
Resolve and Expand

Armin Biere

Johannes Kepler University
Institute for Formal Models and Verification
Altenbergerstrasse 69, A-4040 Linz, Austria

biere@jku.at

Abstract. We present a novel expansion based decision procedure for quantified
boolean formulas (QBF) in conjunctive normal form (CNF). The basic idea is
to resolve existentially quantified variables and eliminate universal variables by
expansion. This process is continued until the formula becomes propositional and
can be solved by any SAT solver. On structured problems our implementation
quantor is competitive with state-of-the-art QBF solvers based on DPLL. It is
orders of magnitude faster on certain hard to solve instances.

1 Introduction

Recent years witnessed huge improvements in techniques for checking satisfiability of
propositional logic (SAT). The advancements are driven by better algorithms on one
side and by new applications on the other side. The logic of quantified boolean for-
mulas (QBF) is obtained from propositional logic by adding quantifiers over boolean
variables. QBF allows to represent a much larger class of problems succinctly.

The added expressibility unfortunately renders the decision problem PSPACE com-
plete [20]. Nevertheless, various attempts have been made to lift SAT technology to
QBF, in order to repeat the success of SAT. The goal is to make QBF solvers a versatile
tool for solving important practical problems such as symbolic model checking [13] or
other PSPACE complete problems.

For QBF the nesting order of variables has to be respected. Accordingly two ap-
proaches to solve QBF exist. Either variables are eliminated in the direction from the
outermost quantifier to the innermost quantifier or vice versa. We call the first approach
top-down, and the second onebottom-up.

Current state-of-the-art QBF solvers [4,17,12,9,22] are all top-down and implement
a variant of the search-based Davis & Putnam procedure DPLL [7]. Additionally, QBF
requires decision variables to be chosen in accordance with the quantifier prefix. Learn-
ing has to be adapted to cache satisfiable existential sub goals. DPLL also forms the
basis of most state-of-the-art SAT solvers, and therefore it was most natural to use it for
QBF as well.

Even for SAT, there are alternatives to DPLL, based on variable elimination, such
as the resolution based Davis & Putnam procedure DP [8]. It has never been used much
in practice, with the exception of [5], since usually too many clauses are generated.

Eliminating variables by resolution as in DP can be lifted from SAT to QBF as well.
The result is a bottom-up approach for QBF called Q-resolution [10]. The only differ-
ence between Q-resolution and ordinary resolution is, that in certain cases universally
quantified variables can be dropped from the resolvent.

In theory, Q-resolution is complete but impractical for the same reasons as resolu-
tion based DP [8]. It has not been combined with compact data structures either. In our
approach, we apply Q-resolution to eliminate innermost existentially quantified vari-
ables. To make this practical, we carefully monitor resource usage, always pick the
cheapest variable to eliminate, and invoke Q-resolution only if the size of the resulting
formula does not increase much. We useexpansionof universally quantified variables
otherwise.

Expansion of quantifiers has been applied to QBF in [1] and used for model check-
ing in [21,2]. All three approaches work on formulae or circuit structure instead of
(quantified) CNF. We argue that CNF helps to speed up certain computationally in-
tensive tasks, such as the dynamic computation of the elimination schedule. First it is
not clear how Q-resolution can be combined with this kind of structural expansion. In
addition our goal is to eventually combine bottom-up and top-down approaches. CNF
currently is the most efficient data structure for representing formulas in top-down ap-
proaches for SAT.

Another general bottom-up approach [16,14,15,6] is also based on quantifier elim-
ination. A SAT solver is used to eliminate multiple innermost variables in parallel. In
practice these approaches have only been applied to SAT or model checking. In princi-
ple it would be possible to apply them directly to QBF. In our approach single variables
are eliminated one after the other. We can also alternate between either eliminating
existential variables of the innermost scope and eliminating universal variables of the
enclosing universal scope.

