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Chapter 18

Bounded Model Checking

Armin Biere

Besides Equivalence Checking [KK97, KPKGO02] the most important indus-
trial application of SAT is currently Bounded Model Checking (BMC) [BCCZ99].
Both techniques are used for formal hardware verification in the context of elec-
tronic design automation (EDA), but have successfully been applied to many
other domains as well. In this chapter, we focus on BMC.

In practice, BMC is mainly used for falsification resp. testing, which is con-
cerned with violations of temporal properties. However, the original paper on
BMC [BCCZ99] already discussed extensions that can prove properties. A con-
siderable part of this chapter discusses these complete extensions, which are often
called “unbounded” model checking techniques, even though they are build upon
the same principles as plain BMC.

Two further related applications, in which BMC becomes more and more
important, are automatic test case generation for closing coverage holes, and
disproving redundancy in designs. Most of the techniques discussed in this chapter
transfer to this more general setting as well, even though our focus is on property
verification resp. falsification.

The basic idea of BMC is to represent a counterexample-trace of bounded
length symbolically and check the resulting propositional formula with a SAT
solver. If the formula is satisfiable and thus the path feasible, a satisfying assign-
ment returned by the SAT solver can be translated into a concrete counterexample
trace that shows that the property is violated. Otherwise, the bound is increased
and the process repeated. Complete extensions to BMC allow to stop this process
at one point, with the conclusion that the property cannot be violated, hopefully
before the available resources are exhausted.

18.1. Model Checking

The origins of model checking go back to the seminal papers [CE82] and [QS82].
Clarke, Emerson and Sifakis won the 2007 Turing Award for their pioneering
work on model checking. A workshop affiliated to the Federated Conference on
Logic in Computer Science (FLOC’06) celebrated the 25th anniversary of model
checking. The proceedings [VGO8] of this workshop and the model checking book
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[CGP99] are good starting points to learn about model checking. A more recent
survey [PBGO05] adds a perspective on SAT-based model checking.

In this chapter, we focus on SAT-based symbolic model checking [McM93],
which originally relied on binary decision diagrams (BDDs) [Bry86] to symbol-
ically represent systems. Operations on system states can then be mapped to
BDD operations. In practice, BDDs can handle circuits with hundreds of latches,
but often blow up in space.

BMC [BCCZ99] was an attempt to replace BDDs with SAT in symbolic model
checking. However, SAT lacks the possibility to eliminate variables, which is a
key operation in BDD-based model checking. The solution in BMC is to focus
on falsification and, at least in a first approximation, drop completeness. This
paradigm shift was hard to convey originally, but was accepted at the end, since
SAT-based model checking, at least for falsification, scales much better [Kur08].

Another important direction in model checking is explicit state model check-
ing. The SPIN model checker [Hol04] is the most prominent explicit state model
checker and is mainly used for checking protocols. It draws its main power from
partial order reduction techniques such as [Pel94]. Related techniques exist in
BMC as well, see for instance [Hel01, JHNO3]. However, for the rest of this chap-
ter we focus on symbolic techniques for synchronous systems, for which partial
order techniques do not seem to apply.

The first decade' of research in model checking witnessed a heated debate
on which specification formalism is more appropriate: linear time logic versus
branching time logic. Commonly only computation tree logic (CTL) [CE82], a
branching time logic, and linear time logic (LTL) [Pnu77] are used. Originally,
LTL was called propositional temporal logic (PTL) as a special case of “full”
first-order temporal logic. However, nowadays LTL without further qualification
is solely used for propositional linear temporal logic. Also note that PTL is also an
acronym for past time (propositional) linear temporal, see for instance [BHJT06].

LTL is arguably easier to understand and use, but at least in theory, LTL
is harder [SC85] to check than CTL. If the system is represented symbolically,
there is actually no difference as both problems are PSPACE complete [SC85,
Sav70, PBGO5]. Specifications in practice are typically in the intersection [Mai00]
between LTL and CTL. If we restrict ourself to properties in the intersection, the
problem of choosing between LTL and CTL boils down to which model checking
algorithm to use. In this respect, BDD-based model checking has a slight bias
towards CTL, whereas SAT-based model checking has a bias towards LTL. Thus,
we mainly focus on LTL in the rest of this chapter. Further details on temporal
logic and its history can be found in [Eme90, Var08].

18.1.1. LTL

As first promoted by Pnueli [Pnu77], temporal logic is an adequate specification
formalism for concurrent resp. reactive systems. The syntax of the linear temporal
logic LTL contains propositional boolean variables V', temporal operators and the
usual propositional operators, including negation — and conjunction A. Typical

LA similar discussion took place in the recent process of standardizing temporal logic in the
form of System Verilog Assertions (SVA) and the Property Specification Logic (PSL).



temporal operators are the “next time” operator X, the “finally” operator F, and
the “globally” operator G.

Examples of temporal formulas are as follows: a — Xb means the property b
has to hold in the next time instance, unless a does not hold now. With X alone
only properties about a finite future around the initial state can be specified.
The other temporal operators allow to extend this finite view, and specify infinite
behavior. The “globally” operator G allows to specify safety properties in form
of invariants or assertions that need to hold in all reachable states. For instance,
G—(a A b) specifies mutual exclusion of a and b. The only liveness operator we
consider, the “finally” operator, describes necessary behavior, e.g. G(a — Fb),
which requires each a to to be followed by b. More verbosely, the following
invariant holds: if a is true then at the same time or later b has to hold, i.e. b
cannot be postponed forever, after a has been assured. This is an invariant with
a (potentially) liveness condition attached.

