
p y g

Combining Local and Global Model Checking

Armin Biere a;b;c Edmund M. Clarke b;c Yunshan Zhu b;c

a Institut f�ur Logik, Komplexit�at und Deduktionssysteme (ILKD),

University of Karlsruhe, Postfach 6980, 76128 Karlsruhe, Germany

b Computer Science Department, Carnegie Mellon University,

5000 Forbes Avenue, Pittsburgh, PA 15213, U.S.A

c Verysys Design Automation, Inc, 42707 Lawrence Place, Fremont, CA 94538

Abstract

The veri�cation process of reactive systems in local model checking [1,7] and in
explicit state model checking [13,15] is on-the-y. Therefore only those states of a
system have to be traversed that are necessary to prove a property. In addition, if
the property does not hold, than often only a small subset of the state space has
to be traversed to produce a counterexample. Global model checking [6,23] and, in
particular, symbolic model checking [4,22] can utilize compact representations of the
state space, e.g. BDDs [3], to handle much larger designs than what is possible with
local and explicit model checking. We present a new model checking algorithm for
LTL that combines both approaches. In essence, it is a generalization of the tableau
construction of [1] that enables the use of BDDs but still is on-the-y.

1 Introduction

Model Checking [6,23] is a powerful technique for the veri�cation of reactive
systems. In particular, with the invention of symbolic model checking [4,22]
very large systems, with more than 1020 states, could be veri�ed. However, it
is often observed, that explicit state model checkers [9,15] outperform symbolic
model checkers, especially in the application domain of asynchronous systems
and communication protocols [10]. We believe that the main reasons are the
following: First, symbolic model checkers traditionally use binary decision
diagrams (BDDs) [3] as an underlying data structure. BDDs trade space for
time and often their sheer size explodes. Second, depth �rst search (DFS) is
used in explicit state model checking, while symbolic model checking usually
traverses the state space in breadth �rst search (BFS). DFS helps to reduce the
space requirements and is able to �nd counterexamples much faster. Finally,
global model checking traverses the state space backwards, and can, in general,
not avoid to visit non reachable states without a prior reachability analysis.

This paper appears in the Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs/volume23.html

A. Biere and E. M. Clarke and Y. Zhu

In [2] a solution to the �rst problem, and partially to the second problem,
was presented, by replacing BDDs by SAT (propositional satis�ability check-
ing procedures). In this paper we propose a solution to the second and third
problem of symbolic model checking. Our main contribution is a new model
checking algorithm that generalizes the tableau construction [1] of local model
checking for LTL and enables the use of BDDs. It is based on a mixed DFS
and BFS strategy and traverses the state space in a forward oriented manner.

Our research is motivated by the success of forward model checking [16,17].
Forward model checking is a variant of symbolic model checking in which
only forward image computations are used. Thus it mimics the on-the-y

nature of explicit and local model checking in visiting only reachable states.
Note that [17] presented a technique for the combination of the BFS, used
in BDD based approaches, with the DFS of explicit state model checkers. It
was shown that especially this feature enables forward model checking to �nd
counterexamples much faster. However, only a restricted class of properties,
i.e. path expressions, can be handled by the algorithms of [16,17].

Henzinger et. al. in [14] partially �lled this gap by proving that all proper-
ties speci�ed by B�uchi Automata, or equivalently all !-regular properties, can
be processed by forward model checking. In particular, they de�ne a forward
oriented version of the modal �-calculus [19], called post-�, and translate the
model checking problem of a !-regular property into a post-� model checking
problem. Because LTL (linear temporal logic) properties can be formulated
as !-regular properties [27], their result subsumes that all LTL properties can
be checked by forward model checking.

The fact, that LTL can be checked by forward model checking, can also
be derived by applying the techniques of [16], in the special case of FairCTL
properties, to the tableau construction of [5]. However, this construction and
also [14] do not allow the mixture of DFS and BFS, as in the layered approach
of [17]. In addition, DFS was identi�ed as one major reason for explicit state
model checking to outperform symbolic model checking on certain examples.