2 Preliminaries

Given a set of variablesV, a literal l overV is either a variablev or its negation¬v. A
clauseis a disjunction of literals, also represented by the set of its literals. A conjunctive
normal form (CNF) is a conjunction of clauses. Assume that the set of variables is
partitioned intomnon empty scopesS1, . . .Sm,⊆V, with V = S1∪ . . .∪Sm andSi ∩Sj =
/0 for i 6= j. Each variablev∈V belongs to exactly one scopeσ(v). Scopes are ordered
linearly S1 < S2 . . . < Sm, with S1 the outermost andSm the innermost scope. For each
clauseC the maximal scopeσ(v) over all variablesv in C is unique and defined as the
scopeσ(C) of C. The scope order induces a pre-order on the variables which we extend
to an arbitrary linear variable order.

Each scope is labelled asuniversalor existentialby the labellingΩ(Si) ∈ {∃,∀}.
Variables are labelled with the label of their scope asΩ(v) ≡ Ω(σ(v)). We further re-
quire that the ordered partition ofV into scopes is maximal with respect to the labelling,
or more preciselyΩ(Si) 6= Ω(Si+1) for 1≤ i < m.

Now a quantified boolean formula (QBF) in CNF is defined as a CNF formulaf
together with an ordered partition of the variables into scopes. This definition matches
the QDIMACS formats [11] very closely, with the additional restriction of maximality.

A variablev is defined to occur in positive (negative) phase, or just positively (nega-
tively), in a clauseC, if C contains the literalv (¬v). A clause in which a variable occurs
in both phases istrivial and can be removed from the CNF. Two clausesC, D, wherev
occurs positively inC and negatively inD, can be resolved to a resolvent clause. The
resolvent consists of all literals fromC exceptv and all literals fromD except¬v.

For a non-trivial clauseC we define the process offorall reductionas follows. The
set offorall reducible variablesin C is defined as the set of universal variables inC for
which there is no larger existential variable inC, with respect to the variable order. The
clauseD obtained fromC by forall reduction contains all variables ofC except forall
reducible variables. For instance the two clauses in the following QBF

∃x . ∀y . (x∨y)∧ (¬x∨¬y)

are not forall reduced. Forall reduction results in removing the literaly in the first
clauses and the literal¬y in the second, which results in two contradicting units. Also
note, that forall reduction can result in an empty clause if the original clause contains
universal variables only. Plain resolution followed by forall reduction is the same as
Q-resolution [10].

Forall reduction is an equivalence preserving transformation. Thus without loss of
generality we can assume that the CNF is in forall reduced form: by forall reduction
no clause can be reduced further. This assumption establishes the important invariant,
thatΩ(σ(C)) = ∃ for all clausesC. In other words, all clauses have an existential scope.
There are no clauses with a universal scope. Particularly, the innermost scope is always
existential (Ω(Sm) = ∃). In our implementation, for each existential scope, we maintain
a list of its clauses, and for each clause a reference to its scope.

3 Elimination

We eliminate variables until the formula is propositional and contains only existential
quantifiers. Then it can be handed to a SAT solver. After establishing the invariant
discussed above, a non-propositional QBF formula has the following structure

Ω(S1) S1 . Ω(S2) S2∀Sm−1 . ∃ Sm . f ∧ g m≥ 2 (1)

where the formulaf is exactly the conjunction of clauses with scopeSm. We either
eliminate a variable in the innermost existential scopeS∃ ≡ Sm by Q-resolution or a
variable in the innermost universal scopeS∀ ≡ Sm−1 by expansion.

3.1 Resolve

An existential variablev of S∃ is eliminated as in [8,10] by performing all resolutions on
v, adding the forall reduced resolvents to the CNF, and removing all clauses containing
v in either phase. As example consider the clauses in Fig. 1.

We assume that these 7 clauses are all clauses of a CNF in which the innermost
existential variablev occurs. To eliminatev, we simply perform all 3× 2 resolutions
between a clause on the left side, in whichv occurs positively, with all clauses on the

×

∨ vr¬

∨ vs

∨∨x vy

∨¬v r

∨ ∨ ∨¬v ¬x ¬y r

Fig. 1.Number of resolution pairs is quadratic.

right side, in whichv occurs negatively. In this case 3 resolvents are trivial. The other
three resolvents

(s∨ r), (x∨y∨ r), and (s∨¬x∨¬y∨ r)

are added to the CNF and the original 5 clauses containingv in either phase are removed.
As always, before adding one of the clauses, forall reduction is applied.

