CADICAL at the SAT Race 2019

Armin Biere
Institute for Formal Models and Verification
Johannes Kepler University Linz

Our SAT solver CADICAL provides a clean, documented,
easy to understand and modify state-of-the-art solver, based on
CDCL [[1] with inprocessing [2]]. Earlier versions participated
in the SAT competition 2017 and 2018. Here we only describe
differences to these versions [3], [4]. Even though CADICAL
performed well on unsatisfiable instances in the SAT Competi-
tion 2018, the performance on satisfiable instances was behind
the top solvers in that competition. Thus a large part of the
changes made and described in this note are motivated by
trying to improve CADICAL on satisfiable instances without
loosing its good performance on unsatisfiable instances.

SEPARATE DECISION QUEUE

The earlier versions of CADICAL already partially followed
the advice given by Chanseok Oh in [5] to interleave (what
we call) stable search phases focusing on satisfiable instances
with almost no restarts and (again in our terminology) unstable
search phases with the usual frequent but limited restarts
schedule. In our new version we use a reluctant doubling
scheme with base conflict interval 1024 for the stable phase.

However, the results of [5] also suggest to use a smoother
increase of scores for the stable phase using a separate decision
queue. We have integrated this idea. It required to add the usual
exponential VSIDS scoring mechanism using a binary heap as
in MINISAT [6]. Thus this new version relies on its previous
VMTF queue [7] only for the unstable search phases and on
the exponential VSIDS for the stable search phase.

The “default” configuration submitted to the competition
alternates stable and unstable phases, while the “unsat” con-
figuration remains in the unstable search phase and the “sat”
configuration vice versa only in the “stable” phase.

LOCAL SEARCH

Our local search solver YALSAT [8] solved 48 instances
in the main track of the SAT Competition 2018 from which
30 instances were not solved by CADICAL and even one
not solved by any other solver. It further solved 36 instances
faster than any other solver. This shows that it should be
beneficial to add a local search component to CADICAL. We
already had YALSAT hooked up to LINGELING, which was
successfully used in TREENGELING in parallel solver threads.
However controlling the amount of time allocated to YALSAT
is difficult. It also requires to copy all clauses.

Therefore we added a simple local search component to
CADICAL. As YALSAT it is based on ideas developed in

Supported by FWF, NFN Grant S11408-N23 (RiSE).

ProbSAT [9]. In contrast to YALSAT and ProbSAT, we watch
one literal in each clause instead of using counters. The
broken (unsatisfiable) clauses are kept on a stack and traversed
completely during each step (flipping a literal).

Local search is called from the rephase procedure (3], [4]]
which is scheduled in regular intervals. It can also be executed
as preprocessing step for an arbitrary number of rounds, which
in essence turns the solver into a local search solver (disabled
by default). As initial assignment for local search we use the
same assignments that would be selected in the CDCL loop
for decision variables (actually the target phases—see next
section—are always preferred, even for local search during
unstable phases). The best assignment (falsifying the smallest
number of clauses) determined during each local search round
is exported back to the CDCL loop as saved phases.

TARGET AND BEST PHASES

Probably the most important new technique is the use
of target phases, which can be seen as a generalization of
phase saving [10]]. This well-known technique saves the last
value assigned to a variable (its saved phase) and uses it as
assignment value if a variable is selected as decisionP_-]

In addition to these saved phases our new approach now also
maintains an array of target and another array of best phases.
The idea is to maximize the size of the trail without conflicts.
Thus during backtracking the prefix of the trail is determined
which did not (yet) lead to a conflict previous propagations.
The values of the literals on the prefix are then saved as new
target phases if this prefix is larger than the previously saved
one. In stable search phases these target phases are preferred
over saved phases [10] for decisions.

During rephasing [3ll, [4] saved phases are reset as before,
except, that beside the new local search rephasing discussed
above we have further a new best rephasing, which sets saved
phases to the values of the largest previously reached trail
without conflict and then resets these best phases. By default
best rephasing is only performed during stable search phases.

