
Lingeling and Friends
at the SAT Competition 2011

Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

Abstract. This note serves as system description for our solvers sub-
mitted to the various tracks of the SAT Competition 2011 affiliated to
the SAT conference 2011.

Overview

To the main track of the SAT Competition 2011 we submitted the new version
587 of our SAT solver Lingeling and its parallel extension Plingeling [1]. To the
minimally unsatisfiable subset track we submitted front-ends of PicoSAT version
941, one for each of the sub-tracks.

The plain MUS front-end PicoMUS uses multiple rounds of randomized
clausal core extraction as preprocessing step before switching to selector variable
based core minimization.

The group-oriented MUS extractor PicoGCNF only uses the latter technique,
which is actually available as new API function in the PicoSAT library and com-
putes a minimal subset of failed assumptions for assumption based incrememen-
tal SAT solving.

In order to use the clausal core feature, PicoSAT is compiled with proof
tracing support, which is expected to slow down plain solver speed. Thus, for
comparison, we submitted this version of PicoSAT also to the main track of the
competition.

To the MiniSAT hack track we submitted a version of MiniSAT 2.2.0 which
uses our agility metric [3] to control when to disable backtracking during restarts
with agility limit 26%.

1 Lingeling 587

The version of Lingeling submitted to the competition differs from the version
submitted to the SAT Race 2010 described in [1] as follows. Similar to Cryp-
toMiniSAT [7] our new garbage collection algorithm for reducing the number
of learned clauses determines at run-time whether classic activity based heuris-
tics or glues [2] are used. When a reduction operation is scheduled the average
and standard deviation of the glue values of the still existing learned redun-
dant clauses are computed. From this information the solvers tries to determine

Technical Report 11/1, March 2011, FMV Reports Series
Institute for Formal Models and Verification, Johannes Kepler University

Altenbergerstr. 69, 4040 Linz, Austria

This paper may be used under the Creative Commons Attribution 4.0 licence.

https://doi.org/10.35011/fmvtr.2011-1



whether glues are useful for separating useful from useless learned clauses to be
discarded. If the standard deviation is too small or too large we use activities.
Since we only use four bits to represent glue values, a large average also shows
that glues are not useful. So in some sense if the distribution does not fit nicely
into our window of 15 glue values, we switch to activities (for this particular re-
duction). The actual glue used for these computations is actually scaled down by
taking its square root. With less success, we also experimented with logarithmic
scaling.

Our recent results on unhiding hidden tautologies and hidden literal re-
moval [5] using the binary implication graph are incorporated as an additional
unhiding inprocessing phase. Beside the unhiding preprocessor resp. inproces-
sor, since it is rescheduled in regular intervals and not just executed initially, we
have also added a double lookahead procedure lifting for failed literal extraction
and lifting of equivalences. Another recent technique [6, 4] for cheap reuse of the
assignment stack during restarts has been integrated as well. This allows more
frequent restarts, and we have reduced the base interval for Luby restarts to 10.

Finally, this version of Lingeling has partial support for incremental SAT
solving and allows logging of API calls to a file, even though these two new
features are not used in this competition.

2 Plingeling 587

In addition to sharing derived unit clauses [1] this new version of Plingeling also
shares equivalences between different worker threads. The boss thread main-
tains a global table, which implements a union find data structure. Each worker
thread imports and exports to this global table whenever a local union find data
structure is completed and is about to be used for simplifying the thread local
clause data base. This occurs in the already previously implemented decompose
inprocessing phase, which uses strongly connected components of the binary
implication graph, and also after lifting equivalences in the new lifting double
lookahead procedure.

References

1. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV Report
Series Technical Report 10/1, Johannes Kepler University, Linz, Austria, 2010.

2. G. Audemard and L. Simon. Predicting learnt clauses quality in modern SAT
solvers. In C. Boutilier, editor, IJCAI, pages 399–404, 2009.

3. A. Biere. Adaptive restart strategies for conflict driven sat solvers. In H. K. Büning
and X. Zhao, editors, SAT, volume 4996 of Lecture Notes in Computer Science,
pages 28–33. Springer, 2008.

4. M. Heule. About reusing the trail. Personal Communication.
5. M. Heule, M. Järvisalo, and A. Biere. Efficient CNF simplification based on binary

implication graphs. Submitted.
6. A. Ramos, P. Van Der Tak, and M. Heule. Between restarts and backjumps. Sub-

mitted.
7. M. Soos. Cryptominisat 2.9.0.

2