The contribution of our paper is the following. First we present a new
model checking algorithm that operates directly on LTL formulae. For ex-
ample [14] requires two translations, from LTL to B�uchi Automata and then
to post-�. A similar argument applies to [5,8]. Second it connects the local
model checking paradigm of [1] with symbolic model checking in a natural
way, thus combining BDD based with on-the-y model checking. Finally our
approach shows, that the idea of mixing DFS with BFS can be lifted from
path expressions [17] to LTL.

Our procedure is correct and complete for all of LTL. If we consider ex-
istential model checking problems with no eventualities, then the size of the
generated tableaux is linear in the number of states. Checking eventualities
may result in an tableau with exponential size in the number of states. We
are currently working on an extension that remains complete for all of LTL
and produces tableaux with size linear in the number of states.

2

A. Biere and E. M. Clarke and Y. Zhu

Our paper is organized as follows. In the next section our notation is
introduced. Section 2 presents our new tableau construction. The following
section considers an essential optimization, followed by a discussion of the
complexity and the comparison with related work. Finally we address open
issues.

2 Preliminaries

A Kripke structure is a tuple K = (�;�0; �; `) with � a �nite set of states,
�0 � � the set of initial states, � � � � � the transition relation between
states, and `: � ! p(A) the labeling of the states with atomic propositions.
As temporal operators we consider, the next time operator X, the �nally

operator F, the globally operator G, the until operator U, and its dual, the
release operator R. We use the standard semantics of CTL* as in [11]. We
further assume the formulae to be in negation normal form, as in [1,7,8]. Thus
negations only occur in front of atomic propositions. This restriction does not
lead to an exponential blow up because we included theR operator that ful�lls
the property :(f U g) � :f R :g.

3 Tableau Construction

In this section we present a new model checking algorithm for solving exis-
tential LTL model checking problems. In particular, given a Kripke structure
K and an LTL formula f , the algorithm determines whether �0 j= Ef , where
S j= Ef i� there exists a path � 2 �! with �(0) 2 S and � j= f . A proce-
dure for generating counterexamples, in case �0 j= Ef does not hold, is also
included.

The algorithm is based on a tableau construction. Each tableau node is a
sequent � that contains a set of states S � � and an LTL formula f (written
S ` E(f)). The rules for the construction of the tableau are very similar to
those in [18], which is the dual construction of [1] for LTL with an existential
path quanti�er.

The main di�erence to [1,18] is also the main idea of our paper. We use
sets of states instead of single states as one part of the sequent. With this
modi�cation we are able to represent set of states symbolically and use e�cient
BDD algorithms.

For the rest of the paper let S � � be a set of states and E� = E
V
�i be

a conjunctively decomposed ELTL formula. We also use the notation E(�; f)
with the semantics E((

V
�i) ^ f). Further, for S � �, p 2 A, we de�ne

Sp := fs 2 S j p 2 `(s)g; S:p := fs 2 S j p 62 `(s)g

Img(S) := ft 2 � j 9s 2 S: (s; t) 2 �g

Given an initial set of states S (e.g. �0) and an ELTL formula f we construct

3

A. Biere and E. M. Clarke and Y. Zhu

RU :

S ` E(�; f U g)

S ` E(�; g) S ` E(�; f;Xf U g)

R^ :
S ` E(�; f ^ g)

S ` E(�; f; g)

RR:

S ` E(�; f R g)

S ` E(�; f; g) S ` E(�; g;Xf R g)

R_ :

S ` E(�; f _ g)

S ` E(�; f) S ` E(�; g)

RF:
S ` E(�;Ff)

S ` E(�; f) S ` E(�;XFf)
RG :

S ` E(�;Gf)

S ` E(�; f;XGf)

RX :
S ` E(X�1; : : : ;X�n)

Img(S) ` E(�1; : : : ;�n)
RA+ :

S ` E(�; p)

Sp ` E(�)

Rsplit:
S ` E(�)

S1 ` E(�) S2 ` E(�)
S1 [S2 = S RA� :

S ` E(�;:p)

S:p ` E(�)

Fig. 1. Tableau rules.

a tableau by repeatedly applying the rules of Figure 1 starting with the root
S ` E(f).

We continue the application of the rules until no new sequents can be
added. In the resulting graph, which we call a tableau, every sequent occurs
only once. Note that a tableau may be cyclic and, in general, is not uniquely
de�ned.