3.2 Expand

Expansion of a universal variablev in S∀ requires to generate a copyS′∃ of S∃, with
a one-to-one mapping of variablesu ∈ S∃ mapped tou′ ∈ S′∃. With f ′ we denote the
conjunction of clauses obtained fromf by replacing all occurrences ofu ∈ S∃ by u′.
The result of expandingv∈ S∀ in Eqn.(1) is as follows

Ω(S1) S1 . Ω(S2) S2∀(S∀−{v}) . ∃(S∃∪S′∃) . f{v/0} ∧ f ′{v/1} ∧ g

By f{v/0} we denote the result of substitutingv by the constant 0 inf . This is equiv-
alent to removing all clauses in whichv occurs in negative phase and removing the
occurrences ofv in those clauses in whichv occurs positively, followed by forall reduc-
tion. The substitution by 1 is defined accordingly.

4 Optimizations

Before invoking one of the two costly elimination procedures described in Sec. 3, we
first apply unit propagation, a simple form of equivalence reasoning, and the standard
QBF version of the pure literal rule. These simplifications are repeated until saturation.

4.1 Equivalence Reasoning

To detect equivalences we search for pairs of dual binary clauses. A clause is called
dual to another clause if it consists of the negation of the literals of its dual. If such a
pair is found, we take one of the clauses and substitute the larger literal by the negation
of the smaller one throughout the whole CNF.

The search for dual clauses can be implemented efficiently by hashing binary clauses.
In more detail, whenever a binary clause is added, we also save a reference to it in a

hash table and check, whether the hash table already contains a reference to its dual.
If this is the case an equivalence is found. After an equivalence is found, it is used to
eliminate one of the variables of the equivalence. Consider the following QBF formula:

∃x . ∀y . ∃z . (x∨z)∧ (x∨y∨¬z)∧ (¬x∨¬z)∧ (¬x∨¬z)

The two underlined dual binary clauses involvingx andz form an equivalence. After the
last clause is added, the equivalencex = ¬z is detected andz is replaced by¬x, which
results in the following QBF formula:

∃x . ∀y . (x∨¬x)∧ (x∨y∨x)∧ (¬x∨x)∧ (¬x∨x)

After removal of 3 trivial clauses and forall reduction of the underlined clause, the only
clause left is the unit clausex. In general, before searching for dual clauses, forall re-
duction has to be applied first. This way all substitutions triggered by equivalences will
always replace existential variables by smaller literals. Replacing universal variables
would be incorrect as the standard example∃x . ∀y . (x∨¬y)∧ (¬x∨y) shows.

4.2 Subsumption

Expansion often needs to copy almost all clauses of the CNF. Moreover, the elimination
procedures of Sec. 3 produce a lot of redundant subsumed clauses. Therefore, subsumed
clauses should be removed. If a new clause is added, all old clauses are checked for
being subsumed by this new clause. This check is called backward subsumption [19]
and can be implemented efficiently on-the-fly, by using a signature-based algorithm.
However, the dual check of forward subsumption [19] is very expensive and is only
invoked periodically, for instance at each expansion step.

The subsumption algorithm is based on signatures, where a signature is a subset
of a finite signature domainD. In our implementationD = {0, . . . ,31} and a signature
is represented by an unsigned 32-bit word. Each literall is hashed toh(l) ∈ D. The
signatureσ(C) of a clauseC is the union of the hash values of its literals. Finally, the
signatureσ(l) of a literal l is defined as the union of the signatures of the clauses in
which it occurs, and is updated whenever a clause is added to the CNF.

