
Adaptive Restart Control
for Conflict Driven SAT Solvers

Armin Biere

Johannes Kepler University, Linz, Austria

Abstract. As the SAT competition has shown, frequent restarts im-
prove the speed of SAT solvers tremendously, particularly on satisfiable
industrial instances. This paper presents a novel adaptive technique that
measures the agility of the search process dynamically, which in turn is
used to control the restart frequency. Experiments demonstrate, that this
new dynamic restart strategy improves speed of our SAT solver PicoSAT
on crafted instances considerably and on industrial instances slightly.

1 Introduction

SAT solvers may benefit from restarts [3]. Particularly on satisfiable industrial
examples frequent restarts improved the performance of our SAT solver PicoSAT
[1] tremendously. Even though PicoSAT is a winner of the SAT competition
2007 in the category of satisfiable industrial instances, an analysis of PicoSAT’s
performance on unsatisfiable instances in general and on crafted instances in
particular reveals, that frequent restarts can also be harmful.

In this short paper we address this issue and present a novel adaptive tech-
nique that measures the “agility” of the SAT solver as it traverses the search
space, based on the rate of recently flipped assignments. The level of agility dy-
namically determines the restart frequency. Low agility enforces frequent restarts,
high agility prohibits restarts. Our experiments demonstrate, that this new dy-
namic restart strategy improves the speed of PicoSAT on crafted instances con-
siderably and on industrial instances slightly.

As has been argued in [3] combinatorial search has heavy-tail behavior. Even
if an instance is easy to satisfy (or to refute), the search may get stuck in a
complex part of the search space. As a solution to this problem, the authors
suggest to use randomization, and in particular restarts. To restart means to
stop the current search after a certain time has passed and start over again.

Our focus is on industrial and crafted instances. For random benchmarks
randomized algorithms are more successful. There has been work on dynamic
restart algorithms for randomized search, see for instance [4, 6]. This work is not
applicable to our setting. We want to improve the performance of conflict driven
SAT solvers with learning, such as RSAT [9] and PicoSAT [1]. Additionally these
solvers always pick the last assignment for a decision variable. Enforcing these
heuristics without learning makes restarts useless. Furthermore, statistics, such
as the number of satisfied clauses, which are crucial in adaptive restart scheduling
for local search [4], are not available in the solvers we want to improve.



Techniques, as implemented in the SAT solver TiniSAT [5] inspired by [7]
and further improved in RSAT [9] and PicoSAT [1], show, that frequent restarts
in combination with saving and reusing the previous phase can speed up SAT
solvers on industrial instances tremendously, particularly on satisfiable ones. In
this category PicoSAT was a clear winner of the SAT’07 Competition.

Beside fast low level data structures [1], the major improvement in version
535 of PicoSAT as submitted to the SAT’07 Competition, is an aggressive restart
schedule in combination with saving and reusing phases of assigned variables:
The first restart occurs after 100 conflicts. Then this restart interval is increased
by 10%, which means the next restart happens after another 110 conflicts, then
after another 121 conflicts etc. However, this sequence of longer and longer in-
ner restart intervals is reset to its initial value of 100 conflicts after the end of
an outer restart interval is reached. Then the outer restart interval is also in-
creased by 10%. This results in “bursts” of restarts. The restart frequency in one
burst sequence slows down at the end and its length, the burst duration, slowly
increases over time. More details can be found in [1].

RSAT [9] follows TiniSAT [5] with respect to restarts. Both have a less ag-
gressive restart strategy than PicoSAT. They also do use the same kind of pre-
processing [2] as MiniSAT. As a result RSAT, TiniSAT and MiniSAT turned
out to be faster than PicoSAT on unsatisfiable industrial instances. On unsat-
isfiable crafted instances the situation is even worse. PicoSAT and in this case
also RSAT can solve far less benchmarks than MiniSAT.

After this analysis it seems a valid conjecture, that frequent restarts may also
be harmful, particularly on unsatisfiable crafted instances. The question then is,
how to measure the effectiveness of frequent restarts, or better, to determine
criteria, when to disable restarts.

2 Measuring Agility

In all our recent SAT solvers we monitor the average decision height and print
it as a kind of progress report. The average decision height is calculated by
summing up the decision levels at decision points and dividing the result by the
number of decisions. If the average decision height is going up, we are “close”
to a satisfying assignment. If the average decision height goes down1, the solver
will eventually resolve the empty clause, or at least some new unit clauses, and
its getting “closer” to a refutation. Intuitively the solver is stuck if the average
height is not changing much, and it may be a good idea to restart. On the other
hand restarts should not happen if the average decision height is changing fast.

Our first failed attempt to dynamically control restarts was based on this
observation. Restarts are disabled if the derivative of the average decision height
becomes small. However, we were not able to get any positive results. In partic-
ularly, it seems to be impossible to come up with good “magic constants”. The
absolute values of the derivative of the average decision height varies consider-
ably from instance to instance.
1 This only applies to a conflict driven SAT solver with learning.