The interpretation of propositional variables may change over time but is
uniquely determined by the current state of the model. This correspondence is
captured via a labelling function L: S — IP(V), where S is the set of states. A
propositional variable p is true in a system state s iff p € L(s). Beside the set
of states S, a model has a set I C S of initial states, and a transition relation
T C S xS. Such a model is also called Kripke structure. Often only models
isomorphic to the set of interpretations of the boolean variables V' are considered:
then S = IP(V) and L(V') = V' for all “states” s = V' C V. A typical example
are models of synchronous circuits, where V' is the set of latches and input signals,
and optionally includes output and internal signals as well. In the following, we
fix one Kripke structure K = (5,1, T, L) over the variables V.

The transition relation T is assumed to be total and the set I of initial states
to be nonempty. As in the previous example, the transition relation is in general
represented symbolically, e.g. as a circuit or a formula. In the following we simply
write T'(s, s’) for this formula, with the interpretation that T'(s, s") holds iff there
is a transition from s to s’, also written as s — s’. Note that s is simply a vector
of all variables V in the current state and s’ a vector of their primed copies in
the successor state. We use a similar interpretation for I(s).

The semantics of LTL are defined along paths of the model. A path 7 is
an infinite sequence of states m = (so, $1, 82,...), with s; = s;41. A path 7 is
initialized if its first state m(0) = so is an initial state. In the following, we also
use the same notation to refer to single states of a path, e.g. w(i) = s; with
i € N =1{0,1,2,...}. A suffix of a path is defined as * = (s;,8;41,...). We
now give a simplified? version of the standard (unbounded) semantics, defined
recursively over the formula structure. An LTL formula f holds along a path m,
written 7 | f, iff

rEp it peL(r(0)  wk-p il pgL(r(0)
mEgVh iff mEgormlE=h TEgAh iff mlEgandwE=hR
tEFg iff FJjeNinifg TEGg iff VjeN:ini=g
TEXg iff wlEyg

2In particular we do not treat the “until” operator to make the following encoding easier to
explain. The full semantics and its encoding can be found in [BHJ06].
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Figure 18.1. A (k,!l)-lasso with k =5, = 2.

Here we assume that the formula is in negation normal form (NNF), i.e. negations
are pushed down to the variables, with the help of the following axioms of LTL:

=(g A h) = (=g)V (=h) -Fg=G—g -Gg=F—g -Xg=X—g

Finally, a formula f holds in a Kripke structure K, written K | f, iff 7 = f
for all initialized paths mw of K. The model checking problem is to determine
whether K = f holds. Related to the model checking problem is the question
of the existence of a witness: a formula f has a witness in K iff there is an
initialized path = with 7 | f. Clearly K | f iff —=f does not have a witness
in K. Therefore, we can reduce the model checking problem to the search for
witnesses using negation and translation into NNF.

18.2. Bounded Semantics

First observe that some infinite paths can be represented by a finite prefix with a
loop: an infinite path 7 is a (k,[)-lasso, iff 7(k+ 1+ j) = w(l + j), for all j € IN.
In this case, ™ can actually be represented as T = Tgtem - (Tloop)®, as shown in
Fig. 18.1.

As LTL enjoys a small model property [LP85], the search for witnesses can
be restricted to lassos, if K is finite. See [BCCZ99, CKOS05] for more details.
Let us rephrase the unbounded semantics by fixing the path 7, but working with
different suffixes 7 of .

Plep i pe Lin(i) o i pg L(n(i)
niEgVh iff tiEgornmiEh mEgAh iff 7iEgand 7w E=h
miEFg iff JGeNiat =g rEGg iff VieNiriti =g
T kEXg iff 7flleg

To obtain “bounded semantics” we only look at the first k£ + 1 states and let ¢

range over 0...k. If 7 is a (k,l)-lasso then 7*+1+J = 7!*J for all j € IN and we
get the following “bounded semantics” for lassos:

nt = Fg iff 3j € {min(il),.... k77 g
7t = Gg iff Vje€ {min(i,l),....k}: 7 =g

™ =Xy iff { mtﬁmzk

For Gg to hold on 7%, the body ¢ has to hold at the current position ¢ and of
course at all larger positions j, with ¢ < 7 < k. However, if the current position
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i is in the loop, then g also has to hold from the loop start up to i. Using the
minimum over the current position ¢ and the loop start [ covers both cases, no
matter whether i is in the loop or still in the stem of w. A similar argument
applies to Fg.

Now assume that 7 is not a (k,[)-lasso for any I. Then the suffix 7%*! of
m can have an arbitrary shape. Looking only at the first & + 1 states of 7 is
in general not enough to determine whether a formula holds along 7, e.g. the
“bounded semantics” can only be an approximation. Still the following but only
sufficient conditions hold:

nE=Fg if Fjeli...k:m g
mEXg if "t Egandi<k

These early termination criteria are useful for providing counterexamples for pure
safety formulas or to more general specifications with a safety part. For instance,
in order to falsify the safety property Gp, we need to find a witness for F—p. If
p does not hold in some initial state s in K, then k = 0 is sufficient. All paths
starting from s are actually witnesses, even if none of them is a (0, 0)-loop.

If 7 is not a (k,l)-lasso for any ! and we do not want to examine the suffix
beyond the bound k, then we cannot, conclude anything about 7* = Xg nor 7’ |=
Gy for any ¢ < k. This conservative approximation avoids reporting spurious
witnesses. In propositional encodings of potential witnesses, we have to replace
such LTL formulas by L, where L (T) represents the boolean constant false (true).

