
Quantifier-Free Bit-Vector Formulas with Binary
Encoding: Benchmark Description

Gergely Kovásznai, Andreas Fröhlich, Armin Biere
Institute for Formal Models and Verification

Johannes Kepler University, Linz, Austria

Abstract—This document describes several sets of benchmarks
corresponding to quantifier-free bit-vector formulas. A genera-
tion script first creates all benchmarks in SMT2 format and then
uses Boolector to generate CNF instances in DIMACS format by
bit-blasting.

I. INTRODUCTION

Bit-precise reasoning over fixed-size bit-vector logics
(QF BV) is important for many practical applications of
Satisfability Modulo Theories (SMT), particularly for hard-
ware and software verifcation. In [1], we argued that a
logarithmic (w.l.o.g. binary) encoding, as used e.g. in the
SMT-LIB format [2], leads to NEXPTIME-completeness of
the underlying decision problem. Bit-blasting, as used in
most current SMT solvers, therefore produces exponentially
larger CNF formulas on certain QF BV formulas. We provide
generation scripts for several sets of QF BV benchmarks in
SMT-LIB format where this is the case and use bit-blasting
to generate SAT benchmarks out of the original SMT2 spec-
ifications. All scripts and generated benchmarks are available
at http://fmv.jku.at/smtbench.

II. BENCHMARKS

Our benchmark sets can be divided into two main cat-
egories: Expressing common bit-vector operations by other
operations and general properties that can be expressed by
a fragment of QF BV with a restricted set of operations.

A. Translating Bit-Vector Operations

The first category contains 13 different benchmark sets
and was used for verifying correctness of various translations
between bit-vector operators. Having proved that bitwise op-
erations, equality, and slicing suffice to derive NEXPTIME-
hardness theoretically, we also wanted to give concrete ex-
amples of how to replace common bit-vector operations by
those base operations. To check correctness, we encoded all
translations into SMT2 and verified that no counter-example
exists. We did this for 13 different operations. All benchmarks
are unsatisfiable:

addition (bvadd), subtraction (bvsub), multiplication
(bvmul), unsigned division (bvudiv), signed division
(bvsdiv), unsigned remainder (bvurem), signed remain-
der (bvsrem), signed modulo (bvsmod), logical shift
right (bvlshr), arithmetic shift right (bvashr), shift left
(bvshl), unsigned less than (bvult), and signed less than
(bvslt).

To give one specific example, addition can be expressed by
base operations as follows:
t1

[n] + t2
[n] is replaced by ts1

[n] ⊕ ts2
[n] ⊕ cin

[n] and
additional constraints

1) ts1[n] = t1
[n]

2) ts2[n] = t2
[n]

3) cout[n] = (ts1
[n] & ts2

[n]) | (ts1
[n] & cin

[n]) |
(ts2

[n] & cin
[n])

4) cin[n] = cout
[n] � 1[n]

are added. Now again, cout[n] � 1[n] can be replaced by ts3[n]

and additional constraints
1) ts3[n] [n : 1] = cout

[n] [n− 1 : 0]
2) ts3[n] [0 : 0] = 0[1]

are added.
While this is well-known for the example of addition,

expressing multiplication or other operations by using only
those base operations is much more complicated and cannot
be detailed in the scope of this description. On the other hand,
this already explains the benefit of verifying correctness by
using our benchmarks.

B. Bit-Vector Properties in PSPACE

The second category consists of QF BV benchmark sets
with a reduced set of operations. In [3], we showed that
QF BV becomes PSPACE-complete under certain restrictions
on the set of allowed operations. While bit-blasting still pro-
duces exponentially larger formulas, the original benchmarks
could be solved more efficiently, e.g. by using model checkers.
It will be interesting to see whether any of the SAT solvers
can also profit from this fact.

The 4 benchmark sets contained in this category are the
following ones:
ndist.a: We verify that, for two bit-vector variables x[n],

y[n], it holds that x[n] < y[n] implies (x[n] +1[n]) ≤ y[n]. The
instances are unsatisfiable.
ndist.b: We give a counter-example (due to overflow) to

the claim that, for two bit-vector variables x[n], y[n], it holds
that (x[n]+1[n]) ≤ y[n] implies x[n] < y[n]. The instances are
satisfiable.
power2sum: We verify that, for two bit-vector variables

x[n] = 2j , y[n] = 2k, with j 6= k, x[n] + y[n] cannot be a
power of 2. The instances are unsatisfiable.
shift1add: We verify that for an arbitrary bit-vector x[n],

there exists no bit-vector y[n] 6= x[n] with (x[n] + y[n]) =
(x[n] � 1[n]). The instances are unsatisfiable.

Appears in A. Balint, A. Belov, M.J.H. Heule, and M. Järvisalo (eds.), Proceedings of SAT Competition 2013: Solver and Benchmark Descriptions,
volume B-2013-1 of Department of Computer Science Series of Publications B, University of Helsinki 2013. ISBN 978-952-10-8991-6.

107



III. SMT2 AND CNF GENERATION

For each of the 17 benchmark sets, an individual generation
script is provided. The scripts generate several instances of
the given problem set, starting from a minimal bit-width up
to a maximal bit-width, incrementing the bit-width by a given
step size. Given those parameters as input, they output several
SMT2 formulas with bit-vector variables of corresponding bit-
widths. Additionally, a generate.sh script is included. This
script automatically calls all individual generation scripts with
appropriate parameters (i.e. bit-widths that create challenging
but not too-hard instances) and afterwards calls Boolector [4]
with argument -de to bit-blast the SMT2 instances and create
CNF formulas in DIMACS format, therefore directly providing
the input benchmarks for the SAT solvers. Additional CNF
instances corresponding to different bit-widths can be created
manually by using the individual scripts with custom param-
eters and then translating the output with Boolector.

IV. PRACTICAL CONSIDERATIONS

All benchmarks were originally created to evaluate the
performance of SMT solvers. While most benchmarks were
challenging for all SMT solvers, some solvers turned out to
perform particularly well on specific instances. So far, it is not
clear whether this difference in performance is due to SMT
rewriting rules, differences in bit-blasting, or because of the
underlying SAT solvers. It therefore will be interesting to see
how various SAT solvers perform on the bit-blasted version
of our benchmarks.

ACKNOWLEDGMENT

This work is supported by FWF, NFN Grant S11408-N23
(RiSE).

REFERENCES

[1] G. Kovásznai, A. Fröhlich, and A. Biere, “On the complexity of fixed-
size bit-vector logics with binary encoded bit-width,” in Proc. SMT’12,
2012.

[2] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB standard: Version
2.0,” in Proc. SMT’10, 2010.

[3] A. Fröhlich, G. Kovásznai, and A. Biere, “More on the complexity
of quantifier-free fixed-size bit-vector logics with binary encoding,” in
Proc. CSR’13, 2013.

[4] R. Brummayer and A. Biere, “Boolector: An efficient smt solver for bit-
vectors and arrays,” in Proc. TACAS’09, 2009.

108


