
Verifying Sequential Behavior with Model Checking

Armin Biere
Computer Systems Institute, ETH Zürich

ETH Zentrum, RZ H, CH-8092 Z̈urich, Switzerland

biere@inf.ethz.ch

Abstract

The design of state-of-the-art digital circuits often
involves interacting state machines with very complex
control flow. As consequence functional verification
of sequential designs is becoming a major bottleneck
in the design process. Model checking techniques, the
topic of this tutorial, promise to speed up verification
time by checking high level temporal properties. Model
checking is best used in early design phases where it
may help to catch fundamental design flaws and errors
as early as possible.

Introduction

Digital systems are becoming ubiquitous in our daily
lives. Mainly driven by consumer products and em-
bedded systems, such as cellular phones, the number
of produced circuits is steadily increasing. Addition-
ally, more functions are integrated on each chip us-
ing smaller physical structures exploiting Moore’s law.
This exponential decrease in feature size will probably
continue for at least a couple of decades.

These changes in production, larger demand and
shorter development cycles result in increasing design
and verification complexity which can not be handled
by traditional means only. Manual inspection is too
cumbersome and traditional testing can not provide
enough coverage within reasonable time. The indus-
try is facing a testing cost problem with testing often
contributing more than 70% to development costs.

Several solutions to this problem have been pro-
posed. The first step which has seen widespread ac-
ceptance in industry during the last decade is the adop-
tion of synthesis tools for automatic generation and op-
timization of gate-level net lists from high level RTL
descriptions. In combination with automatic place-and-
route tools, this approach allows to concentrate on RTL
designs with only a small penalty in space and time uti-
lization.

Recently this idea has been taken a step further by us-
ing even higher level building blocks, e.g. assembling
IP in the context of system on chip design. However
when moving up in the abstraction hierarchy the ap-
proach relies on the ability to prove functional correct-
ness of basic building blocks in an efficient way. Ad-
ditionally, the tools for refining abstract specifications,
such as compilers, can not be totally relied upon. The
verification of implementation versus specification be-
comes necessary and may itself be costly using tradi-
tional techniques.

The use of Formal Methods is another orthogonal
way to ensure functional correctness. They are all based
on rigorous mathematical reasoning and will often be
able to completely, i.e. with 100% coverage, verify cer-
tain aspects of functional behavior. However some for-
mal methods may also be used in bug-finding-mode in
addition or as alternative to traditional testing and sim-
ulation techniques. This tutorial concentrates on model
checking, a technique for verifying sequential or tem-
poral properties of state machines.

Other prominent formal methods are equivalence
checking, e.g. [1], which is a restricted version of
propositional property checking, and theorem proving
in general. Propositional property checking uses effi-
cient satisfiability procedures (SAT) [2] or compact rep-
resentations for boolean functions such as binary deci-
sion diagrams (BDDs) [3]. SAT can be applied to large
designs. Particularly, equivalence checking is mature
enough to handle industrial sized circuits.

The main reason for the success of propositional
property checking is its full automation. Commer-
cial equivalence checking is a push-button technology.
However, SAT works reasonably well for low-level
properties only, such as checking that two similar cir-
cuits have the same combinational behavior. On the
other side of the spectrum, theorem proving, e.g. [4],
is able to prove arbitrary complex properties on a much
higher abstraction level, but relies on human guidance,
to find a proof. Frequent interaction with the user and



the requirement for highly specialized proof engineers
with considerable mathematical training prevents the
acceptance of theorem proving in industry so far.

Model checking [5] lies between both extremes. Its
main objective is to check sequential behavior, such
as protocol conformance. But alone it is not powerful
enough to prove for instance generic structural proper-
ties. Model checking is fully automatic and automati-
cally produces counterexamples, i.e. a simulation trace,
if a property does not hold. On the other side model
checking does not scale up to the same circuit size as
propositional property checking. However recent years
have seen various combinations of model checking with
SAT and also theorem proving, in order to obtain the
best of all approaches: scalability and expressiveness.

Property Specification

An important feature of model checking are various
specification formalisms for sequential behavior. These
formalisms fall into two categories, automata and tem-
poral logic. From a practical point of view both can be
translated into each other.

Commercial model checkers often come with prede-
fined properties containing place holders, that can be
filled in by the user to match the design to be checked.
Such libraries of property templates make it possible to
quickly adapt a model checker in practice. However, to
master larger designs and more involved properties, it is
necessary that the user of a model checker has some un-
derstanding of temporal logic or automata based speci-
fication.

Automata

The idea of automata based specification [6, 7] is
similar to the usage ofmonitor state machines in con-
ventional testing. The monitor, respectively the au-
tomata, observes the inputs and outputs of the design
under test (DUT) and checks whether certain states can
be reached, for instance using theassertstatement in
Verilog. In this scenario model checking can replace
random simulation of the circuit, consisting of the mon-
itor and the DUT, by a complete search through the
whole state space. Monitors can be described in the
same language as the design and the user does not have
to learn a new language.

