhart-s5-b3 121 1116 0.1 150 9 1.64
urquhart-s5-b4 114 888 0.0 150 8 1.20

For these experiments we used a 1.8 GHz Intel Core i5 CPU with 8 GB of
memory. The table shows the time Lingeling took to solve each formula, the
number of lines in the constructed proof and its size, and the time dxddcheck
took to construct and check the associated DRUPBDD proof. These benchmarks
1 Source code is available under the MIT license at http://fmv.jku.at/dxddcheck

along with the benchmarks used and our experimental data.

Non-Clausal Redundancy Properties 15

are well-known challenging examples in the contexts of XOR reasoning and proof
production. The rpar_n formulas are compact, permuted encodings of two con-
tradictory parity constraints on n variables, described by Chew and Heule [17].
The mchess_n formulas are encodings of the mutilated n× n-chessboard prob-
lem, as studied by Heule, Kiesl, and Biere [33] as well as Bryant and Heule [13].
The urquhart formulas [16,64] are examples of hard Tseitin formulas.

Lingeling solved each formula by Gaussian elimination almost instantly. We
ran Lingeling and Kissat [10], winner of the main track of the SAT competition
in 2020, on the benchmarks without Gaussian elimination, as is required for
producing clausal refutations, using an Intel Xeon E5-2620 v4 CPU at 2.10
GHz. Only rpar_50 was solved in under about 10 hours, producing significantly
larger proofs; for instance, Kissat produced a refutation of size 6911 MB.

While methods to construct clausal proofs from Gaussian elimination have
been proposed, most are either lacking a public implementation or are limited in
scope [17,55]. An exception is the approach very recently proposed by Gocht and
Nordström using pseudo-Boolean reasoning [25], with which we are interested in
carrying out a thorough comparison of results in the future.

7 Conclusion

We presented a characterization of redundancy for Boolean functions, general-
izing the framework of clausal redundancy and efficient clausal proof systems.
We showed this can be instantiated to design redundancy properties for func-
tions given by BDDs, and polynomially-checkable refutation systems based on
the conjunction of redundant BDDs, including the system PRBDD generalizing
the clausal system PR. The system PRBDD also generalizes RUPBDD, which can
express Gaussian elimination reasoning without extension variables or clausal
translations. The results of a preliminary implementation of a subset of RUPBDD
confirms such refutations are compact and can be efficiently checked.

Examples 2 and 3 show RUPBDD reasoning over cardinality constraints, and
we are interested in exploring rules such as generalized resolution [38,39]. Other
forms of non-clausal reasoning may be possible using BDD-based redundancy
systems as well. We are particularly interested in exploring the property IMPpair.

While the system RUPBDD derives only constraints implied by the conjunc-
tion of the formula and previously derived constraints, PRBDD is capable of
interference-based reasoning [29], like its clausal analog PR; there are possibly
novel, non-clausal reasoning techniques taking advantage of this ability. Further,
RUPBDD and PRBDD are based on the conjunction of BDDs, though Theorem 2
is more general and could be used for other ways of expressing Boolean functions.
Finally we are interested in developing an optimized tool for checking proofs in
the system PRBDD, as well as a certified proof checker.

Acknowledgements. We extend our thanks to Marijn Heule for his helpful
comments on an earlier draft of this paper.

16 L. A. Barnett, A. Biere

Appendix

Proposition 2. Suppose f1, . . . , fn are BDDs and g is a non-constant BDD. If
there is a partial assignment {l1, . . . , lk} such that for ω =

�k
i=1 li,

f1|¬g ∧ · · · ∧ fn|¬g � f1|ω ∧ · · · ∧ fn|ω

and g|ω = 1 then g is redundant with respect to f1 ∧ . . . ∧ fn.