LUCKY PHASES

Occasionally applications produce trivial formulas in the
sense that they can be satisfied by for instance assigning
all variables to false. Some of them also made it into the
competition and therefore we implemented in LINGELING [[11]]

Unfortunately there are now two uses of the word “phase” here, one
for stable and unstable search phases, as well as for the values assigned to
variables. We hope it is clear from the context which of the two interpretation
is meant whenever we use “phase”.

a “lucky phase” detector. This has been ported to CADICAL
and extended to detect horn clause benchmarks, which can be
satisfied by assigning in forward or backward order all vari-
ables to the same constant (interleaved with propagation). For
instance satisfiable multiplier miters [12] comparing correct
and buggy multipliers can be satisfied by this new lucky phase
procedure instantly if the inputs either appear consecutively at
the beginning or at the end of the variable range.

IMPROVEMENTS TO PREPROCESSING

Since (bounded) variable elimination [[13]] remains the most
important pre- and inprocessing technique, we tried to improve
its effectiveness even further. First, if variable elimination
completed, the bound on the number of allowed zero additional
clauses (difference between non-tautological resolvents and
clauses with a candidate variable) is increased (exponentially
from the default zero to 1,2,4,8,16) and all variables are
again considered as candidates for elimination attempts. We
further perform variable elimination by substitution [13] if
we are able to extract AND or XOR gates. We also added
eager backward subsumption and strengthening after each
successful variable elimination, in addition to our fast forward
subsumption algorithm [3]] which is continued to be applied
to redundant clauses too. Last we added a resolution limit, to
reduce the time spent in variable elimination for large but easy
to solve formulas. In the same spirit we limit the number of
subsumption checks during forward subsumption.

As in previous versions the solver triggers failed literal
probing (including hyper binary resolution and equivalent
literal substitutions) independently from both subsumption (on
redundant and irredundant clauses followed by vivification)
and variable elimination (elimination rounds are interleaved
with subsumption and optionally, but disabled by default, with
blocked and covered clause elimination). These preprocessors
can also be called for multiple rounds initially. Using a conflict
limit this allows the solver to be used as a CNF preprocessor
(the extension stack needed for solution reconstruction can be
extracted as well).

CHRONOLOGICAL BACKTRACKING

The winner MAPLE_LCM_DIST_CHRONOBT [14] of the
main track in the SAT Competition 2018 implemented a
combination of chronological backtracking with CDCL [15]].
We have ported this idea to CADICAL and as in the original
work backtrack chronologically if backjumping would jump
over more than 100 levels, but otherwise do not limit its
application. We further combine it with the idea of reusing
the trail [16]. More details will appear in [17].

INCREMENTAL SOLVING AND MODEL BASED TESTING

Finally we added a new approach [18] to incremental
SAT solving which does not require to freeze variables (as
in MINISAT and LINGELING) in order to be combined
with inprocessing. To implement such a combination cor-
rectly requires sophisticated API testing and accordingly we
implemented a tightly integrated model based tester called
MoBICAL following the principles reported in [19].

LICENSE

The solver remains open source under the MIT License.
New versions are available at http://fmv.jku.at/cadical and
https://github.com/arminbiere/cadicall

REFERENCES

[1] J. P. M. Silva, I. Lynce, and S. Malik, “Conflict-driven clause learning
SAT solvers,” in Handbook of Satisfiability, ser. Frontiers in Artificial
Intelligence and Applications. I0S Press, 2009, vol. 185, pp. 131-153.

[2] M. Jarvisalo, M. Heule, and A. Biere, “Inprocessing rules,” in IJCAR,
ser. Lecture Notes in Computer Science, vol. 7364. Springer, 2012, pp.
355-370.