18.3. Propositional Encodings

The bounded approximations of LTL semantics discussed above consider only the
first k + 1 states of m. This is the key to obtain a propositional encoding of the
LTL witness problem into SAT.

Assume that we have a symbolic representation of K and let sq,...,s; be
vectors of copies of the state variables, i.e. for each time frame ¢, there is one copy
V; of V. Further let p; denote the copy of p in time frame i. All encodings of the
LTL witness problem include model constraints:

I(so) NT(s0,81) A ... AT (Sg—1, Sk)
Looping constraints for [ € {0,...,k} are added:
At = T(sk, 1)

We further assume that “at most” one A; holds. This cardinality constraint can be
encoded with a circuit linear in k, for instance via Tseitin transformation [Tse68]
of a BDD for this function.?

These constraints are always assumed. In particular, if the propositional
encoding is satisfiable, the satisfying assignment can be interpreted as a prefix of

3Note that cardinality constraints and particularly at most constraints as in this case are
symmetric functions, for which the variable order of the BDD does not matter: all reduced
ordered BDDs (ROBDDs) for a specific symmetric function are isomorphic.



an initialized path m of K. If \; is assigned to T then = is a (k,)-loop. What
remains to be encoded are the semantics of LTL, in order to make sure that «
extracted from a satisfying assignment is indeed a witness.

18.3.1. Original Encoding

The original encoding [BCCZ99] of the witness problem of LTL into SAT, is
a straightforward encoding of the reformulations resp. the bounded semantics.
It can be implemented as a recursive procedure that takes as parameters an
LTL formula f, a fixed bound k, the loop start [, and the position i. The last
two parameters range between 0 and k. Let us denote with ;[f]% the resulting
propositional formula obtained by encoding f for these parameters. First we
make sure, by enforcing the model and looping constraints, that the symbolically
represented path is a (k,!)-loop:

1l = pi 1pli = i
g v Rl = 1lgli, valhl;, g AR = 1lgli, A b,
i —\/k j i — Ak j
Fali = Vicminaiy 9l Gl = Njmwinas 119l
1[Xgli = 1[gll with j =i+ 1ifi < kelse j =1

Encoding witnesses without loops is similar. Let [f]} denote the result of encoding
a witness without assuming that it is a (k,)-loop for some I:

‘ , 4 i
Pl = Vil ledi=1 xap= {0 <

The other cases are identical to the looping case. The full encoding is as follows:

k
e = RV VA
=0

The second part handles (k,!)-loops, while the first part makes no assumption
whether such a loop exists. With an inductive argument [f]2 = ;[f]% follows.
Therefore, there is no need to guard the left part with \/f:O A, as it was originally
presented in [BCCZ99).

For fixed k, there are Q(|f| - k?) possible different parameters to ;[f]i. In
addition, an application of an equation introduces §2(k) connectives to combine
sub-results obtained from recursive calls. Thus, the overall complexity is at least
cubic in &k and linear in the size of the LTL formula |f|. For large k, this is not
acceptable.?

4If the result of the encoding is represented as a circuit, then subformulas in the original
encoding can be shared after restructuring the formula. In some cases this may even lead to a
linear circuit encoding. But for binary temporal operators, including the “until” operator, this
is in general not possible anymore.



18.3.2. Linear Encoding

The original encoding of [BCCZ99] presented in the last section is only efficient
for simple properties such as Fp or Gp, where p € V. More involved specifications
with deeply nested temporal operators produce quite some overhead. This is even
more problematic for deeply nested binary temporal operators, such as the “until”
operator U, which we do not discuss in this chapter.

In symbolic model checking with BDDs, LTL is usually handled by a variant
of the tableau construction of [LP85]. The tableau of [LP85] can be interpreted as
a generalized Biichi automaton. It is conjuncted with K and a witness becomes
a fair path on which all the fairness constraints occur infinitely often. In the
context of Biichi automata, a fairness constraint is a set of states, which has to
be “hit” by a path infinitely often, in order to be a fair path.

The LTL formula GFp, i.e. infinitely often p, is a generic single fairness
constraint with the following optimized encoding;:

k k
[GFpli = \/ (Az A \/:m)

The formula is quadratic in k. However, it is possible to share common sub-
formulas between different loop starts [. The resulting circuit is linear in k.
This linear encoding of fairness constraints can be extended to multiple fairness
constraints easily. Our first implementation of a bounded model checker used this
technique in order to handle hundreds of fairness constraints [BCCZ99].

The tableau construction has symbolic variants [BCM 192, CGH97] as well as
explicit variants [WVS83, VW94]. An explicit construction may explode in space
immediately, since the Biichi automaton can be exponentially large in the size of
the original LTL formula. This is rather unfortunate for BMC, but see [CKOS05]
for a discussion on advantages and disadvantages of using an explicit automaton
construction for BMC.

However, also symbolic tableau constructions — even with the presented opti-
mized fairness encoding — require witnesses to be (k,[)-loops. This may prohibit
early termination and requires larger bounds than necessary.

An improved but still quadratic encoding can be found in [FSWO02]. A simpler
and linear encoding was presented in [LBHJ04], which we explain next. A survey
on the problem of encoding LTL (including past time LTL) can be found in
[BHJT06]. Another advanced encoding for weak alternating Biichi automata was
presented in [HJKT06]. This encoding allows to handle all w-regular properties
which is a super set of LTL. All these symbolic encodings avoid the exponential
blow-up of an explicit tableau construction and also allow to terminate earlier.