2.1 Flips

As pioneered by RSAT [9], PicoSAT always picks the last phase resp. direction
to which a variable was assigned when assigning a decision variable. For instance
if a decision variable was assigned to true, the last time it was assigned, then
again it is assigned to true. If a variable is picked as decision variable and was not
assigned before, then the phase is picked depending on the number of positive
resp. negative occurrences.

Therefore, whenever a variable becomes assigned to a certain value, in partic-
ular if the assignment is forced by some other decision, PicoSAT and RSAT have
to remember this value. During backtracking the variable is unassigned again,
but the old value is saved.

This apparatus easily allows to determine when a new forced2 assignment
to a variable flips the old value of the variable. Flipping the value of a variable
means, that it is assigned to the opposite value, as it was assigned the last time.

Clearly, if the frequency of flips is small, then the SAT solver literally does not
move much, using for instance hamming distance in the boolean space as metric.
This may be a good time to restart. On the other hand if many flips have occurred
recently then there is no point in restarting, it may be even counterproductive.

2.2 A Fresh Look at VSIDS

In order to obtain a robust metric for measuring agility, we follow a reformulation
of the seminal work on VSIDS [8]. The basic idea of VSIDS is to concentrate on
those variables that recently were involved in conflicts: a variable v is involved
in a conflict, if v is resolved in the conflict analysis to produce the learned clause
or is contained in the learned clause.

Every variable has a counter, called the VSIDS score, which counts how often
this variable was used in deriving a learned clause. This counter essentially sums
up all these involvements. However, and this is the intriguing idea of VSIDS, it
is much better to slowly forget past involvement. Variables with higher VSIDS
score are picked as decision variable, which increases the focus of the search.
Explaining the effectiveness of VSIDS is out of the scope of this paper.

One way to implement this scheme, is to multiply the VSIDS counters of all
variables not involved in the current conflict by a constant factor3 0 < f < 1,
but not change the counters of involved variables. However, this does not quite
work, because the counters will never increase. The solution is to first punish all
variables by multiplying their score with f , including variables involved in the
conflict, and only then additionally increment the score of the latter by 1− f .

s, f ≤ 1, then s′ ≤ s

decay in any case︷︸︸︷
· f + 1− f︸ ︷︷ ︸

increment if involved

≤ f + 1− f = 1

2 An assignment for a decision variable will always use the old value according to the
direction resp. phase saving and reusing heuristics.

3 MiniSAT, RSAT: f = 95% ≈ 1/1.05, PicoSAT: f = 1/1.1 ≈ 91%



This reformulation of VSIDS [8] has the benefit that it produces a rational
number between 0 and 1, and can be interpreted as the percentage of the number
of times a variable was involved in a conflict “recently”. Unfortunately we do
not have a more precise definition for “recently” at this moment.

The details are as follows. Let δn denote the normalized nth increment of a
variable v in the nth conflict. It is either 0 if v is not involved in the nth conflict,
or 1 if v is involved, and we have in = (1 − f) · δn for the actual increment in.
Then the nth score sn of v after conflict n can be calculated as

sn = (. . . (i1 ·f + i2) ·f + i3) ·f · · ·) ·f + in =
n∑

k=1

ik ·fn−k = (1−f) ·
n∑

k=1

δk ·fn−k

which we call normalized VSIDS (NVSIDS).
In practice it is too costly to update the VSIDS resp. NVSIDS score of all

variables at every conflict, in particular for industrial examples. In the original
Chaff implementation, this overhead is avoided, by accumulating and delaying
punishment: variables are only punished after 256 conflicts have passed, by mul-
tiplying their score by 0.5. Meanwhile involvements increment the score by 1.

MiniSAT 1.13 has shown that it is also possible, much more accurate, more
efficient and more effective to just update the scores of variables involved in the
conflict. The same scheme is used in PicoSAT and in the following we explain
and relate this optimized score calculation to our NVSIDS.

In MiniSAT’s new exponential VSIDS scheme (EVSIDS) variables are not
punished, but the EVSIDS score Sn has to be interpreted as sn · f−n/(1 − f),
where n is the number of conflicts and sn is the NVSIDS score. The increment
becomes fn at the nth conflict and with Ik = δk · f−k we get

sn = (1− f) ·fn ·
n∑

k=1

δk · f−k = (1− f) · fn ·
n∑

k=1

Ik = (1− f) · fn · Sn

As the equation shows the EVSIDS score is linearly related to NVSIDS and thus
can be used instead of NVSIDS to compare activity of variables. Moreover, it can
be kept up-to-date by just adding f−k to the score of those variables involved in
the kth conflict. The EVSIDS scores of other variables, which are usually many
more, do not have to be touched.

2.3 Average Number of Recently Flipped Assignments (ANRFA)

To obtain a concrete metric for the agility a we follow the same idea as our
NVSIDS reformulation of VSIDS. The global variable a is initialized to zero and
intuitively measures the average number of recently flipped assignments.