Simple properties that can be checked this way are
called safetyproperties, i.e. something bad does not
happen, and the monitor essentially is a bad state detec-
tor. Thus the intended property the user wants to check
can not often be described directly but has to be encoded

by its negation. Combining and reasoning about prop-
erties within this approach, for example when model-
ing the environment of a basic block, is difficult. Even
worse, it may easily lead to wrong assumptions or in-
consistent results.

In the context of model checking more expressive
specification mechanisms for monitors exist. In addi-
tion to assertions for checking safety properties the au-
tomata based approach also allows specifications of the
form that certain states have to occur infinitely often.
This may be necessary to produce a counterexample
trace for livenessproperties. A typical liveness prop-
erty is the absence of livelocks, i.e. it is not possible to
stay in a certain set of states forever. Another example
is the liveness property that arequestis always followed
by anacknowledge.

A counterexample trace for liveness properties will
actually end in a loop, thus representing an infinite ex-
ecution sequence. Again it is important to realize that
monitors for liveness properties represent the negation
of desired system properties. More involved liveness
properties can be hard to encode as automata.

Simulation is restricted to safety properties. Thus,
in principle, model checking is able to formulate and
check more powerful properties than simulation. Note
however, that liveness properties can often be bounded,
in the sense that the designer knows a bound or time
limit after which for instance the livelock has to be re-
solved. Bounded liveness can always be reformulated
as safety, and thus makes bounded liveness properties
accessible to simulation as well.

On higher abstraction levels, often liveness can not be
bounded. Therefore support for general liveness is nec-
essary. However, language support for unbounded live-
ness is missing in common hardware description lan-
guages. Thus the model checker has to work with pro-
gram annotations by the user, and the user essentially
has to learn a new language.

Temporal Logic

Another way to specify sequential behavior is to use
temporal logic[8]. Beside the common operators for
boolean expressions, a formula of temporal logic may
contain temporal operators to relate the truth of certain
subformulae with each other as time evolves. These
temporal operators can be classified as safety and live-
ness operators. The standard safety operator isglob-
ally, written G. The formulaGp holds along a trace,
if p holds in each state of the trace. The dual formula
is Fp which holds along a path ifeventuallya state is
reached wherep holds. Various temporal logic systems



also contain anext-timeoperator. A formulaXp holds
at the beginning of a trace ifp holds at the second state,
or more precisely along the same trace with its first state
chopped off.

The subformulap can be any signal assignment or it
may be defined recursively as a boolean expression of
temporal formulae. The request/acknowledge template
discussed above can be formulated as follows

G(req→ Fack)

where→ denotes implication. This possibility of ex-
plicit nesting of properties is the main difference to the
automata based approach.

Temporal properties describe properties in a positive
way without negation, though negation, if needed, is a
language construct as well. Reasoning about tempo-
ral formulae, and thus environment modeling, becomes
much easier. In the automata based approach the envi-
ronment has to be modeled by a circuit stub, restrict-
ing the behavior of the DUT. It is not clear how these
assumptions can be discharged correctly by checking
other parts of the system.

Recently there has also been much interest in test
automation tools. In essence, these tools use tempo-
ral logic formulae to specify test cases. The goal is
to speed up the process for writing test cases. From
the model checking perspective and the arguments dis-
cussed above in favor for temporal logic versus au-
tomata this view is well supported.

The oral presentation will also describe various vari-
ants of temporal logic and give an introduction to subtle
differences between linear time (LTL), and branching
time (CTL) temporal logic. We will also briefly dis-
cuss theµ-calculus, a fixpoint based logic for specifying
temporal properties.

Model Checking Algorithms

Model checking is supposed to be automatic. Thus
the user would not need to know how the algorithms
work behind the scenes. However, since the capacity of
model checkers is rather restricted compared to equiv-
alence checkers, the user still has to understand vari-
ous aspects of model checking algorithms to be able to
check realistic designs.

Explicit Model Checking

Currently there are three established techniques for
model checking, explicit, BDD and SAT based model
checking. Originally model checking [9] was devel-
opped with an explicit representation of states in mind,

i.e. states are stored as bit vectors. This type of model
checking is calledexplicit model checking. The state
space graph is explored with depth first search, look-
ing for violation of safety properties, or for loops
in strongly connected components, violating liveness
properties. The algorithms are linear in the size of the
model.

In practice explicit model checking is the most effi-
cient model checking technique if the number of reach-
able states is small, e.g. below several million states.
Additionally, several explicit specific techniques exist
to prune the search considerably. For instance partial
order reduction, as implemented in the SPIN model
checker [6], can lead to large reductions in time and
space requirements, especially for asynchronous cir-
cuits or software.