Before we explain the linear encoding, we first give an example why a simple
recursive formulation is incorrect. Assume we have a single variable p and the
following symbolic representation of a Kripke structure:

I(s)=p T(s,s') = (s =)

The state space is S = {L, T}, e.g. consists of all the valuations of p, see also
Fig. 18.2. Only one state is reachable in K on which p does not hold. The



Figure 18.2. Kripke structure for counterexample to naive recursive encoding.

LTL formula Fp can be characterized using the following least fixpoint equation:
Fp = pV XFp. Therefore, it is tempting to introduce a new boolean variable
to encode Fp, let us call it a, and encode this fixpoint equation for £k = 0 as
ag <> (po V ag). Note that for & = 0, the only possible [, the target of the back
loop, is [ = 0 again. Model constraints, actually just the initial state constraint,
together with this encoding, result in the following formula:

ﬁoA)\o/\ao/\ (ao — (po\/ao))

This formula seems to follow the semantics, e.g. the model constraints are enforced
and the fixpoint characterization of Fp is encoded. However, it is satisfiable by
setting ag to T. This should not be the case, since Fp does not hold on the
single possible path in which p never holds. The problem is that even though
this recursive encoding of the LTL formula captures the intention of the fixpoint
equation it ignores least fixpoint semantics. A similar problem occurs when han-
dling stable models for logic programs [SNS02] or more general in the context of
answer set programming (ASP) [Nie99], where the default semantics of recursive
properties are defined through least fixpoints. This observation can actually be
used positively, in order to succinctly encode bounded witness problem of LTL
into ASP [HNO3] instead into SAT.

To summarize the example, a naive encoding results in an equation system
with cyclic dependencies. A solution to such a system is an arbitrary fixpoint.
However, semantics of Fg require a least fixpoint.

The basic idea of the linear encoding in [LBHJ04] is to use several iterations
through the fixpoint equations of the LTL subformulas with top most F operator
until the values do not change anymore. As it turns out, two backward iterations
are actually enough. For each iteration, the value of an LTL formula at time frame
i is encoded with the help of a new boolean variable. This is actually similar
to using Tseitin variables [Tse68] to encode propositional formulas of arbitrary
structure into CNF.

The variables for the first (inner resp. nested) iteration are written (f)%,
those for the second (outer) iteration {f}i. The rest of the encoding relates these
variables among different subformulas, iterations and time points. The full set of
constraints is shown in Fig. 18.3. The correctness of this encoding is established
by the following theorem, which is an instance of a more general theorem proved
in [BHJT06]:

Theorem 1. Let f be an LTL formula. If {f}% is satisfiable assuming in addition
model and looping constraints, then there is a path m with = = f.



{P}i =Ppi
{_‘P};; = Tpi
{g v}, = {g}i v {h}}
{g AR} = {g}i A {h}]

(Fg)i = {g}i v (Fg); T {Fg}i = {g}i v {Fg}it! ifi <k
(Fg)j, = {g}i (Fg}i = {a}i VV i (A (Fg)h)  ifi=k
(Gg)i, = {9} A (Ga)™ {Gg}i = {g}i A {Gg}i! if i <k
(Ga)}, = {9}k (GaY. = {gyi AV (A Gty ifi—k
{Xg}; = {9}, if i <k
{Xg};, = Vo A {g}h) ifi=k

Figure 18.3. LTL constraints for the linear encoding of LTL into SAT.

For ¢ < k and for each subformula, there are at most k connectives in the outer
iteration. For ¢ = k, we need 2 - (k + 1) binary disjunctions resp. conjunctions.
The inner iteration adds k more. Altogether, the encoding is linear in k£ and the
formula size | f].

The previous example shows that one iteration is incorrect, at least for Fg. It
is interesting to note that encoding the fixpoint equation Gg = g A XGg does not
suffer from the same problem, due to greatest fixpoint semantics and monotonicity
of the encoding. Therefore, it is possible to only use one iteration for G as it is
also clearly the case for the propositional operators and X, for which we applied
this optimization already in Fig. 18.3. More variants, extensions, proofs and
experimental results can be found in [BHJT06].

Also note that the “no-lasso case” is also captured by this encoding: The
result is satisfiable if there is a finite prefix with k£ + 1 states, such that all infinite
paths with this prefix are witnesses.

Another option is to use the “liveness to safety” translation of [BAS02, SB04]
which modifies the model, but also will result in a linear encoding of certain LTL
formulas and in particularly in a linear encoding of fairness constraints.

18.4. Completeness

The encodings of the previous section allow to find witnesses for a particular
bound k. If the resulting propositional formula turns out to be satisfiable, we are
sure that we have found a witness. If the resulting formula is unsatisfiable we can
increase k and search for a longer witness. If the LTL formula has a witness this
process will find it. However, if it does not, when should we stop increasing k?

In this section, we discuss techniques that allow to terminate the search with
the conclusion that no witness can be found. We focus on the special case of
simple safety properties Gp, e.g. when searching for a witness of F-p.



A first answer was given in the original paper [BCCZ99]. From graph theory
we can borrow the concept of diameter, which is the longest shortest path be-
tween two nodes resp. states, or more intuitively the maximum distance between
connected states. It is also often called eccentricity. If a bad state is reachable,
then it is reachable in a shortest path from an initial state, which has length
smaller or equal than the diameter.

A number such as the diameter, which allows us to stop BMC and conclude,
that no witness can be found, is called completeness threshold (CT) [CKOS04,
CKOS05]. Another trivial but in practice almost useless completeness threshold
is |:S|, the number of states.