Proof. Let f = f1∧ · · ·∧fn and α = π¬g. We know α blocks g by Lemma 1, and
f ◦ α ≡ f1|¬g ∧ · · · ∧ fn|¬g. Further, let σ = {l1, . . . , lk} so that f ◦ σ̂ is equal to
f |ω ≡ f1|ω ∧ · · ·∧fn|ω. By Theorem 2 then g is redundant with respect to f . ��

Proposition 3. If UnitProp(f1, . . . , fn) returns “conflict” then f1∧ · · ·∧fn ≡ 0.

Proof. Let fk
j refer to the BDD fj after k iterations of the outer loop, and let Uk

refer to the conjunction of all units produced in iteration k. Then f k
j = fk−1

j |Uk

for any k > 0. As
�n

j=1 f
k−1
j � Uk, then

�n
j=1 f

k−1
j ≡ �n

j=1 f
k−1
j ∧ Uk, also

equivalent to (
�n

j=1 f
k−1
j)|Uk

∧Uk. As this cofactor distributes over conjunction,
this is equivalent to

�n
j=1 f

k−1
j |Uk

∧Uk. Thus we have
�n

j=1 f
k
j ∧Uk ≡ �n

j=1 f
k−1
j .

If “conflict” is returned in the first iteration, then clearly
�n

j=1 fj is un-
satisfiable. By the reasoning above, after iteration k, inductively

�n
j=1 f

k
j and�n

j=1 f
k−1
j are equisatisfiable. As a result, if “conflict” is returned after any num-

ber of iterations k ≥ 0, then
�n

j=1 fj is unsatisfiable. ��

Proposition 4. If f1 ∧ · · · ∧ fn �1 g, then f1 ∧ · · · ∧ fn � g.

Proof. If f1∧ · · ·∧fn �1 g then f1|¬g∧ · · ·∧fn|¬g ≡ 0 by Proposition 3. Then for
f =

�n
i=1 fi, the BDD f |¬g is the constant 0. As f |¬g is a generalized cofactor

of f by ¬g, then in fact f ∧ ¬g = f |¬g ∧ ¬g is unsatisfiable, and thus f � g. ��

Lemma 2. D(X) implies X by RUPpath, for X = [x1, . . . , xn]
p.

Proof. Let c = l1∧· · ·∧ln, with each var(li) ∈ {x1, . . . , xn}, and suppose X|c = 0,
so that l1, . . . , ln is a path to 0 in X. The number of positive literals li = xi in c
is then not equal modulo 2 to p, so the number of negative literals in the clause
¬c is not equal modulo 2 to p. Then ¬c ∈ D(X) and thus D(X) �1 ¬c.

By the Shannon expansion X = (x1 ∧ X|x1
) ∨ (¬x1 ∧ X|¬x1

), where X|x1

and X|¬x1
are the functions expressed by the XOR clauses [x2, . . . , xn]

¬p and
[x2, . . . , xn]

p, respectively. As [xn]
0 and [xn]

1 are equivalent to just ¬xn and xn,
respectively, then |X| = 2n + 1: with x1 ≺ · · · ≺ xn, the BDD X includes one
node with variable x1, and two nodes with xi for each 1 < i ≤ n. The formula
D(X) includes 2n − 1 clauses each with n literals, thus |X| ≤ log |D(X)|. ��

Lemma 3. Let v the ≺-greatest variable in occurring in exactly one of X and
Y , and assume v occurs in Y . Then X|¬(X⊕Y) = X, and Y |¬(X⊕Y) = ¬X.

Non-Clausal Redundancy Properties 17

Proof. Let g = ¬(X⊕Y) and suppose X(τ) = 1. If Y (τ) = 0, then g(τ) = 1 and
πg(τ) = τ . If instead Y (τ) = 1, then g(τ) = 0. The nearest assignment (with
respect to d) satisfying g differs only on τ(v); that is, πg(τ)(x) = τ(x) for x �= v,
and πg(τ)(v) = ¬τ(v). This way Y (πg(τ)) = 0, and as v does not occur in X
then still X(πg(τ)) = 1. In either case, X ◦πg(τ) = X(τ) and Y ◦πg(τ) = ¬X(τ).