However, since standard algorithms for explicit
model checking require all reachable states to be stored
in a large hash table, systems with 1020 reachable states
or more are out of reach for explicit model checkers.
Another problem arises from a large number of primary
inputs, which result in many transitions from each sin-
gle state. This leads to a large branching factor in depth
first search, and the explicit model checker will run out
of time.

Symbolic Model Checking with BDDs

Symbolic model checking [10] with binary decision
diagrams (BDDs) [3] became the dominant technique
for model checking synchronous circuits. It can be ap-
plied to circuits with hundreds of state bits, and thus po-
tentially many more reachable states than with explicit
model checking.

Binary decision diagrams are a compact represen-
tation for boolean functions. In the context of model
checking they are used to represent not only next state
functions of the circuit, but also for the represention
of set of states via their characteristic function. For
many practical circuits an exponential reduction can be
achieved. This reduction allows model checking to be
applied to systems with several hundred state bits and
more than 1020 reachable states.

The main problem with BDDs is to come up with
a good variable order for a particular circuit, since
the BDD algorithms require a linear order between all
boolean variables of the circuit. There are techniques
for dynamic reordering variables. However, dynamic
reordering is very costly and sometimes a good order
does not even exist. As consequence for designs of typ-
ical block size, i.e. more than 1000 state bits, symbolic
model checking may need more memory than available.



Image computation is used in breadth first search of
symbolic model checking to calculate the set of states
reachable from a given set of states in one step. Beside
dynamic variable reordering, image computation is the
most expensive operation in BDD based model check-
ing. There has been considerable efforts to make this
operation as fast as possible. But often enough, even
for moderate sized circuits, a single image computation
step may take too much time.

Symbolic Model Checking with SAT

Procedures for checking propositional formulae
(SAT) can handle millions of variables and do not re-
quire a global linear variable order. Efficient splitting
heuristics exists. In combination with conflict diagnosis
and relevance learning, good partial orders of variables
can be found easily for many practical problems.

Based on the efficiency of SAT, recently the tech-
nique of bounded model checking (BMC) [11] replaced
BDDs with SAT in symbolic model checking. Much
larger designs can be handled by bounded model check-
ing. The drawback is, that in practice one has to give
up completeness. For most practical problems, BMC is
not complete, and can only be used to find bugs. It of-
ten fails to prove for example safety properties to hold
in all reachable states.

If the size of the system is too big for explicit model
checking, industrial experience suggests to apply BMC
as the first model checking engine, looking for bugs.
After BMC does not find any more bugs in a reasonable
amount of time, BDD based model checking may be the
next technique to try.

Conclusion

This tutorial contains an overview of model check-
ing techniques. We started with a comparison of model
checking with other formal methods, and motivated
why formal methods for digital designs are important.
Then we explained different specification formalism for
model checking. Finally we discussed various model
checking algorithms. More details can be found in [5]
or in recent CAV and DAC proceedings.

Model checking has the potential to reduce testing
and thus overall development time considerably. Cur-
rently the capacity of complete model checking does
not match the size of basic blocks. However, bounded
model checking can handle realistic cuircit sizes, if
completeness is not required.

Future directions are tighter integration of model
checking with testing and better adaption of the design

process to formal methods in general. Faster and more
robust model checking algorithms will be the most con-
vincing argument for its widespread adoption in indus-
try.

References

[1] A. K ühlmann and F. Krohm, “Equivalence check-
ing using cuts and heaps,” inDAC, 1997.

[2] J. Silva,Search Algorithms for Satisfiability Prob-
lems in Combinational Switching Circuits. PhD
Thesis, University of Michigan, 1995.

[3] R. E. Bryant, “Graph-based algorithms for
boolean function manipulation,”IEEE Transac-
tions on Computers, vol. 35, no. 8, pp. 677–691,
1986.

[4] M. Kaufmann, P. Manolios, and J. Moore,
Computer-Aided Reasoning: An Approach.
Kluwer, 2000.

[5] E. Clarke, O. Grumberg, and D. Peled,Model
Checking. MIT Press, 1999.

[6] G. Holzmann,The Design and Validation of Com-
puter Protocols. Prentice Hall, 1997.

[7] R. Kurshan,Computer-Aided Verification of Co-
ordinating Processes: the automata theoretic ap-
proach. Princeton University Press, 1994.

[8] A. Emerson, “Temporal and modal logic,” in
Handbook Theoretical Computer Science: Vol-
ume B, Formal Methods and Semantics, North-
Holland, 1995.

[9] E. Clarke and E. A. Emerson, “Design and synthe-
sis of synchronization skeletons using branching
time temporal logic,” inProceedings of the IBM
Workshop on Logics of Programs, 1981.

[10] K. L. McMillan, Symbolic Model Checking: An
Approach to the State Explosion Problem. Kluwer
Academic Publishers, 1993.

[11] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Sym-
bolic model checking without BDDs,” inTACAS,
1999.