Furthermore, since a shortest witness for F—p always starts with an initial
state and ends in a bad state, where p does not hold, we can also use the following
distances as CT: either the largest distance of any reachable state from an initial
state or if it is smaller the largest distance of any state to the set of bad states, if
it can reach a bad state. The former is also referred to as radius, more specifically
as forward radius, the latter as backward radius with respect to the set of bad
states.

In practice, the backward radius is often quite small. For instance, if p is
inductive (pg A T(so,81) = pi1) then the backward radius is 0, because is is
impossible to go from a state in which p holds to a state in which p does not hold.

Unfortunately, computing diameters directly is quite hard. It is probably as
hard as solving the witness problem in the first place. But there are further weaker
CTs, which still are often small enough. The first example is the reoccurrence
diameter of [BCCZ99], which is the length of the longest simple path in K. A
simple path is another concept borrowed from graph theory and denotes a path,
on which all states are different.

The reoccurrence diameter can be arbitrarily larger than the (real) diameter.
Consider as example a fully connected graph with n nodes. We can easily generate
a simple path of length n without reoccurring state. Since every state is reachable
from any other step in one step due to full connectivity, the diameter is 1.

Analogously to the diameter, the forward and backward reoccurrence radii
with their obvious definitions are CTs as well. Typically, the forward reoccur-
rence radius is way too large to be of any practical value, while again there exist
many examples where the backward reoccurrence radius is small enough to obtain
termination.

The main reason to work with reoccurrence diameters instead of real diame-
ters is the possibility to formulate the former in SAT, while the latter is conjec-
tured to need QBF. A simple path constraint to ensure unique states on a path

is as follows:
N sits
0<i<j<k

This formulation is quadratic in k. There are multiple solutions to avoid this
quadratic overhead. One proposal [KS03, CKOS05] uses hardware implementa-
tions of sorting networks, which gives an O(n - log> n) sized encoding, but the
complexity of these networks usually results in slower SAT solving times [JB07].
This last paper [JB07] also describes how QBF can be used to encode simple path
constraints. Similar result are reported in [DHK05, MVST07].
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Figure 18.4. Example that k-induction really needs simple path constraints for completeness.
The state on the left is the only reachable state, while the two states on the right are not
reachable. There exists arbitrary long paths of length k, where p holds on the first k states
but not on the last state. However, if these paths are assumed to be simple paths, then the

induction step for k-induction becomes unsatisfiable for k = 2.

The currently most effective solution is given in [ES03]. The basic idea is
to start without any simple path constraints, but then add those inequalities to
the SAT solver, which are violated in an assignment returned by the SAT solver.
Then the SAT solver is restarted. In practice, the number of incrementally added
inequalities is usually very small and even large bounds with many state variables
can be handled this way.

18.5. Induction

An important step towards complete BMC techniques was k-induction [SSS00],
which also in practice is still quite useful. The basic idea is to strengthen the
property p, for which we want to show that Gp holds, by adding more predecessor
states. The base case for k-induction is a simple bounded model checking problem:

I(so) NT(s0,81) A ... NT(Sg—1,Sk) A "Pk

If the base case is satisfiable, a witness has been found. Otherwise the induction
step is checked:

po ANT(s0,81) Apt AT (s1,82) Ao Apr—1 AT (Sk—1,8%) A\ —pk

This is almost a BMC problem, except that the initial state constraint is removed
and p is assumed to hold on all states except for the last state. We start with
the induction step for k£ = 0, which simply checks whether —pq is unsatisfiable as
a propositional formula without any assumptions about the state. If the formula
is indeed unsatisfiable, then Gp holds trivially.

Then we check the base case for k = 0. If I(so) A—pp is satisfiable, then p can
be already violated in an initial state. Otherwise we move on to the next induction
step at k = 1, which is pg A T(s0, 1) A —p1. If this formula is unsatisfiable, we
have actually proven that p is inductive for T" and again Gp holds.

These two special cases of early termination for BMC, stateless validity and
inductiveness, were also discussed in [BCRZ99], but k-induction is able to in-
crease k further and may terminate BMC even with £ > 1. As the example in
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Fig. 18.4 shows this method is not complete. Adding simple path constraints to
the induction steps makes it complete, using the argument that the reoccurrence
diameter is a CT for plain BMC.

Techniques such as invariant strengthening, discussed further down in Sec-
tion 18.8, can help to reduce the bound until which k-induction with simple path
constraints has to be carried out.

The base case and the induction step share large parts of subformulas even
when increasing k to k + 1. To avoid copying these parts and to reuse learned
clauses another important technique in this context is the usage of incremental
SAT solvers [KWS00, WKS01, ES03]. It is even possible to actively copy learned
clauses between time frames as suggested by [Str01]. Variants of k-induction for
more general properties are also discussed in [AS06b, HILO05].

18.6. Interpolation

Before Aaron Bradley introduced IC3 [Brall], model checking based on interpo-
lation [Cra57] was considered to be the most efficient and robust model check-
ing technique, as for instance the comparison in [ADK'05] showed. Nowadays
IC3 [Brall] and its variant PDR [EMBI11] replaced interpolation based model
checking in this regard [CLP*14, BvDH17]. Nevertheless interpolation found
many applications beside model checking and is still useful in a portfolio approach
to model checking. For more information on IC3 see [BK18].

The idea to use interpolation in model checking goes back to Ken McMil-
lan [McMO3]. The key idea is to extract an interpolant from a resolution proof
for a failed BMC run and use the interpolant as over-approximation for image
computation. The extraction algorithm was independently discovered by McMil-
lan, but is very similar to those described in [Kra97, Pud97]. In this section, we
present this extraction algorithm and provide a simple straight-forward proof for
the propositional case. Our proof is inspired by [McMO05] but stripped down to
the propositional case. Further usage of interpolation is discussed in Chapter 33
on SMT and in Chapter 20 on Software Verification.