Whenever a variable v is forced to be assigned, a is updated. First a is mul-
tiplied by 0 < g < 1. If the assignment is a flip, e.g. it assigns the opposite value
as in the previous assignment to v, then we increment a by 1− g. Assignments
of decision variables and variables not assigned before do not increment a. As



SAT Race’06 SAT Competition’07

industrial crafted

adaptive sat unsat solved sat unsat solved sat unsat solved

MiniSAT 2.0 no 32 38 70 37 57 94 22 46 68
orig. RSAT 2.0 no 38 36 74 41 51 92 10 20 30

AAS-RSAT no 33 33 66 45 48 93 11 21 32
AAS-RSAT 25% yes 34 32 66 44 49 93 11 24 35
AAS-RSAT 30% yes 36 33 69 48 48 96 12 23 35

PicoSAT 741 no 35 39 74 43 54 97 14 24 38
PicoSAT 741 yes 36 39 75 44 57 101 16 36 52

Table 1. Number of solved instances: “adaptive = no” is without dynamic restart
control, “adaptive = yes” uses the ANRFA agility a to disable backtracking. Columns
sat, unsat, and solved denote the number of solved satisfiable instances, then the num-
ber of unsatisfiable instances, and the sum of these two numbers. Time out is only 900
seconds which matches the one used in the SAT Race’06, but is much less than the time
limit in the SAT Competition’07. The three rows with AAS-RSAT, show the number
of solved instances for a modified version of RSAT, which is more similar to PicoSAT.
The percentages “25%” and “30%” are the two values on the limit of the ANRFA
agility a. Above this limit AAS-RSAT does not backtrack if a restart is scheduled.

discussed for NVSIDS this enforces 0 ≤ a ≤ 1, if we start with a = 0:

a, g ≤ 1, then a′ ≤ a

decay in any case︷︸︸︷
· g + 1− g︸ ︷︷ ︸

increment if flipped

≤ g + 1− g = 1

Also note that we do not need an “exponential” reformulation of EVSIDS as for
VSIDS, because there is only one single global agility counter.

A value of g = 0.9999 = 1−1/10000 was effective in our experiments. Slightly
different values did not change the result much (in contrast to f in VSIDS). Note,
that there are orders of magnitude more assignments than conflicts in a SAT run
and therefore g naturally has to be much closer to 1 than f .

We logged a over industrial and crafted benchmarks on which the old version
of PicoSAT performed much worse than competitors. It turned out that in those
cases, where we conjectured that restarts should be slowed down, the agility a
varied between 15% and 40%. For many industrial benchmarks a was way below
20%. Therefore we picked 20% as the limit at which a scheduled inner restart is
disabled. Outer restarts are only disabled if the agility reaches 25% and more.
Slightly different values do not change experimental results much.

The restart schedule controls the garbage collection limit for learned clauses,
as in MiniSAT. Thus the restart schedule per se should not change. If a sched-
uled restart is disabled resp. skipped the solver simply does not backtrack and
continues at the same decision level.



3 Experiments

We added calculating ANRFA and the adaptive restart strategy to PicoSAT and
measured its effect on the SAT Race’06 instances and the SAT’07 Competition
benchmarks with a time out of 900 seconds and a memory limit of 1.5 GB on
Linux PCs with 3 GHz Pentium IV. As Tab. 1 shows we slightly improved on
industrial examples. PicoSAT with the adaptive restart schedule can solve 36%
more crafted instances. This is mainly due to the improvement on unsatisfiable
instances, where 50% more instances are solved.

We also implemented the suggested adaptive technique in RSAT 2.0, the
version submitted to the SAT’07 Competition. Before we changed the basic
restart interval from 512 to 100 as in PicoSAT and always enforced saving and
reusing phases to match PicoSAT more closely. This results in an “aggressive
always saving” RSAT, called AAS-RSAT, with and without adaptive restart
control. Using adaptive control for restarts in RSAT is not as impressive as for
PicoSAT, but we did not spend much time to optimize magic constants either.

4 Conclusion and Future Work

We presented a new adaptive restart strategy, which slows down restarts if
the agility of the SAT solver is high. The key insight is to apply the same
filtering technique to the number of flipped assignments as in a new reformula-
tion of VSIDS. For PicoSAT considerable performance improvements have been
achieved. In future work we want to apply similar ideas to dynamically control
the number of garbage collected clauses resp. the limit on the number of conflicts.

References

1. A. Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Com-
putation, 2008. submitted.

2. N. Eén and A. Biere. Effective preprocessing in SAT through variable and clause
elimination. In Proc. SAT’05.

3. C. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through ran-
domization. In Proc. AAAI’98.

4. H. Hoos. An adaptive noise mechanism for WalkSAT. In Proc. AAAI’02.
5. J. Huang. The effect of restarts on the eff. of clause learning. In Proc. IJCAI’07.
6. H. Kautz, E. Horvitz, Y. Ruan, B. Selman, and C. Gomes. Dynamic restart policies.

In Proc. AAAI’02.
7. M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas algorithms.

Information Processing Letters, 47, 1993.
8. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering

an efficient SAT solver. In Proc. DAC’01.
9. K. Pipatsrisawat and A. Darwiche. RSat 2.0: SAT solver description. Technical

Report D–153, Automated Reasoning Group, Comp. Science Dept., UCLA, 2007.