Let C be a new clause, which is supposed to be added to the CNF. Further assume
that the current CNF already contains a clauseD which is subsumed byC, or more
formallyC⊆D. Then the signature ofC is a subset of the signature ofD, which in turn
is a subset of the signatures of all the literals inD. Since all the literals ofC are also
literals ofD, we obtain the necessary condition,σ(C) ⊆ σ(l) for all literals l ∈C. The
signatureσ(l) is still calculated with respect to the current CNF, to whichC has not
been added yet.

If this necessary condition fails, then no clause in the current CNF can be backward
subsumed by the new clause. In this case our caching scheme using signatures is suc-
cessful and we call it a cache hit. Otherwise, in the case of a cache miss, we need to
traverse all clausesD of an arbitrary literal in the new clause, and explicitly check for
C⊆ D. To minimize the number of visited clauses, we take the literal with the smallest
number of occurrences. During the traversal, inclusion of signatures is a necessary con-
dition again. This can easily be checked, since the signature of a clause is constant, and
can be saved.

In practice, the overhead of maintaining signatures and checking for backward sub-
sumption in the way just described turns out to be low. For forward subsumption no
such efficient solution exists, and thus, forward subsumption, in our implementation, is
only invoked before expensive operations, like expansion. Then we remove all clauses,
flush signatures and add back the clauses in reverse chronological order.

Finally, if a clauseC is added to the CNF, the signatures of all its literalsl ∈ C
have to be updated. However, if a clause is removed, hash collision does not allow to
subtract its signature from all the signatures of its literals. Therefore we just keep the
old signatures as an over approximation instead. After a certain number of clauses are
removed a recalculation of accurate clause signatures is triggered.

4.3 Tree-Like Prefix

We also realized that there are situations in which a linear quantifier prefix is not optimal
and the basic expansion step as described above copies too many clauses. Consider the
QBF

∃x . ∀y,u . ∃z,v . f1(x,y,z)∧ f2(x,u,v)

It is a linearization of the following formula with a tree-like prefix:

∃x

∀y
∧ ∀u

∃z ∃v
f1(x,y,z) f2(x,u,v)

The result of expandingy as described above would contain redundant copies of clauses
from f2 and vice versa redundant copies off1 when expandingu. In general, this prob-
lem can be coped with in the copying phase of expansion. The idea is to copy only those
clauses that contain a variable connected to the expanded variable. In this context we
call a variablelocally connectedto another variable if both occur in the same clause.
The relationconnectedis defined as the transitive closure oflocally connected, ignor-
ing variables smaller than the expanded variable and all other universal variables in the
same scope.

This technique is cheap to implement and avoids to pay the price for one single
expansion. But we have not found an efficient way to use the information about tree
like scopes to generate better elimination schedules on-the-fly.

5 Scheduling

The remaining problem, and one of our key contributions, is an efficient algorithm
for on-the-fly generation of elimination schedules. Our scheduler has to answer the
question, which of the variables inS∃ ∪S∀ to eliminate next. As a cost function for
choosing the next variable we try to minimize the size of the CNF after elimination.
The size is measured in number of literals, which is equal to the sum of sizes of all
clauses. We separately calculate for each variable a pessimistic but tight upper bound

on the number of literals added, if the variable is eliminated. The variable with the
smallest bound, which can be negative, is chosen.

For each literall we maintain two counters reflecting the number of occurrences o(l)
and the sum s(l) of the sizes of the clauses in whichl occurs. These counters need to be
updated only when a clause is added or removed. The update is linear in the clause size.
This also shows that the obvious alternative cost function, which minimizes the number
of added clauses instead of literals, is less precise, without improving complexity. For
each existential scopeSwe maintain a counter reflecting the sum s(S) of the sizes of its
clauses.

5.1 Expansion Cost

For the expansion ofv ∈ S∀ in Eqn. (1) according to Sec. 3.2 a tight upper bound on
the number of added literals is calculated as follows. Firstf would be copied, which
adds s(S∃) literals. In f clauses are removed in whichv occurs negatively, in the copy
f ′ clauses are removed in whichv occurs positively. This means subtracting both s(v)
and s(¬v) from s(S∃). We also have to take care of the single literals removed, and the
cost for eliminatingv by expansion becomes

s(S∃) −
(
s(v)+s(¬v)+o(v)+o(¬v)

)
For allv∈S∀ the term s(S∃) is the same. Thus we only need to order these variables with
respect to−

(
s(v)+s(¬v)+o(v)+o(¬v)

)
, which does not depend on other literals.