Let A, B be formulas in CNF, ¢, d clauses, and f, g propositional formulas.
With V(h) we denote the set of variables occurring in a formula h. A variable is
global if it occurs both in A and in B. Let G = V(A4) N V(B) denote the global
set of variables of A and B. A variable is called local to A if it only occurs in A
and thus is not global. According to [Cra57] a formula f is an interpolant for A
with respect to B iff it only contains global variables and

(1) A= f and (I12) BAf= 1

We consider as proof objects interpolating quadruples of the form (A, B) ¢ [ f],
where the clause c is called the resolvent and f the preliminary interpolant. Then
an interpolating quadruple is well formed iff

(W1) V(o) CV(AUV(B) and (W2) V(f)CGUV(e)NV(A) C V(A)

5Note that p; can also be assumed in the base case for i = 0...k — 1, which would actually
be learned by the SAT solver from the previous unsatisfiable base case anyhow.
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Thus, an interpolating quadruple is well formed iff the resolvent c is a clause made
of literals over variables from A and B, and f only contains variables from A. If
in addition, a variable local to A occurs in f, then it also has to occur in ¢. In
approximation to (I1) and (I2) a well formed interpolating quadruple is valid iff

(V1) A= f and (V2) BAf=c¢

Note that A A B = ¢ follows immediately from (V1) and (V2). Thus, if a well
formed and valid interpolating quadruple with the empty clause L as resolvent
can be derived, then the preliminary interpolant f of this quadruple actually
turns out to be an interpolant of A with respect to B, in particular, A A B is
unsatisfiable.

We present tableau rules for deriving well formed and valid interpolating
quadruples. This calculus can be interpreted as an annotation mechanism for
resolution proofs over A A B. It annotates clauses and resolvents with valid
interpolating quadruples. Let ¢ vV [ denote a clause made up of a subclause ¢ and
a literal {, such that |I| does not occur in ¢, i.e. neither positively nor negatively.
The variable of a literal [ is written as |I|. The proof rules are as follows:

(A,B)eVvi[f] (AB)dVli]g]

Rl) —c€A llleV(B) (R3

() (A,B) cc] (A,B)cVd[fAg] "

®2) — ceB (A,B)cVI[f] (A,B)d\'/l[g]mgv(B) (R4
(A,B) c[T] (A,B) eVvd[fl7Val]

The notation f|7 denotes the cofactor of f with respect to 1, which is a copy of
f, in which occurrences of [ are replaced by L and occurrences of [ by T.

This set of rules simulates the algorithm by McMillan described in [McMO03]
to extract an interpolant from a resolution refutation, with the exception of rule
(R1), the base case for clauses from A. The original algorithm removes variables
local to A from the preliminary interpolant immediately. In our first approxima-
tion to the algorithm, as given by the tableau rules, we delay the removal until
variables local to A are resolved away in (R4), in order to be table to apply an in-
ductive proof argument, i.e. (V2). If one is only interested in the final interpolant
of a refutation, where the final resolvent is an empty clause, then it is obviously
correct to follow the original algorithm and remove the local variables immedi-
ately, since they will be resolved away anyhow. The latter is also the approach
taken in [Pud97, YMO05], but does not allow to maintain (V1) and (V2).

Theorem 2. The four rules (R1) — (R4) preserve well formedness and validity.

Proof. The consequents of the two base case rules (R1) and (R2) are clearly well
formed, i.e. (W1) and (W2), and validity, i.e. (V1) and (V2), is easily checked as
well. In the inductive case, (W1) also follows immediately. Regarding rules (R3)
and (R4), we can assume the antecedents to be well formed and valid.

Let us consider rule (R3) next. The formulas f and g and thus also f A g only
contain variables from A. Any variable v of f A g that is local to A is different
from |l|, since the latter is a variable from B. Therefore, v occurs in ¢ or d and

13



thus in ¢V d, which concludes (W2). The first part (V1) of validity follows from
the assumptions, i.e. A = f and A = g obviously imply A = f A g. To show the
second remaining part (V2) of validity we use soundness of resolution:

BA(fAg) = (BAfA(BAg) = (cVO)AVI) = (cvd)

Proving the consequent of rule (R4) to be well formed, i.e. (W2), is simple: The
variable [{| is removed both from the resolvent as well as from the preliminary
interpolant of the consequent. In order to show (V1) we can assume A = f
and A = ¢g. Any assignment o satisfying A evaluates both formulas A — f and
A — g to T. Further assume o(A4) = o(l) = T. Then Shannon Expansion for g
gives o(g) = o(l Agl;VIAgl]) =o(gl;) = T. The other case 0(A) =o(l) =T,
with a similar argument, results in o(f|7) = T. Thus, o(f|7V g|;) = T for any
satisfying assignment o of A, which concludes part (V1).

The last case (V2) in the proof of the validity of the consequent of rule (R4)
is proven as follows. In the assumption B A f = ¢ V | we can replace every
occurrence of [ by L respectively every occurrence of [ by T without making
the assumption invalid. This implies B A f|7 = ¢, since |I| does not occur
in B, nor in ¢. With a similar argument we obtain B A g|; = d and thus
B A(fl7Vygly) = (cVvd). This completes the proof of the validity of the
consequent of rule (R4) assuming validity of its antecedents and concludes the
whole proof. O

The extended version of [YMO5], which was published as a technical re-
port [YMO4] proves a variant of the algorithm given in [Pud97]. Their inductive
argument is slightly more complicated than ours, i.e. (V1) and (V2). In addition,
our formulation allows to derive an relation between A, B, ¢ and its prelimi-
nary interpolant f. In particular, our preliminary interpolant f captures enough
information from A, such that B together with f implies c.

