
Consistency Checking of All Different Constraints
over Bit-Vectors within a SAT Solver

minor fixes marked blue

Armin Biere and Robert Brummayer
Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

Email: {armin.biere,robert.brummayer}@jku.at

Abstract—This paper shows how all different constraints
(ADCs) over bit-vectors can be handled within a SAT solver.
It also contains encouraging experimental results in applying
this technique to encode simple path constraints in bounded
model checking. Finally, we present a new compact encoding
of equalities and inequalities over bit-vectors in CNF.

I. INTRODUCTION

Many applications require to reason about inequalities over
bit-vectors. More specifically, one is often interested in con-
straining bit-vectors to be pairwise different. In SAT based
bounded model checking [1] such all different constraints
(ADCs) are used to model simple paths (loop-free paths),
which are used to compute occurrence diameters (length of
longest loop-free paths) [1], or reverse occurrence diameters
for k-induction [2].

A straight-forward encoding of ADCs over bit-vectors to
SAT is obviously quadratic in the number of bit-vectors. There
are linear QBF encodings [3]–[5], but currently available QBF
solvers have a hard time to take advantage of these more
compact encodings. Non symbolic algorithms from constraint
programming, such as [6], [7], are not applicable due to the
large domain sizes of bit-vectors, e.g. a 32 bit-vector variable
has a domain size of 232 possible values.

In this paper we show how ADCs over bit-vectors can be
embedded into a SAT solver. The technique is similar to the
lazy approach in satisfiability modulo theories (SMT). See [8]
for a recent survey on (lazy) SMT. In contrast to previous
work [9], ADCs are checked inside the SAT solver. In our
application ADCs are used to encode simple path constraints
for k-induction [2].

We propose a new and effective way to extend a standard
SAT solver to the theory of symbolic ADCs over bit-vectors.
Our approach avoids costly restarts. Lemmas, generated for
ADCs, are marked as learned clauses, which can be garbage
collected. Furthermore, we present an efficient incremental
consistency checking algorithm for symbolic all different
constraints over bit-vectors. This technique allows us to solve
many instances for which the classical approach [9] of incre-
mentally adding bit-vector inequalities on demand fails. We
always need less memory and also less time if we combine
our technique with the refinement based approach [9].

II. EXTERNAL CONSISTENCY CHECKING OF ADCS

Let s1, s2, . . . , sm be bit-vectors of width n and si(l) denote
the l-th bit of bit-vector si. Then a simple but quadratic bit-
level encoding of the ADC over the si is as follows:

adc(s1, . . . , sm) ≡
∧
i<j

si 6= sj ≡
∧
i<j

n∨
l=1

si(l)⊕ sj(l)

where ⊕ denotes XOR. However, it turns out that in actual
applications not all inequalities si 6= sj are required. Of-
ten, a small subset of inequalities is sufficient to conclude
unsatisfiability. A standard technique to take advantage of
this observation is to encode these inequalities lazily, and not
eagerly [9], [10]. An inequality encoding is only added if
the SAT solver returns a satisfying assignment that violates
this particular inequality. In this case the SAT solver is
restarted and the process continues until either a consistent
assignment is found, or the SAT solver concludes the formula
to be unsatisfiable. This technique is similar to an abstraction
refinement loop in CEGAR [11].

However, in the worst case still quadratic many inequalities
in m need to be encoded. Additionally, checking consistency
outside of the SAT solver is expensive in this classical refine-
ment based approach [9].

Consistency of a satisfying assignment returned by the SAT
solver with respect to an ADC can be checked by either sorting
the bit-vectors by their assigned values, or by hashing bit-
vectors with their assigned values as key. In any case this
check is linear in m · n. Furthermore, the SAT solver has
to be restarted. Finally, inconsistency can only be determined
after the SAT solver generated a full assignment.

III. INTERNAL CONSISTENCY CHECKING OF ADCS

Our main contribution is a new consistency checking algo-
rithm. It handles ADCs inside the SAT solver, which is an
instance of Satisfiability Modulo Theories SMT.

To handle an ADC the SAT solver just needs its list of
bit-vectors, which in turn are represented as lists of literals.
These bit-vectors are added through the API in the same way
as clauses. The size of the internal representation of these bit-
vectors is linear in m, the number of bit-vectors in the ADC,
and not quadratic in m as in an eager encoding. Internally,
these bit-vectors are copied into all different objects (ADOs),

which contain a list of literals for the individual bits of the
bit-vector, and a reference to the ADC they belong to.