This is essential for efficiency. In our implementation we use a separate heap based
priority queue for each scope.

5.2 Resolving Cost

For the elimination of an existential variablev∈S∃ in Eqn. (1) according to Sec. 3.1 the
calculation of a tight upper bound is similar but more involved. Consider Fig. 1. The
literals on the left side, exceptv are copiedo(¬v) times, which results ino(¬v) · (s(v)−
o(v)) added literals. The number of copies of literals from the right side is calculated in
the same way. Finally we have to remove all original literals, which all together results
in the following cost, which again only depends on one variable:

o(¬v) ·
(
s(v) − o(v)

)
+ o(v) ·

(
s(¬v) − o(¬v)

)
−

(
s(v) + s(¬v)

)
As the example of Fig. 1 shows, this expression is only an upper bound on the cost of
eliminating an existential variable by resolution. The bound is tight as the following
example shows. Take the set of variables on each side of Fig. 1. If the intersection of
these two sets only containv, and all variables are existential, then the number of added
literals exactly matches the bound.

Note that for bad choices ofv calculating the multiplication may easily exceed the
capacity of 32 bit integer arithmetic. Since variables with large costs can not be elimi-
nated anyhow, we used saturating arithmetic with an explicit representation of infinity
instead of arbitrary precision arithmetic.

5.3 Further Scheduling Heuristics

There are two exceptions to the scheduling heuristics just presented. First, as long as the
minimal cost to eliminate an existential variable inS∃ is smaller than a given boundE,
we eliminate the cheapest existential variable by resolution. This technique is also ap-
plied to pure propositional formulas. In this wayquantor can be used as a preprocessor
for SAT.

In our experiments, it turned out that in many cases, forcing the formula not to
increase in size by settingE = 0, already reduces the final formula considerably. How-
ever, allowing small increases in size works even better. For scheduling purposes we
useE = 50. This bound should probably be smaller ifquantor is only used for prepro-
cessing propositional formulas.

Another additional scheduling heuristics monitors the literals per clause ratio of the
clauses with scopeS∃. If it reaches a certain threshold, 4.0 in our implementation, an
expansion is forced. After each forced expansion the threshold is increased by 10%.
The reasoning behind forced expansion is as follows. A small literals per clause ratio
increases the likelihood that the optimizations of Sec. 4 are applicable. In this sense,
the scheduler should slightly bias decisions towards expansion instead of resolving, in
particular, if the literals per clause ratio is high.

6 Experiments

We focus on structured instances, also called non-random, because we believe them to
be more important for practical applications. As SAT solver we usedfunex, our own
state-of-the-art SAT solver. It has not particularly been tuned towards our application.
We have also seen rare cases wherefunex performs considerably worse than other SAT
solvers, on SAT formulas generated byquantor.

In the first experiment we targeted the non random benchmarks of the SAT’03 eval-
uation of QBF [11] and comparedquantor againstsemprop [12], the most efficient
solver on these benchmarks in the evaluation [11]. We addeddecide [17] andqube
with learning [9] as reference. In order to measure the effect of optimizations and using
Q-resolution we also configuredquantor in expandonly mode. In this mode the sched-
uler always chooses expansion and all the optimizations are switched off. Exceptions
are the pure literal rule, simplification by unit resolution, and forall reduction. This con-
figuration, markedexpandin Tab. 1, almost matches the original algorithm of the first
version ofquantor, which took part in SAT’03 evaluation of QBF [11].

As platform for this experiment we used an Intel Pentium IV 2.6 GHz with 1.5 GB
main memory running Debian Linux. The results in Tab. 1 are clustered in families of
benchmarks. For each family we count the number of instances solved in the given time
limit of 32 seconds and memory limit of 1 GB. The numbers of families solved are
printed in bold for best solvers. For a single best solver the numbers are underlined.