The strongest interpolant of A is obtained from A by existentially quanti-
fying over all local variables in A. Thus, interpolation can be seen as an over
approximation of quantifier elimination. Consider the following example, where
A contains the four clauses Ag to Az

Ay:aVeVvd A :aVvVeVvd As:avVevd  As:avevd

and B the following four clauses By to Bs:

By:bVveé By:bVe Bs:bVvd Bs:bvd

Variable a is local to A, while b is local to B, and the other variables ¢ and d are
global. Quantifying a from A results in Ja[A] = ¢ ® d, where “®” is the XOR
operator, i.e. ¢ and d have different value. Since quantifying b from B results in
3b[B] = €A d, ie. ¢ and d both have to be L and are thus forced to the same
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value, the CNF A A B is unsatisfiable. A possible refutation proof is as follows:

Qo : (A,B) c¢VvdlcVd] resolved from Ay and A;
Q1 : (A,B) ¢ [T] resolved from By and By
Q> : (A, B) d [cVvd] resolved from Qg and @
Qs : (A,B) d [T] resolved from By and Bj
Q4 : (A,B) L J[eVvd] resolved from ()2 and Q3

In brackets, we list the partial interpolants. The final interpolant of A with
respect to B is P = ¢V d, which is weaker than the strongest interpolant Ja[A],
i.e. Ja[A] = P, but it exactly captures the part of A which is required for the
refutation: either ¢ or d has to be T.

18.7. Completeness with Interpolation

It has been shown in [McMO3] that termination checks for bounded model check-
ing do not need exact quantifier elimination algorithms as has been previously
assumed [WBCGO00, ABE00, AB02, MS03, McM02, PBZ03]. An over approxima-
tion as given by an interpolant extracted from a refutation of a failed bounded
model checking run is enough.

The resulting method of [McMO03], which we describe in this section, is orig-
inally restricted to simple safety properties. But using the “liveness to safety”
translation of [BAS02, SB04] it can be applied to more general specifications,
which also is reported to work reasonably well in practice.

Assume that we want to prove that p is not reachable, i.e. the property Gp
holds, or respectively there is no witness for F—p. Let k be the backward radius
with respect to =p. More precisely let k be the smallest number such that all
states which can reach —p, can reach a state in which —p holds in k' steps, where
k' < k. The backward radius can be interpreted as the number of generations in
backward breadth first search (BFS), starting with the set of bad states in which
—p holds until all states that can reach a bad state are found. In BDD-based
model checking [McM93] this is the number of preimage computations until a
fixpoint is reached, starting with the set of bad states.

If the property holds and no witness to its negation exists, then the following
formula is unsatisfiable (after checking I(sg) = po separately):

k+1
I(so) ANT(s0,81) N T(s1,82) A ... AT (Sk, Sk+1) A \/ —p;
j=1

A B

Note that we “unroll” one step further as usual. Let P; be the interpolant of A
with respect to B. Since P; A B is unsatisfiable, all states that satisfy P; cannot
reach a bad state in k or fewer steps. As a generalization consider the following
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sequence of formulas:

k+1
Fi . Ri(So)/\T(So,Sl) A T(Sl,SQ)/\.../\T(Sk,Sk+1)/\ \/ _'pj
j=1

These are all BMC problems with the same bound k+1. In the base case, let Py =
Ry = I. In order to define R;, under the assumption that F; is unsatisfiable, let
P, ;1 be the interpolant of A; with respect to B; and R;41(s) = R;(s)V Piy1[s0/s1],
where P;y1[so/s1] is obtained from P, by replacing s; with so. If F; becomes
satisfiable, then P;, R; and Fj are undefined for all j > i.

With the same argument as in the base case, we can show that as long P; is
defined all states satisfying R; cannot reach a bad state in k or less steps, or to
phrase it differently: R;-states are more than k steps away from bad states.

Now let use assume that there exists a smallest ¢ for which Fj is satisfiable.
Then there is a state sg which reaches a bad state in k 4 1 or less steps but does
not reach a bad state in k or less steps. The former just immediately follows from
F; being satisfied, the latter from sg satisfying R; and thus sy being at least k+ 1
steps away from bad states. However, this contradicts our assumption that k is
the backward radius and there are no states that need more than k steps to reach
a bad state. Thus, P;, R; and F; are defined for all 4 € IN.

In addition, since R; = R;;1, we have an increasing chain of weaker and
weaker starting points, which for a finite model has to reach a fixpoint. Therefore,
there is an n for which R, = R, ; for all j € IN. As soon P11 = R,,, which can
be checked by a SAT solver, R,, is inductive, is implied by I(sg) and is stronger
than p. Therefore, we can stop and conclude Gp to hold resp. that no witness
to F—p exists. This conclusion is correct even if k is smaller than the backward
radius and all F; are defined, i.e. if there exists an n for which P, 11 = R,.

However, if k is smaller than the backward radius it may happen that F; is
satisfiable for ¢ > 0. In this case, we simply increase k and start a new sequence
of Fy’s. In any case, if Fy ever turns out to be satisfiable, then we have found a
witness, which is a counterexample to Gp.