Next, suppose X(τ) = 0. If Y (τ) = 1 then g(τ) = 1 and πg(τ) = τ . If instead
Y (τ) = 0, then also g(τ) = 0. Again, πg(τ) need only alter the assignment of v to
satisfy Y and thus g; that is, πg(τ)(x) = τ(x) for x �= v, and πg(τ)(v) = ¬τ(v).
Now Y (πg(τ)) = 1, and again X(πg(τ)) = 0 is unaffected. Then X◦πg(τ) = X(τ)
and Y ◦ πg(τ) = ¬X(τ) holds in either case. ��
Theorem 3. Suppose Π = X1, . . . , XN is a Gaussian elimination derivation
from a formula F . Then there is a RUPBDD derivation from F with size O(|Π|).
Proof. By assumption D(X1) ⊆ F , so that by Lemma 2 F implies X1 by
RUPpath. Next, for i > 1, either D(Xi) ⊆ F as well, or Xn = Xj⊕Xk for j, k < n,
and then Xn is RUPBDD with respect to F ∧X1 ∧ · · ·∧Xn−1 by Lemma 3. Thus
the sequence of BDDs representing σ = X1, . . . , XN is a RUPBDD derivation
from F . As |Xi| = 2 · si + 1 for 1 ≤ i ≤ N , then σ has size O(|Π|). ��

References

1. Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., Mayer-
Eichberger, V.: A new look at BDDs for pseudo-Boolean constraints. Journal of Ar-
tificial Intelligence Research 45, 443–480 (2012). https://doi.org/10.1613/jair.3653

2. Ajtai, M.: The complexity of the pigeonhole principle. Combinatorica 14(4), 417–
433 (1994). https://doi.org/10.1007/BF01302964

3. Akers, S.B.: Binary decision diagrams. IEEE Trans. Computers 27(6), 509–516
(1978). https://doi.org/10.1109/TC.1978.1675141

4. Balyo, T., Heule, M.J.H., Järvisalo, M.: SAT competition 2016: Recent develop-
ments. In: Singh, S.P., Markovitch, S. (eds.) 31st AAAI Conference on Artificial
Intelligence. pp. 5061–5063. AAAI Press (2017)

5. Barnett, L.A., Cerna, D., Biere, A.: Covered clauses are not propagation redundant.
In: Peltier, N., Sofronie-Stokkermans, V. (eds.) 10th Intl. Joint Conference on
Automated Reasoning – IJCAR. LNCS, vol. 12166, pp. 32–47. Springer (2020).
https://doi.org/10.1007/978-3-030-51074-9_3

6. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfia-
bility. pp. 1267–1329. IOS Press (2021). https://doi.org/10.3233/FAIA201017

7. Bayardo, R.J., Schrag, R.: Using CSP look-back techniques to solve real-world SAT
instances. In: Kuipers, B., Webber, B.L. (eds.) 14th AAAI National Conference on
Artificial Intelligence. pp. 203–208. AAAI Press (1997)

8. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. Journal of Artificial Intelligence Research 22(1), 319–
351 (2004). https://doi.org/10.1613/jair.1410

9. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT entering the
SAT competition 2018. In: Heule, M.J.H., Järvisalo, M., Suda, M. (eds.) Proc.
of SAT Competition 2018. pp. 13–14. Department of Computer Science Series of
Publications B, University of Helsinki (2018)

18 L. A. Barnett, A. Biere

10. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

11. Biere, A., Järvisalo, M., Kiesl, B.: Preprocessing in SAT solving. In: Biere, A.,
Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. pp. 391–
435. IOS Press (2021). https://doi.org/10.3233/FAIA200992

12. Bryant, R.E.: Graph-based algorithms for Boolean function manip-
ulation. IEEE Transactions on Computers 35(8), 677–691 (1986).
https://doi.org/10.1109/TC.1986.1676819

13. Bryant, R.E., Heule, M.J.H.: Generating extended resolution proofs with a BDD-
based SAT solver. In: Groote, J.F., Larsen, K.G. (eds.) 27th Intl. Conference on
Tools and Algorithms for the Construction and Analysis of Systems – TACAS.
LNCS, vol. 12651, pp. 76–93. Springer (2021). https://doi.org/10.1007/978-3-030-
72016-2_5