The comparison of the last two columns shows that expansion alone is very weak,
and our new optimizations are essential to obtain an efficient state-of-the-art expansion
based QBF solver. The number of cases in whichquantor is among the best solvers for
a family is the same as forsemprop. There are four more families, for whichquantor

benchmark family #inst decide qube semprop expandquantor

1 adder* 16 2 2 2 1 3
2 Adder2* 14 2 2 2 2 3
3 BLOCKS* 3 3 3 3 3 3
4 C[0-9]* 27 2 3 2 3 4
5 CHAIN* 11 10 7 11 4 11
6 comp* 5 4 4 5 5 5
7 flip* 7 6 7 7 7 7
8 impl* 16 12 16 16 16 16
9 k* 171 77 91 97 60 108

10 logn* 2 2 2 2 2 2
11 mutex* 2 1 2 2 2 2
12 qbf* 695 518 565 694 130 210
13 R3CNF* 27 27 27 27 25 21
14 robots* 48 0 36 36 15 24
15 term1* 4 2 3 3 1 3
16 toilet* 260 187 260 260 259 259
17 TOILET* 8 8 6 8 8 8
18 tree* 12 10 12 12 8 12
19 vonN* 2 2 2 2 2 2
20 z4ml* 13 13 13 13 13 13

#(among best in family) 6 12 16 9 16
#(single best in family) 0 0 1 0 4

Table 1.Number solved instances for benchmarks families of the QBF evaluation 2003.

is the single best solver, three more than forsemprop. Also note, that the families qbf*
and R3CNF*, on whichquantor performs poorly compared to the other solvers, can
actually be considered to be randomized.

A detailed analysis revealed thatquantor was able to solve 10 instances classified
ashard in [11]. These hard formulas could not be solved by any solver in 900 seconds
during the SAT’03 evaluation of QBF [11]. In a second experiment we restricted the
benchmark set to these hard instances, a far smaller set.

The new time limit was set to 800 seconds to accommodate for the slightly faster
processor (2.6 GHz instead of 2.4 GHz in [11]). As predicted by the evaluation results in
[11] all solvers exceptquantor timed out on these instances. The results forquantor are
presented in Tab. 2. Only solved instances are listed and are not clustered into families,
e.g. C49*1.*0 0* is the single instance with file name matching this pattern.

In all but two of the cases where the full version ofquantor succeeded theex-
pandonly version quickly reached the memory limit of 1 GB. We note the time until
the memory limit was reached in parentheses. It is also remarkable that the memory re-
quirements forquantor have a large variance. The columns∀ and∃ contain the number
of universal quantifications by expansion and existential quantifications by resolution
respectively.

expand quantor

hard instance time space∀ time space∀ ∃ units pure subsu. subst. ∀red.

1 Adder2-6-s (12.2) m.o. – 29.6 19.7 90 13732 126 13282 174081 0 37268
2 adder-4-sat (12.1) m.o. – 0.2 2.8 42 1618 0 884 6487 0 960
3 adder-6-sat (13.0) m.o. – 36.6 22.7 90 13926 0 7290 197091 0 54174
4 C49*1.* 0 0* 98.3 40.8 1 27.9 13.3 1 579 0 0 48 84 0
5 C5*1.* 0 0* 357.0 45.6 2 56.2 16.0 2 2288 10 0 4552 2494 0
6 k pathn-15 (16.5) m.o. – 0.1 0.8 32 977 66 82 2369 2 547
7 k pathn-16 (16.6) m.o. – 0.1 0.8 34 1042 69 85 2567 2 597
8 k pathn-17 (16.2) m.o. – 0.1 0.9 36 1087 72 100 3020 2 639
9 k pathn-18 (16.8) m.o. – 0.1 0.9 36 1146 76 106 3242 2 725