To implement this algorithm, a SAT solver is required which is able to gen-
erate resolution proofs. This feature is easy to implement on top of DPLL style
solvers, particularly for those that use learning. The overhead to produce reso-
lution proofs is in general acceptable [ZM03, Gel07]. However, interpolants tend
to be highly redundant [McMO3]. In practice, it is necessary to shrink their
size with circuit optimization techniques such as SAT sweeping [Kue04] and AIG
rewriting [MCBO06].

The outer loop increases k until either the BMC problem becomes satisfiable
or the inner loop terminates because P,1; = R, holds. As we have shown, k is
bounded by the backward radius and thus it is beneficial to strengthen p as much
as possible to decrease the backward radius which in order reduces not only the
number of iterations of the outer loop but also the size (at least the length) of
the BMC problems.
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18.8. Invariant Strengthening

If a property p is inductive (pg A T(s0,81) = p1), then a BMC run for k = 1
without initial state constraints is unsatisfiable, and proves that p holds in all
states, i.e. K = Gp, unless p is violated in the initial state.

In general, it is difficult to come up with strong enough inductive invariants.
However, even if p does not imply the real invariant ¢, which we want to prove, p’s
inductiveness can still be used to strengthen ¢g. Then we can try to prove G(pAq)
instead of Gq. The former often has a smaller backward radius, in particular the
backward radius never increases after strengthening, and can help to terminate
k-induction and interpolation earlier. This is particularly useful for k-induction,
which suffers from an exponential gap between backward reoccurrence radius and
real backward radius.

In the context of sequential equivalence checking, useful invariants are of
course equalities between signals. If such an equality G(p = ¢) between two
signals p and ¢ is suspected, then we can try to check whether p = ¢ is inductive.
This idea can be extended to multiple signal pairs, e.g. G /\;-l:l(pj = ¢’). In this
case, inductiveness is proven if the following SAT problems for m = 1...n are all
unsatisfiable:

/\ Py =) A T(so,s1) A (P7* # p7")

This idea is described in [vE98] and has been extended to property checking
[BC00, CNQO7, AS06a, BMOT7] and can also make use of k-induction (see Sec-
tion 18.5). Related to adding invariants is target enlargement [BKA02, BBCT05],
which increases the set of bad resp. target states by some states that provably
can reach a bad state.

18.9. Related Work

In the late 90ties, the performance of SAT solvers increased considerably [MSS99,
Bor97, Zha97]. At the same time progress in BDDs stalled. It became clear
that BDD-based symbolic model checking cannot handle more than a couple of
hundred latches, which is much smaller than what most industrial applications
require. This was the main motivation behind trying to apply SAT technology
to model checking. The first angle of attack was to use QBF solvers, because
these allow to solve the same problem as BDD-based model checking. However,
at that time, QBF solvers were lagging behind SAT solvers. The first real im-
plementations just started to emerge [CGS98]. Therefore, a paradigm shift was
necessary.

The development of BMC was influenced by SAT-based planning [KS92]. See
also Chapter 19 in this handbook, which is devoted to SAT-based planning. For
simple safety properties, the tasks are similar: try to find a bounded witness,
e.g. a plan, which reaches the goal resp. the bad state. The main contribution of
BMC was to show how this idea can be lifted to infinite paths and thus produce
witnesses for arbitrary temporal formulas. Furthermore initial attempts were
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made to prove properties. Of course, the major difficulty was to convince the
formal verification community that a focus on falsification can be beneficial.

Deciding QBF plays the same role for PSPACE-hard problems as SAT does
for NP hard problems. Since symbolic model checking is PSPACE complete as
well [Sav70], see [PBGO5] for more details, it seems natural to use QBF solvers
for symbol model checking, as it was already proposed in the original BMC pa-
per [BCCZ99]. However, even though QBF solving is improving, there are very
few successful applications of QBF to symbolic model checking [DHK05, CKSO07,
MVST07]. Most results are negative [JB07].

Often properties are local and can be proven locally. A standard technique
in this context is automatic abstraction refinement. Initially, the model checker
abstracts the system by removing all the model constraints on variables apart
from those that directly occur in the property. This abstraction is conservative
in the following sense: if the property holds in the abstracted model, then it
also holds in the concrete model. If it does not hold and the abstract coun-
terexample cannot be mapped to the concrete model the abstraction has to be
refined by adding back variables and model constraints. There are various tech-
niques that use BMC in this context. They either use proofs and unsatisfiable
cores [MAO3] or follow the counterexample-guided abstraction refinement (CE-
GAR) paradigm [CGJ103]. For further details, see [PBG05] and particularly
Chapter 20. We also skipped most material on circuit based techniques, including
quantifier elimination [WBCG00, ABE00, AB02, McM02, PBZ03, PSD06] circuit
cofactoring [GGA04] and ATPG-based techniques, which are also discussed in
[PBGO5].

Finally, BMC has been extended to more general models, including software
as discussed in Chapter 20. BMC is used for infinite systems [dMRS03], more
specifically for hybrid systems [ABCS05, FH05]. In this context, bounded se-
mantics are typically decidable, while the general model checking problem is not.
Nevertheless, complete techniques, such as k-induction and interpolation can still
be useful and allow to occasionally prove properties.

18.10. Conclusion

The main reason behind the success of BMC, is the tremendous increase in rea-
soning power of recent SAT solvers, particularly the breakthrough realized by
Chaff [MMZ101] right two years after the first publication on BMC. SAT and
BMC became a standard tool in the EDA industry thereafter. Their importance
will be emphasized as SAT solver’s capacity continues to increase.
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