One unassigned literal is watched in each ADO. This
technique is similar to the two watching literal scheme of
CHAFF [12], in which two unassigned literals per clause are
watched. Whenever a watched literal becomes assigned, a new
unassigned literal has to be found. If the search fails and
all literals of an ADO are assigned, then the watched literal
remains unchanged.

In the latter case all literals of the bit-vector are assigned.
This concrete assignment to the bit-vector, represented by an
ADO, is used as key to a hash table, associated with each
ADC. In this table the ADOs of the ADC are stored. If another
ADO with the same key is already in the hash table, an ADC
inconsistency has been found. Otherwise, the fully instantiated
ADO is entered into the hash table.

If a conflict occurs, a temporary clause of length 2 · n is
constructed. It contains the negation of all literals in the two
bit-vectors, which have been assigned to equal values. This
clause is a conflicting clause in the current assignment and is
used as starting point for conflict analysis [13]. After a new
learned clause is generated from this conflict, the temporary
clause is discarded. Using a temporary clause avoids changing
the procedure for analyzing the implication graph.

We should emphasize again, that neither the temporary
clause is added to the CNF, nor a symbolic representation
of the inequality of which this clause is an instance. Only
clauses learned through conflict analysis starting from the
temporary clause are added. We conjecture that similar clauses
are learned as if inequalities are encoded symbolically.

During backtracking, ADOs are removed in reverse chrono-
logical order from the hash table. This can be implemented
efficiently by saving the hash table position of the ADO
together with the variable, whose assignment triggered the
ADO to be added to the hash table. Whenever this variable
becomes unassigned, the entry in the hash table is reset. Since
entries to the ADO hash table are added and removed in a
stack like fashion, also a hash table with open addressing can
be used.

To simplify our implementation, we actually require that
every variable occurs in at most one ADO. This restriction
can always be enforced by adding copies of variables and
enforcing equality through binary clauses. Nevertheless, the
algorithm can be easily extended to variables resp. literals
occurring in multiple ADOs and ADCs.

Updating watches for ADOs is cheaper than updating
clauses of the corresponding eager encoding. Hashing the keys
can be more costly, since it is linear in the bit-width n. The
cost for entering and comparing keys can be ignored.

Watching two literals per ADO and changing the hash func-
tion slightly would also allow to derive forced assignments,
which in the context of SMT is known as theory propaga-
tion [14]. However, this extension either requires to generate
learned clauses for each such propagation, or major changes to
the analysis function, which derives learned clauses. We leave
the investigation of this extension as future work.

IV. ENCODING

Previous work, where ADCs are encoded either eagerly or
lazily outside of the SAT solver, requires to encode a bit-vector
inequality s 6= t, where s and t are bit-vectors of width n. We
present a compact CNF encoding which up to our knowledge
has not been described in the literature yet.1 In order to encode
s 6= t to CNF, we introduce n fresh variables dk:

n−1∧
k=0

(
(sk ∨ tk ∨ d̄k) ∧ (s̄k ∨ t̄k ∨ d̄k)

)
The idea of this encoding is as follows. The variables dk

represent that s and t differ at position k. If sk = tk, then dk is
forced to false . However, if sk 6= tk, then dk is unconstrained
and can be set to true . Finally, we add the following linking
clause, which enforces s and t to differ in at least one position:

n−1∨
k=0

dk

This idea can be extended to encode combinations of bit-
vector inequalities and equalities, which have to be added in
incremental refinement loops. Consider the following example:

i = j ⇒ v = w

This formula is an instance of Ackermann constraints [15] and
can be used to enforce function congruence on demand, where
i and j are unary function arguments, and v and w the results.
First, we introduce a fresh variable e:

(i = j ⇒ e) ∧ (e ⇒ v = w)

This formula is equisatisfiable and can be rewritten into

(i 6= j ∨ e) ∧ (ē ∨ v = w)

Let n1 be the number of bits of i and j, and let n2 be the
number of bits of v and w. As before, we introduce n1 fresh
variables dk and encode i 6= j as follows:

n1−1∧
k=0

(
(ik ∨ jk ∨ d̄k) ∧ (̄ik ∨ j̄k ∨ d̄k)

)
To encode v = w we add the following clauses:

n2−1∧
k=0

(
(v̄k ∨ wk ∨ ē) ∧ (vk ∨ w̄k ∨ ē)

)
Finally, we relate the two parts through a linking clause:

e ∨
n1−1∨
k=0

dk

The idea of this encoding is as follows. If i 6= j, then they
differ in at least one bit. Therefore, one dk can be set to true to
satisfy the linking clause. The variable e is now unconstrained
and can be set to false . Therefore, v and w do not have to

1In our experiments this encoding is only used for eager and lazy encodings
outside of the SAT solver, but not for our improved method for handling ADCs
inside of the SAT solver.

