
Deep Bound Hardware Model Checking Instances,
Quadratic Propagations Benchmarks and

Reencoded Factorization Problems
Submitted to the SAT Competition 2017

Armin Biere
Institute for Formal Models and Verification

Johannes Kepler University Linz

Abstract—In this benchmark description we describe our three
set of benchmarks submitted to the SAT Competition 2016. The
first contains bounded model checking problems from the deep
bound track of the hardware model checking competition. The
second crafted set of benchmarks has the sole purpose to show
that the standard watch list implementation has a quadratic
corner case. As third set of benchmarks we submitted factoring
problems of products of medium sized primes, which seem to be
hard for standard SAT solvers, but become trivial if the solution
is reencoded back into the CNF by flipping literals appropriately.

DEEP BOUND HARDWARE MODEL CHECKING INSTANCES

The Hardware Model Checking Competition (HWMCC) [1]
has a deep bound track, in which only safety model checking
benchmarks are considered, and which remained unsolved in
the main track. Model checkers participating in this track are
supposed to print bounds k, as soon they were able to show
that a bad state violating the given safety property can not be
reached in k steps from an initial state. This track was inspired
by the need to run bounded model checking for big industrial
models which are too hard to be solved completely. In this
setting a model checker is superior to another one if it goes
deeper, i.e., it reaches a higher bound k.

For this benchmark set HWMCC15DEEP we used the 135
model checking problems of the deep bound track of the
HWMCC’15, see http://fmv.jku.at/hwmcc15, which consists of
123 industrial and 12 academic instances (the latter all from
the BEEM family). The deep bound track is dominated by plain
bounded model checkers, which after some optimizations,
unroll the circuit, and then use a SAT solver directly. In
this track our own BLIMC model checker, which is based
on Lingeling [2] and runs hors concurs in the competition,
performs best. It uses SAT preprocessing to simplify the
transition relation once before copying it and running an
incremental SAT check for each new bound following [3].

In order to generate non-incremental problems instead,
we took the deepest bound k reached by BLIMC on these
benchmarks and unrolled the model up to the bounds k − 2,
k − 1, k, k + 1, k + 2 and all the powers of two 2i with

Supported by FWF, NFN Grant S11408-N23 (RiSE).

2i < k − 2, as well the bound 0 which checks whether an
initial state is bad.

The unrolling process is based on functional substitution [4]
as implemented in the AIGUNROLL tool, which comes with
the AIGER distribution (see http://fmv.jku.at/aiger). However,
if the bound reached by BLIMC in the given time limit
of one hour is 100 or more, then the benchmark was not
included. This removed 24 models. One of them was as BEEM
model. The remaining 109 models are further split in two sets.
The first set contains 55 “small” models, where the original
sequential model (before unrolling) has less than 100 000 AND
gates. The rest makes up the set of 54 “big” models.

The resulting AIGs after unrolling the models are translated
into CNF with AIGTOCNF, which yields 433 small CNFs and
330 big CNFs, after removing trivial ones, where the unrolled
AIG is constant false. There are 134 non-interesting bench-
marks in the small set and 67 non-interesting benchmarks
in the big set which can all be solved by MINISAT [5] in
less than a minute. There are additional 97 small and 82 big
benchmarks which are solved by all five test solvers in 5000
seconds (LINGELING, GLUCOSE, MINISAT, MAPLECOMSP-
SLRB from the SAT Competition 2016 and CADICAL). At
the end we obtain 202 interesting small benchmarks and 181
interesting big benchmarks. Note, that we kept 33 small and
21 big CNFs, which were not solved by any test solvers.

CRAFTED QUADRATIC PROPAGATIONS BENCHMARKS

The standard implementation of watch lists in MINISAT
and its descendants is suboptimal and in some situation might
lead to a quadratic overhead. This observation occurs in an
JAIR article by Ian Gent [6] from 2013. For some benchmarks
from the SAT Competition 2016, we have seen severe slow-
down in propagation speed for an earlier version of our
new SAT solver CADICAL, which were due to exactly the
observation made by Ian Gent. The solution we implemented,
which was suggested in this article, is to save the position
of the replaced literal and start searching from that position
instead of from the beginning of the clause, the next time a
watch in that clause has to be replaced.

http://fmv.jku.at/hwmcc15
http://fmv.jku.at/aiger


The article does not really have convincing experimental
evidence that this scheme is beneficial in practice and also
failed to provide benchmarks, where this quadratic behavior
can be observed. The purpose of our BCPSQR benchmark set is
to provide exactly such parameterized set of crafted instances,
where propagation in MINISAT is quadratic. The basic idea is
to have a very long clause, say x1∨x2∨ . . .∨x1000 and force
the solver to assign and thus watch all the literals in turn, e.g.,
assign x1 = 0, x2 = 0, . . ., x1000 = 0, in this order.

However, since MINISAT sorts clauses to remove duplicate
literals in increasing variable index order, and then, due to
how the binary heap for decision ordering works, decides
on largest variable indices first, actually except for the first
decision which is always the first variable, this is hard to
achieve, e.g., the default decision assignments in MINISAT
would be x1 = 0, x1000 = 0, x999 = 0, . . ., x2 = 0 but
the clause x1 ∨ x1000 ∨ x999 . . .∨ x2, which would trigger the
intended bad behavior, becomes x1 ∨ x2 ∨ . . . ∨ x1000 after
sorting during parsing.

This can be addressed by adding the following binary
clauses (x̄2 ∨ x1999), (x̄3 ∨ x1998), . . ., (x̄1000 ∨ x1001) and
would result in quadratic propagation.