[3] A. Biere, “CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT Enter-
ing the SAT Competition 2017,” in Proc. of SAT Competition 2017 —
Solver and Benchmark Descriptions, ser. Dept. of Comp. Science Series
of Publications B, vol. B-2017-1. Univ. of Helsinki, 2017, pp. 14-15.

, “CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT Enter-
ing the SAT Competition 2018,” in Proc. of SAT Competition 2018 —
Solver and Benchmark Descriptions, ser. Dept. of Comp. Science Series
of Publications B, vol. B-2018-1. Univ. of Helsinki, 2018, pp. 13-14.

[5] C. Oh, “Between SAT and UNSAT: the fundamental difference in CDCL
SAT,” in SAT, ser. Lecture Notes in Computer Science, vol. 9340.
Springer, 2015, pp. 307-323.

[6] N. Eén and N. Sorensson, “An extensible sat-solver,” in SAT, ser. Lecture
Notes in Computer Science, vol. 2919. Springer, 2003, pp. 502-518.

[7]1 A. Biere and A. Frohlich, “Evaluating CDCL variable scoring schemes,”
in SAT, ser. Lecture Notes in Computer Science, vol. 9340. Springer,
2015, pp. 405-422.

[8] A. Biere, “Yet another local search solver and Lingeling and friends
entering the SAT Competition 2014,” in Proc. SAT Competition 2014,
Solver and Benchmark Descriptions, ser. Dept. of Comp. Science Series
of Publications B, vol. B-2014-2. Univ. of Helsinki, 2014, pp. 39-40.

[9] A. Balint and U. Schoning, “Choosing probability distributions for

stochastic local search and the role of make versus break,” in SAT, ser.

Lecture Notes in Comp. Science, vol. 7317. Springer, 2012, pp. 16-29.

K. Pipatsrisawat and A. Darwiche, “A lightweight component caching

scheme for satisfiability solvers,” in SAT, ser. Lecture Notes in Computer

Science, vol. 4501. Springer, 2007, pp. 294-299.

“ Lingeling and Friends Entering the SAT Race 2015,” FMV Reports

Series, Institute for Formal Models and Verification, Johannes Kepler

University, Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep., 2015.

A. Biere, “Collection of Combinational Arithmetic Miters Submitted to

the SAT Competition 2016,” in Proc. of SAT Competition 2016 — Solver

and Benchmark Descriptions, ser. Dept. of Computer Science Series of

Publications B, vol. B-2016-1. Univ. of Helsinki, 2016, pp. 65-66.

N. Eén and A. Biere, “Effective preprocessing in SAT through variable

and clause elimination,” in SAT, ser. Lecture Notes in Computer Science,

vol. 3569. Springer, 2005, pp. 61-75.

A. Nadel and V. Ryvchin, “Maple_LCM_Dist_ChronoBT: Featuring

chronological backtracking,” in Proc. of SAT Competition 2018 — Solver

and Benchmark Descriptions, ser. Dept.Dept. Computer Science Series

of Publications B, vol. B-2018-1. Univ. of Helsinki, 2018, p. 29.

, “Chronological backtracking,” in SAT, ser. Lecture Notes in

Computer Science, vol. 10929. Springer, 2018, pp. 111-121.

P. van der Tak, A. Ramos, and M. Heule, “Reusing the assignment trail

in CDCL solvers,” JSAT, vol. 7, no. 4, pp. 133-138, 2011.

S. Mohle and A. Biere, “Backing backtracking,” 2019, submitted.

K. Fazekas, A. Biere, and C. Scholl, “Incremental inprocessing in SAT

solving,” 2019, submitted.

C. Artho, A. Biere, and M. Seidl, “Model-based testing for verification

back-ends,” in TAP, ser. Lecture Notes in Computer Science, vol. 7942.

Springer, 2013, pp. 39-55.

[4]

(10]

(11]

[12]

[13]

[14]

[15]

(16]

[17]
(18]

[19]

http://fmv.jku.at/cadical
https://github.com/arminbiere/cadical