10 k pathn-20 (21.4) m.o. – 0.1 0.9 38 1240 84 149 3967 2 855
11 k pathn-21 (21.0) m.o. – 0.1 1.0 40 1318 84 130 4470 2 909
12 k t4p n-7 (16.8) m.o. – 15.5 105.843 88145 138 58674 760844 8 215
13 k t4p p-8 (21.4) m.o. – 5.8 178.629 12798 206 5012 85911 4 138
14 k t4p p-9 (21.2) m.o. – 0.3 4.5 32 4179 137 1389 23344 10 142
15 k t4p p-10 (17.3) m.o. – 27.9 152.935 130136 193 63876 938973 4 137
16 k t4p p-11 (17.3) m.o. – 86.0 471.538 196785 204 795471499430 4 140
17 k t4p p-15 (21.3) m.o. – 84.6 354.750 240892 169 1816761336774 9 226
18 k t4p p-20 (20.9) m.o. – 3.6 16.1 65 27388 182 21306 197273 11 325

time in seconds, space in MB, m.o. = memory out (> 1 GB)

Table 2.Solved hard instances of SAT’03 evaluation of QBF.

We added columns containing the numbers of unit simplifications, applications of
the pure literal rule, subsumed clauses, applied substitutions, and number of removed
literals due to forall reduction (∀red). With the exception of subsumption, all optimiza-
tions are rather cheap with respect to run-time overhead, and as the data suggests, should
be implemented. In particular the high number of pure literals in solving some instances
is striking. Substitution does not seem to be important. More important, though also
more costly, is subsumption.

For the two hard C[0-9]* instances covered in Tab. 2 more than 99% of the time was
spent in the SAT solver. For the other solved hard instances no call to a SAT solver was
needed. In an earlier experiment we used a slightly slower computer, an Alpha ES40
Server running at 666 MHz. The time limit was set to one hour, and the memory limit to
8 GB. In this setting, we were able to solve two more of the hard C[0-9]* benchmarks
(with names matching C43*out*) in roughly 2500 seconds each. Again most time was
spent in the SAT solver. Except for those reported in Tab. 2, no further hard instance of
[11] could be solved within these limits.

We also like to report on experiments involving benchmarks from QBFLIB, which
turned out to be very simple forquantor. These include two families of benchmarks
consisting of the 10 impl* instances and the 14 tree* instances. These 24 instances can
be solved altogether in less than 0.1 seconds.

One of the most appealing aspects of QBF is, that an efficient QBF solver may also
be used forunboundedmodel checking via the translation of [18,20], also described
in [17]. This translation needs only one copy of the transition relation but requires 2· l

alternations of quantifiers, wherel = dlog2re andr is the initialized diameter (radius)
of the model. In a boolean encodingl can be bounded by the number of state bitsn.
To check the hypothesis that QBF can be used for model checking in this way, we
generated models of simplen-bit hardware counters, with reset and enable signal.

We check the invalid simple safety property, that the all-one state is not reachable
from the initial state where all state bits are zero. This is the worst-case scenario for
bounded model checking [3] since 2n−1 steps are necessary to reach the state violating
the safety property. Symbolic model checking [13] without iterative squaring needs 2n

fix point iterations. However, the size of the result of the translation of this problem to
QBF is quadratic inn, the width of the counters.

With a time out of 60 secondsdecidecould only handle 3-bit-counters,qube and
sempropup to 4 bits, whilequantor solved 7 bits, matching the result by plain BMC
with the same SAT solver. Since this example is very easy for BDD-based model check-
ing, it is clear that QBF based model checking still needs a long way to go.

7 Conclusion

The basic idea of our QBF decision procedure is to resolve existential and expand uni-
versal variables. The key contribution is the resource-driven, pessimistic scheduler for
dynamically choosing the elimination order. In combination with an efficient imple-
mentation of subsumption we obtain an efficient QBF solver for quantified CNF.

As future work we want to explore additional procedures for simplifying CNF and
combine bottom-up elimination with top-down search. It may be also interesting to look
into other representations, such as BDDs or ZBDDs.