However, the whole input also has to go through variable
elimination untouched. To achieve that, the long clause of n
variables is replaced by m copies, adding one new variable
(positively too) each time. Then appropriate binary clauses
are added which turn these new variables into the output of
NAND gates over the old variables.

Further, those new variables are restricted by a size m parity
constraint, encoded with 2m−1 clauses, which has the all zero
assignment as solution. For the submitted benchmarks we use
m = 4, 5, 6, which all make variable elimination ineffective.

Finally, a binary clauses (ā ∨ c) as above is split into

(a ∨ b1) (b1 ∨ c)
(ā ∨ b̄1 ∨ b̄2 ∨ b̄3) (a ∨ b2) (b2 ∨ c) (b̄1 ∨ b̄2 ∨ b̄3 ∨ c̄)

(a ∨ b2) (b3 ∨ c)

with new variables b1, b2, b3 ordered after a and before c.
Adding less than 3 variables per implication would allow
variable elimination to eliminate all additional variables.

These problems are satisfied by MINISAT without produc-
ing any conflict, but require substantial propagation overhead
starting with n > 100 000.

REENCODED FACTORIZATION PROBLEMS

In MINISAT the heuristic for assigning a decision variable
the first time before it was ever assigned during propagation is
to assign it to false. Indeed, it seems that solving many real-
world instances benefits from this choice of phase decision
heuristic, even though there are cases where the opposite is
much better, e.g., for miters between correct and incorrect
large multipliers [7]. The organizers of the SAT Competition
2014 selected certain benchmarks, which are very hard unless
the simple phase heuristic of MINISAT is used, as for instance
discussed in [8]. In essence there is the danger of using
artificially trivial benchmarks.

In order to stress this point we generated CNFs which
model factoring the product of primes. For each benchmark we
picked random primes with 9 to 11 decimal digits, computed
their product and generated an SMT benchmark in bit-vector
logic, which forces the output of a multiplier to the concrete
product. One has to make sure that the bit-length of the output
is big enough. The inputs are zero-extended, different from
one and ordered. Then the SMT benchmark is bit-blasted by
BOOLECTOR [9] into an AIG and translated to CNF with
AIGTOCNF.

This procedure generates medium to hard satisfiable in-
stances for today’s SAT solver, and, of course, can be made
arbitrarily hard, by increasing the number of digits. However,
since we know the primes, we can easily construct an assign-
ment to the input bits which then satisfies the CNF after unit-
propagation. With this knowledge and using the assumption
mode of PICOSAT [10] we generated a complete satisfying
assignment for each generated CNF. This assignment is then
used to flip literals in the CNF as follows. If a variable is
assigned to true the variable is flipped (replaced by its nega-
tion). The resulting CNF is trivially satisfiable by assigning all
variables to false and thus trivial to solve by say MINISAT.

Beside generating the original hard instance, and then the
all zero instance, we repeated the procedure, but flip variables
which are assigned to false. Now the instance becomes trivially
satisfiable by assigning all variables to true. It turns out these
instances are also easy to solve for solvers which detect this
situation, e.g., LINGELING, or assign to true first, as phase
decision heuristic, but they seem to be as hard as the original
instance for solvers which assign to false first, e.g., MINISAT.

REFERENCES

[1] G. Cabodi, C. Loiacono, M. Palena, P. Pasini, D. Patti, S. Quer, D. Ven-
draminetto, A. Biere, and K. Heljanko, “Hardware model checking com-
petition 2014: An analysis and comparison of solvers and benchmarks,”
Journal on Satisfiability, Boolean Modeling and Computation, vol. 9,
pp. 135–172, 2014 (published 2016).

[2] A. Biere, “Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering
the SAT Competition 2016,” in Proc. of SAT Competition 2016 – Solver
and Benchmark Descriptions, ser. Department of Computer Science
Series of Publications B, T. Balyo, M. Heule, and M. Järvisalo, Eds.,
vol. B-2016-1. University of Helsinki, 2016, pp. 44–45.

[3] S. Kupferschmid, M. D. T. Lewis, T. Schubert, and B. Becker, “Incre-
mental preprocessing methods for use in BMC,” Formal Methods in
System Design, vol. 39, no. 2, pp. 185–204, 2011.

[4] T. Jussila and A. Biere, “Compressing BMC encodings with QBF,”
Electr. Notes Theor. Comput. Sci., vol. 174, no. 3, pp. 45–56, 2007.

[5] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT, ser.
Lecture Notes in Computer Science, vol. 2919. Springer, 2003, pp.
502–518.

[6] I. P. Gent, “Optimal implementation of watched literals and more general
techniques,” J. Artif. Intell. Res. (JAIR), vol. 48, pp. 231–251, 2013.

[7] A. Biere, “Collection of Combinational Arithmetic Miters Submitted to
the SAT Competition 2016,” in Proc. of SAT Competition 2016 – Solver
and Benchmark Descriptions, ser. Department of Computer Science
Series of Publications B, T. Balyo, M. Heule, and M. Järvisalo, Eds.,
vol. B-2016-1. University of Helsinki, 2016, pp. 65–66.

[8] A. Biere and A. Fröhlich, “Evaluating CDCL variable scoring schemes,”
in SAT, ser. Lecture Notes in Computer Science, vol. 9340. Springer,
2015, pp. 405–422.

[9] A. Niemetz, M. Preiner, and A. Biere, “Boolector 2.0 system descrip-
tion,” Journal on Satisfiability, Boolean Modeling and Computation,
vol. 9, pp. 53–58, 2014 (published 2015).

[10] A. Biere, “Picosat essentials,” JSAT, vol. 4, no. 2-4, pp. 75–97, 2008.