TABLE I
OVERALL RESULTS

partial solved inconcl unsat time space steps
complete unsolved sat 103sec GB

mixed n y 259 85 38 182 39 96 23.2 9736
refine n y 250 94 32 179 39 101 23.0 9698
sadc n y 244 100 36 171 37 103 17.2 9131
eager n y 242 102 27 177 38 102 31.9 9438

mixed y y 258 86 40 179 39 98 23.3 9792
sadc y y 243 101 33 172 38 104 17.1 9066

none y n 267 77 56 179 32 87 16.6 10877
base y n 283 61 96 187 0 70 28.9 15187

be equal. However, if i = j, all the dk are forced to false .
In order to satisfy the linking clause, e has to be true , which
forces v and w to be equal.

V. EXPERIMENTS

We have built a simple SAT based bounded model checker
MCAIGER.2 It reads AIGER format [16] and uses PICOSAT
[17] as back end. We have implemented the consistency
checking algorithm described above in PICOSAT. PICOSAT
provides an incremental API similar to MINISAT [9]. ADCs
can be extended incrementally, by adding new bit-vectors.

MCAIGER follows [2], [9] to validate or falsify simple
safety properties. It incrementally checks a base case and an
induction step for increasing bounds. If the base case becomes
satisfiable, the bad state is reachable. If the SAT instance of
the induction step turns out to be unsatisfiable, then the bad
state is unreachable. Otherwise, the new time frame is added,
unless a limit on the number of steps is reached.

States are encoded as bit-vectors. Adding a new time
frame incrementally extends the ADC of the states by adding
the new state, unless no simple path constraints are used.
Different strategies for enforcing simple paths through ADCs
are discussed below.

In our experiments we used all the 344 benchmarks3

of the Hardware Model Checking Competition in 2007
(HWMCC’07), which can be considered to be a representative
set of model checking benchmarks. The setup is almost the
same as in HWMCC’07: 900 seconds time limit, 1.5 GB
memory limit. However, we only checked base and inductive
case up to a bound of 100 steps. Therefore a benchmark is
considered to be solved, if either

1) after at most 100 steps the base case is satisfiable and
thus the bad state reachable,

2) after at most 100 steps the inductive case is unsatisfiable,
i.e. the bad state can not be reached, or

3) the bound of 100 steps is reached without conclusive an-
swer on the reachability of the bad state (inconclusive).

Thus, a benchmark is marked unsolved if during checking the
base or inductive case the time or space limit is reached. 4

2Available at http://fmv.jku.at/mcaiger
3Available at http://fmv.jku.at/hwmcc07
4The memory limit was only reached in two runs, where only the base case

was checked. In all other cases unsolved instances are due to time out.

Table I summarizes the results. In the first column model
checking algorithms are listed. The second and third columns
show whether the algorithm uses simple path constraints in
the base case and whether the algorithm is complete. The next
five columns contain number of solved, unsolved, inconclusive,
satisfiable (bad state reachable) and unsatisfiable (bad state
proven not to be reachable) instances. The sum of the run
times in seconds and the sum of the maximum memory in
GB follow in the next two columns. Time and space outs
contribute 900 seconds. The last column denotes the number
of steps the algorithm was able to reach over all benchmarks.

The rows are partitioned into three parts. The lower part
contains base case only checking, which is plain BMC without
checking the inductive case, and none, which both checks the
base and the inductive case. Both methods do not use simple
path constraints and are thus incomplete. They do not solve the
same problem as the other methods, but give a limit on what
can be gained resp. lost by adding simple path constraints.

The upper part lists our new method sadc, which uses
symbolic all different constraints handled in the SAT solver.
It also contains the classical quadratic eager encoding of
simple path constraints. The refine method [9] adds individual
state inequalities as lemmas on demand [10] incrementally.
Finally, mixed uses symbolic all different constraints as long
the number of all different conflicts is small. If during one
SAT call the number of conflicts due to all different constraints
reaches a certain limit (1000 conflicts in these experiments)
or the overall number of such conflicts in all calls to the SAT
solver is above another limit (10000), then the model checker
switches to the refine method.

Finally, the API of our SAT solver has been extended to
temporarily disable detection of conflicts due to symbolic
simple path constraints. This is useful for checking the base
case only. In the inductive case consistency of symbolic simple
path constraints is always enabled for complete methods. For
mixed and sadc approach we list two experiments where we
partially disable simple path constraints this way.

Symbolically handling all different constraints as in sadc
needs much less memory. In its plain form it handles less
examples than the refine approach of [9], but more than
classical eager encoding. However, dynamically switching
from sadc to refine as in the mixed approach can solve the
largest number of examples.