Finally, we would like to thank Uwe Egly and Helmuth Veith for insisting on the
argument that there is a benefit in not only focusing on a linear prefix normal form. Ac-
knowledgements also go to Rainer Hähnle, whose comments triggered the optimization
of our subsumption algorithm.

References

1. A. Ayari and D. Basin. QUBOS: deciding quantified boolean logic using propositional sat-
isfiability solvers. InProc. 4th Intl. Conf. on Formal Methods in Computer-Aided Design
(FMCAD’02), volume 2517 ofLNCS. Springer, 2002.

2. P. Aziz Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis based on SAT-solvers.
In Proc.6th Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’00), volume 1785 ofLNCS. Springer, 2000.

3. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model Checking without BDDs.
In Proc.5th Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’99), volume 1579 ofLNCS. Springer, 1999.

4. M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate quantified boolean
formulae. InProc. 16th National Conference on Artificial Intelligence (AAAI-98), 1998.

5. P. Chatalic and L. Simon. ZRes: The old Davis-Putnam procedure meets ZBDDs. In17th
Intl. Conf. on Automated Deduction (CADE’17), volume 1831 ofLNAI, 2000.

6. P. Chauhan, E. M. Clarke, and D. Kröning. Using SAT based image computation for reach-
ability analysis. Technical Report CMU-CS-03-151, Carnegie Mellon University, 2003.

7. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.Com-
munications of the ACM, 5, 1962.

8. M. Davis and H. Putnam. A computing procedure for quantification theory.Journal of the
ACM, 7, 1960.

9. E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning for quantified boolean logic sat-
isfiability. In Proc. 18th National Conference on Artificial Intelligence (AAAI’02), 2002.

10. H. Kleine B̈uning, M. Karpinski, and A. Fl̈ogel. Resolution for quantified boolean formulas.
Information and Computation, 117, 1995.

11. D. Le Berre, L. Simon, and A. Tacchella. Challenges in the QBF arena: the SAT’03 evalu-
ation of QBF solvers. InProc. 6th Intl. Conf. on Theory and Applications of Satisfiability
Testing (SAT’03), volume 2919 ofLNCS. Springer, 2003.

12. R. Letz. Lemma and model caching in decision procedures for quantified boolean formulas.
In Proc. Intl. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX’02), volume 2381 ofLNCS. Springer, 2002.

13. K. L. McMillan. Symbolic Model Checking: An approach to the State Explosion Problem.
Kluwer Academic Publishers, 1993.

14. K. L. McMillan. Applying SAT methods in unbounded symbolic model checking. In
Proc. 14th Intl. Conf. on Computer-Aided Verification (CAV’02), volume 2404 ofLNCS.
Springer, July 2002.

15. M. Mneimneh and K. Sakallah. Computing vertex eccentricity in exponentially large graphs:
QBF formulation and solution. InProc. 6th Intl. Conf. on Theory and Applications of Satis-
fiability Testing (SAT’03), volume 2919 ofLNCS. Springer, 2003.

16. D. Plaisted, A. Biere, and Y. Zhu. A satisfiability procedure for quantified boolean formulae.
Discrete Applied Mathematics, 130(2), 2003.

17. J. Rintanen. Partial implicit unfolding in the Davis-Putnam procedure for quantified boolean
formulae. InInternational Conference on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR’01), 2001.

18. W. J. Savitch. Relation between nondeterministic and deterministic tape complexity.Journal
of Computer and System Sciences, 4, 1970.

19. R. Sekar, I. V. Ramakrishnan, and A. Voronkov. Term indexing. InHandbook of Automated
Reasoning, volume II. North-Holland, 2001.

20. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In5th Annual
ACM Symposium on the Theory of Computing, 1973.

21. P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining decision diagrams and SAT
procedures for efficient symbolic model checking. InProc. 12th Intl. Conf. on Computer
Aided Conf. Verification (CAV’00), volume 1855 ofLNCS. Springer, 2000.

22. L. Zhang and S. Malik. Conflict driven learning in a quantified boolean satisfiability solver.
In Proc. Intl. Conf. on Computer-Aided Design (ICCAD’02), 2002.