14. Burch, J.R., Clarke, E.M., Long, D.E., McMillan, K.L., Dill, D.L.: Symbolic model
checking for sequential circuit verification. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 13(4), 401–424 (1994). https://doi.org/10.1109/43.275352

15. Buss, S., Thapen, N.: DRAT proofs, propagation redundancy, and extended reso-
lution. In: Janota, M., Lynce, I. (eds.) 22nd Intl. Conference on Theory and Ap-
plications of Satisfiability Testing – SAT. LNCS, vol. 11628, pp. 71–89. Springer
(2019). https://doi.org/10.1007/978-3-030-24258-9_5

16. Chatalic, P., Simon, L.: Multi-resolution on compressed sets of clauses. In: 12th
IEEE Intl. Conference on Tools with Artificial Intelligence – ICTAI. pp. 2–10.
IEEE Computer Society (2000). https://doi.org/10.1109/TAI.2000.889839

17. Chew, L., Heule, M.J.H.: Sorting parity encodings by reusing variables. In:
Pulina, L., Seidl, M. (eds.) 23rd Intl. Conference on Theory and Applications
of Satisfiability Testing – SAT. LNCS, vol. 12178, pp. 1–10. Springer (2020).
https://doi.org/10.1007/978-3-030-51825-7_1

18. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using
satisfiability solving. Formal Methods in System Design 19(1), 7–34 (2001).
https://doi.org/10.1023/A:1011276507260

19. Coudert, O., Berthet, C., Madre, J.C.: Verification of synchronous sequential ma-
chines based on symbolic execution. In: Sifakis, J. (ed.) Intl. Workshop on Auto-
matic Verification Methods for Finite State Systems. LNCS, vol. 407, pp. 365–373.
Springer (1990). https://doi.org/10.1007/3-540-52148-8_30

20. Coudert, O., Madre, J.C.: A unified framework for the formal verifi-
cation of sequential circuits. In: IEEE Intl. Conference on Computer-
Aided Design – ICCAD. pp. 126–129. IEEE Computer Society (1990).
https://doi.org/10.1109/ICCAD.1990.129859

21. Coudert, O., Madre, J.C., Berthet, C.: Verifying temporal properties of sequential
machines without building their state diagrams. In: Clarke, E.M., Kurshan, R.P.
(eds.) 2nd Intl. Workshop on Computer Aided Verification – CAV. LNCS, vol. 531,
pp. 23–32. Springer (1990). https://doi.org/10.1007/BFb0023716

22. Damiano, R.F., Kukula, J.H.: Checking satisfiability of a conjunction of BDDs.
In: 40th Design Automation Conference – DAC. pp. 818–823. ACM (2003).
https://doi.org/10.1145/775832.776039

23. Franco, J., Kouril, M., Schlipf, J., Ward, J., Weaver, S., Dransfield, M., Vanfleet,
W.M.: SBSAT: a state-based, BDD-based satisfiability solver. In: Giunchiglia,

Non-Clausal Redundancy Properties 19

E., Tacchella, A. (eds.) 6th Intl. Conference on Theory and Applications of
Satisfiability Testing – SAT. LNCS, vol. 2919, pp. 398–410. Springer (2004).
https://doi.org/10.1007/978-3-540-24605-3_30

24. Gelder, A.: Verifying RUP proofs of propositional unsatisfiability. In: 10th Intl.
Symposium on Artificial Intelligence and Mathematics – ISAIM (2008)

25. Gocht, S., Nordström, J.: Certifying parity reasoning efficiently using pseudo-
Boolean proofs. In: 35th AAAI Conference on Artificial Intelligence. AAAI Press
(2021), to appear

26. Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF for-
mulas. In: Conference on Design, Automation and Test in Europe– DATE. pp. 886–
891. IEEE Computer Society (2003). https://doi.org/10.1109/DATE.2003.10008