To understand this result it is instructive to compare sadc
with refine in more detail. The scatter plot of Fig. 1 reveals
that there a lot of examples where sadc is much faster
than refine, but also vice versa. These scatter plots use a
double logarithmic scale. A cross marks the run time for
refine on the vertical axis and for sadc on the horizontal
axis. Thus, the region above the main diagonal shows runs
where sadc is faster, below where refine is faster. The time
limit of 900 seconds corresponds to the two light and dotted
vertical resp. horizontal lines. The other diagonal dashed lines
correspond to a factor of 2, 10, and 100 difference in run time.

Therefore, a combined approached can be beneficial. Even
our simple strategy in mixed, which starts with sadc and

Fig. 1. sadc vs refine

 1

 10

 100

 1000

 1 10 100 1000

re
fi

n
e

sadc

Fig. 2. mixed vs refine

 1

 10

 100

 1000

 1 10 100 1000

re
fi

n
e

mixed

Fig. 3. mixed vs sadc

 1

 10

 100

 1000

 1 10 100 1000

s
a
d
c

mixed

switches to refine as soon a conflict limit is reached seems
to work as also the scatter plot of Fig. 2 and Fig. 3 show. The
region above the main diagonal shows runs where mixed is
faster than refine resp. sadc.

Tab. I also shows, that disabling simple path constraints
temporarily in sadc or refine does not pay off. A more detailed
analysis, not presented in this paper due to space constraints,
reveals that the run-times are almost identical, except for a
hand-full of benchmarks, where partially disabling simple path
constraints hurts performance.

Finally, the reason that for some of the instances in the
experiments, our new method performs worse than externally
checking consistency, is most likely due the fact, that our
current implementation does not propagate through ADCs.

VI. CONCLUSION

We have shown how all different constraints (ADCs) for bit-
vectors can be handled inside a SAT solver symbolically. The
technique does not require many changes to the SAT solver
on the implementation side. Encouraging experimental results
have been obtained.

So far we only check consistency of ADCs. In future work
we want to use symbolic representations of ADCs for boolean
constraint propagation (BCP) as well, which in the context of
SMT is known as theory propagation [14]. We also think that it
is worthwhile to apply similar techniques to other applications
of equality logic over bit-vectors, such as encoding Ackerman
constraints [15] for uninterpreted functions, or representing
instances of McCarthy axioms for arrays [18].

REFERENCES

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in Proc. TACAS, 1999.

[2] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties
using induction and a SAT-solver,” in Proc. FMCAD, 2000.

[3] N. Dershowitz, Z. Hanna, and J. Katz, “Bounded model checking with
QBF,” in Proc. SAT, 2005.

[4] T. Jussila and A. Biere, “Compressing BMC encodings with QBF,” in
Proc. BMC, 2006.

[5] H. Mangassarian, A. Veneris, S. Safarpour, M. Benedetti, and D. Smith,
“A performance-driven QBF-based iterative logic array representation
with applications to verification, debug and test,” in Proc. ICCAD, 2007.

[6] J. Régin, “A filtering algorithm for constraints of difference in CSPs,”
in Proc. AAAI, 1994.

[7] J. Marques-Silva and I. Lynce, “Towards robust CNF encodings of
cardinality constraints,” in Proc. CP, 2007.

[8] R. Sebastiani, “Lazy satisfiability modulo theories,” JSAT, vol. 3, 2007.
[9] N. Eén and N. Sörensson, “Temporal induction by incremental SAT

solving,” in Proc. BMC, 2003.
[10] L. de Moura and H. Rueß, “Lemmas on demand for satisfiability

solvers,” in Proc. SAT, 2002.
[11] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-

guided abstraction refinement for symbolic model checking,” J. ACM,
vol. 50, no. 5, 2003.

[12] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an efficient SAT solver,” in Proc. DAC, 2001.

[13] J. Marques-Silva and K. Sakallah, “GRASP: A Search Algorithm for
Propositional Satisfiability,” IEEE T. on Computers, vol. 48, no. 5, 1999.

[14] R. Nieuwnhuis and A. Oliveras, “DPLL(T) with exhaustive theory
propagation and its applications to difference logic,” in Proc. CAV, 2005.

[15] W. Ackermann, “Solvable cases of the decision problem,” 1954.
[16] A. Biere, “AIGER And-Inverter Graph (AIG) format,” fmv.jku.at/aiger.
[17] ——, “PicoSAT essentials,” JSAT, 2008, submitted.
[18] J. McCarthy, “Towards a mathematical science of computation,” in

Proc. IFIP Congress, 1962.