27. Goldberg, E.I., Prasad, M.R., Brayton, R.K.: Using SAT for combinational equiv-
alence checking. In: Nebel, W., Jerraya, A. (eds.) Conference on Design, Automa-
tion and Test in Europe – DATE. pp. 114–121. IEEE Computer Society (2001).
https://doi.org/10.1109/DATE.2001.915010

28. Groote, J.F., Tveretina, O.: Binary decision diagrams for first-order pred-
icate logic. J. Log. Algebraic Methods Program. 57(1-2), 1–22 (2003).
https://doi.org/10.1016/S1567-8326(03)00039-0

29. Heule, M., Kiesl, B.: The potential of interference-based proof systems. In: Reger,
G., Traytel, D. (eds.) 1st Intl. Workshop on Automated Reasoning: Challenges,
Applications, Directions, Exemplary Achievements – ARCADE. EPiC Series in
Computing, vol. 51, pp. 51–54. EasyChair (2017)

30. Heule, M.J.H., Biere, A.: All about Proofs, Proofs for All, Mathematical Logic and
Foundations, vol. 55, chap. Proofs for Satisfiability Problems, pp. 1–22. College
Publications (2015)

31. Heule, M.J.H., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination
for SAT and QSAT. Journal of Artificial Intelligence Research 53(1), 127–168
(2015). https://doi.org/10.1613/jair.4694

32. Heule, M.J.H., Kiesl, B., Biere, A.: Short proofs without new variables. In:
de Moura, L. (ed.) 26th Intl. Conference on Automated Deduction – CADE. LNCS,
vol. 10395, pp. 130–147. Springer (2017). https://doi.org/10.1007/978-3-319-63046-
5_9

33. Heule, M.J.H., Kiesl, B., Biere, A.: Clausal proofs of mutilated chessboards. In:
Badger, J.M., Rozier, K.Y. (eds.) 11th NASA Formal Methods Symposium – NFM.
LNCS, vol. 11460, pp. 204–210. Springer (2019). https://doi.org/10.1007/978-3-
030-20652-9_13

34. Heule, M.J.H., Kiesl, B., Biere, A.: Encoding redundancy for satisfaction-driven
clause learning. In: Vojnar, T., Zhang, L. (eds.) 25th Intl. Conference on Tools and
Algorithms for the Construction and Analysis of Systems – TACAS. LNCS, vol.
11427, pp. 41–58. Springer (2019). https://doi.org/10.1007/978-3-030-17462-0_3

35. Heule, M.J.H., Kiesl, B., Biere, A.: Strong extension-free proof systems. Journal
of Automated Reasoning 64(3), 533–554 (2020). https://doi.org/10.1007/s10817-
019-09516-0

36. Heule, M.J.H., Kiesl, B., Seidl, M., Biere, A.: PRuning through satisfac-
tion. In: Strichman, O., Tzoref-Brill, R. (eds.) 13th Intl. Haifa Verifica-
tion Conference – HVC. LNCS, vol. 10629, pp. 179–194. Springer (2017).
https://doi.org/10.1007/978-3-319-70389-3_12

37. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean
Pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) 19th Intl. Conference on Theory and Applications of Satisfiability Testing –

20 L. A. Barnett, A. Biere

SAT. LNCS, vol. 9710, pp. 228–245. Springer (2016). https://doi.org/10.1007/978-
3-319-40970-2_15

38. Hooker, J.N.: Generalized resolution and cutting planes. Annals of Operations
Research 12, 217–239 (1988). https://doi.org/10.1007/BF02186368

39. Hooker, J.N.: Generalized resolution for 0-1 linear inequalities. An-
nals of Mathematics and Artificial Intelligence 6, 271–286 (1992).
https://doi.org/10.1007/BF01531033

40. Hosaka, K., Takenaga, Y., Kaneda, T., Yajima, S.: Size of ordered binary decision
diagrams representing threshold functions. Theor. Comput. Sci. 180(1-2), 47–60
(1997). https://doi.org/10.1016/S0304-3975(97)83807-8

41. Järvisalo, M., Biere, A., Heule, M.J.H.: Blocked clause elimination. In: Esparza,
J., Majumdar, R. (eds.) 16th Intl. Conference on Tools and Algorithms for the
Construction and Analysis of Systems – TACAS. LNCS, vol. 6015, pp. 129–144.
Springer (2010). https://doi.org/10.1007/978-3-642-12002-2_10

42. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
Dalea nd Sattler, U. (eds.) 6th Intl. Joint Conference on Automated Reasoning – IJ-
CAR. LNCS, vol. 7364, pp. 355–370. Springer (2012). https://doi.org/10.1007/978-
3-642-31365-3_28

43. Kaiss, D., Skaba, M., Hanna, Z., Khasidashvili, Z.: Industrial strength SAT-based
alignability algorithm for hardware equivalence verification. In: 7th Intl. Confer-
ence on Formal Methods in Computer Aided Design – FMCAD. pp. 20–26. IEEE
Computer Society (2007). https://doi.org/10.1109/FAMCAD.2007.37

44. Kiesl, B., Seidl, M., Tompits, H., Biere, A.: Super-blocked clauses. In: Olivetti, N.,
Tiwari, A. (eds.) 8th Intl. Joint Conference on Automated Reasoning – IJCAR.
LNCS, vol. 9706, pp. 45–61. Springer (2016). https://doi.org/10.1007/978-3-319-
40229-1_5

45. Konev, B., Lisitsa, A.: Computer-aided proof of Erdős dis-
crepancy properties. Artificial Intelligence 224, 103–118 (2015).
https://doi.org/10.1016/j.artint.2015.03.004

46. Kuehlmann, A., Krohm, F.: Equivalence checking using cuts and heaps. In: Yoffa,
E.J., Micheli, G.D., Rabaey, J.M. (eds.) 34th Design Automation Conference –
DAC. pp. 263–268. ACM (1997). https://doi.org/10.1145/266021.266090

47. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Math-
ematics 96-97, 149–176 (1999). https://doi.org/10.1016/S0166-218X(99)00037-2

48. Lee, C.Y.: Representation of switching circuits by binary-decision programs. The
Bell System Technical Journal 38(4), 985–999 (1959)

49. Manthey, N.: Coprocessor 2.0 – a flexible CNF simplifier. In: Cimatti, A., Se-
bastiani, R. (eds.) 15th Intl. Conference on Theory and Applications of Satis-
fiability Testing – SAT 2012. LNCS, vol. 7317, pp. 436–441. Springer (2012).
https://doi.org/10.1007/978-3-642-31612-8_34

50. Marques-Silva, J.P., Sakallah, K.A.: GRASP - a new search algorithm
for satisfiability. In: IEEE Intl. Conference on Computer Aided De-
sign – ICCAD. pp. 220–227. IEEE Computer Society / ACM (1996).
https://doi.org/10.1109/ICCAD.1996.569607

51. Motter, D.B., Markov, I.L.: A compressed breadth-first search for satisfiability.
In: Mount, D.M., Stein, C. (eds.) 4th Intl. Workshop on Algorithm Engineer-
ing and Experiments – ALENEX. LNCS, vol. 2409, pp. 29–42. Springer (2002).
https://doi.org/10.1007/3-540-45643-0_3

52. Olivo, O., Emerson, E.A.: A more efficient BDD-based QBF solver. In: Lee, J.
(ed.) 17th Intl. Conference on Principles and Practice of Constraint Programming

Non-Clausal Redundancy Properties 21

– CP. pp. 675–690. LNCS, Springer (2011). https://doi.org/10.1007/978-3-642-
23786-7_51

53. Pan, G., Vardi, M.Y.: Search vs. symbolic techniques in satisfiability solving. In: 7th
Intl. Conference on Theory and Applications of Satisfiability Testing – SAT. LNCS,
vol. 3542, pp. 235–250. Springer (2004). https://doi.org/10.1007/11527695_19

54. Papadimitriou, C., Yannakakis, M.: The complexity of facets (and some facets of
complexity). Journal of Computer and System Sciences 28(2), 244–259 (1984).
https://doi.org/10.1016/0022-0000(84)90068-0

55. Philipp, T., Rebola-Pardo, A.: DRAT proofs for XOR reasoning. In: Michael, L.,
Kakas, A.C. (eds.) 15th European Conference on Logics in Artificial Intelligence –
JELIA. LNCS, vol. 10021, pp. 415–429 (2016). https://doi.org/10.1007/978-3-319-
48758-8_27

56. Posegga, J., Ludäscher, B.: Towards first-order deduction based on Shan-
non graphs. In: Ohlbach, H.J. (ed.) 16th German Conference on Arti-
ficial Intelligence – GWAI. LNCS, vol. 671, pp. 67–75. Springer (1992).
https://doi.org/10.1007/BFb0018993

57. Roussel, O., Manquinho, V.: Pseudo-Boolean and cardinality constraints. In: Biere,
A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. pp.
1087–1129. IOS Press (2021). https://doi.org/10.3233/978-1-58603-929-5-695

58. Sieling, D., Wegener, I.: Reduction of OBDDs in linear time. Information Process-
ing Letters 48(3), 139 – 144 (1993). https://doi.org/10.1016/0020-0190(93)90256-9

59. Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Grigoriev,
D., Harrison, J., Hirsch, E.A. (eds.) Computer Science - Theory and Applications,
1st Intl. Computer Science Symposium in Russia – CSR. vol. 3967, pp. 600–611.
Springer (2006). https://doi.org/10.1007/11753728_60

60. Soos, M., Gocht, S., Meel, K.S.: Tinted, detached, and lazy CNF-XOR solving and
its applications to counting and sampling. In: Lahiri, S.K., Wang, C. (eds.) 32nd
Intl. Conference on Computer Aided Verification – CAV. LNCS, vol. 12224, pp.
463–484. Springer (2020). https://doi.org/10.1007/978-3-030-53288-8_22

61. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic
problems. In: Kullmann, O. (ed.) 12th Intl. Conference on Theory and Appli-
cations of Satisfiability Testing – SAT. pp. 244–257. LNCS, Springer (2009).
https://doi.org/10.1007/978-3-642-02777-2_24

62. Touati, H.J., Savoj, H., Lin, B., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Im-
plicit state enumeration of finite state machines using BDDs. In: IEEE Intl. Confer-
ence on Computer-Aided Design – ICCAD. pp. 130–133. IEEE Computer Society
(1990). https://doi.org/10.1109/ICCAD.1990.129860

63. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Slis-
senko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic,
vol. 2, pp. 115–125. Steklov Mathematical Institute (1970)

64. Urquhart, A.: Hard examples for resolution. Journal of the ACM 34(1), 209–219
(1987). https://doi.org/10.1145/7531.8928

65. Urquhart, A.: The complexity of propositional proofs. Bulletin of Symbolic Logic
1(4), 425–467 (12 1995). https://doi.org/10.2307/421131

66. Voronkov, A.: AVATAR: The architecture for first-order theorem provers. In: Biere,
A., Bloem, R. (eds.) 26th Intl. Conference on Computer Aided Verification – CAV.
LNCS, vol. 8559, pp. 696–710. Springer (2014). https://doi.org/10.1007/978-3-319-
08867-9_46

67. Warners, J.P., Maaren, H.V., Warners, J.P., Maaren, H.V.: A two phase algorithm
for solving a class of hard satisfiability problems. Operations Research Letters 23,
81–88 (1998). https://doi.org/10.1016/S0167-6377(98)00052-2

22 L. A. Barnett, A. Biere

68. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) 17th Intl. Confer-
ence on Theory and Applications of Satisfiability Testing – SAT. LNCS, vol. 8561,
pp. 422–429. Springer (2014). https://doi.org/10.1007/978-3-319-09284-3_31