Following [1] we �rst de�ne a successful path in the tableau: A �nite path
through the tableau that ends with a sequent S ` E(�) is called successful

i� S 6= ; and � = ;. An in�nite path X is called successful i� for every
Fg 2 X(i), and every f U g 2 X(i) there exists a j � i with g 2 X(j).

A tableau is called successful if it contains a successful path. From this
successful path we can construct a witness for the existential model checking
problem associated with the root sequent of the tableau.

The following theorem shows that, no matter in which order we apply
the tableau rules, the resulting tableau is successful i� the root sequent is
satis�able. We call a sequent S ` E(f) satis�able i� S j= Ef .

Theorem 3.1 Let K be a Kripke structure, Ef an ELTL formula, and T a

tableau with root �0 ` E(f). Then �0 j= Ef i� T is successful.

The proof consists of the combination of the following Lemma with the
correctness and completeness results of [1,18]. We call a path x of sequents
singleton path i� every sequent in x contains only a singleton set of states.

4

A. Biere and E. M. Clarke and Y. Zhu

A B

Y

1 2
3

5
6

Z

4

Fig. 2. Example for witness (resp. counterexample) generation.

Further let X = (S0 ` E(f0); S1 ` E(f1); : : :) be a �nite or in�nite path, then
a singleton path x = (fs0g ` f0; fs1g ` f1; : : :) matches X i� si 2 Si and if
X(i+1) is the result of applying RX to X(i), i.e. X(i+1) = Img(X(i)), then
(si; si+1) 2 R.

Lemma 3.2 Let X be a successful path for the root sequent S ` E(f). Then

there exists s 2 S and a successful singleton path x for the root sequent fsg `
E(f) that matches X.

The Lemma is proven by constructing a matching singleton path from a
successful path. What follows is a sketch of this algorithm for an in�nite path
X = Y � Z!. A sequent � is called an X-sequent i� the RX rule is applicable
to �, i.e. all formulae on the right hand side of � are pre�xed with the next
time operator X. For the purpose of constructing a singleton path only the
X-sequents of X are considered. We pick an arbitrary state s out of the �rst
X-sequent in Z. Note that s is also contained in X(j + 1) with X(j) an
X-sequent and j � jY j+ jZj.

Now we traverse the X-sequents of Z until the last X-sequent of Z is
reached. During this traversal we choose an arbitrary successor state from the
following X-sequent. We can not choose a successor state in the immediate
successor sequent, since this successor state might be eliminated by the ap-
plication of the RA rule before the next X-sequent is reached. When the last
X-sequent in Z is reached then we check if the state chosen initially can be
reached in one step from the current state. If this is the case, then we found
a singleton cycle and continue to search a pre�x singleton path for this cycle
in Y .

Otherwise we repeat the traversal of Z, starting from an arbitrary image
state of the last state, that is contained in the �rst X-sequent of Z, until
such a cycle is found. Because � and thus the number of di�erent sequents is
�nite, the algorithm has to terminate. The resulting singleton path obviously
matches the original path and is successful if the original path was successful.
Consider the example of Figure 2 where each ellipsis depicts an X-sequent.

The arrows between the single states are transitions of the Kripke struc-
ture. We start with 1, transition to 2 and pick 3 as successor of 2. The next

5

A. Biere and E. M. Clarke and Y. Zhu

transition, from 3 to 4, brings us back to the �rst X-sequent of Z but no cycle
can be closed yet. We continue with 5 and 6 and �nally reach 4 again. From
there we �nd a pre�x (A;B), that leads from the initial state A to the start of
the cycle at 4. The resulting singleton path is (A;B) � (4; 5; 6)!. Note that this
algorithm is actually used for the generation of a witness for the root formula
(or a counterexample for the negation of the root formula).

The theorem follows by the observation that every successful singleton path
can be interpreted as a successful path in the sense of [1,18] and vice versa.
This mapping has to take into account the split rule Rsplit but otherwise just
maps a singleton set into the single state contained in the set. Note that the
tableaux for x and X, in general, are di�erent.

For instance consider the Kripke structure K with two states 0 and 1, both
initial states, and two transitions from state 0 to state 1 and from state 1 to
state 0. Both states are labeled with p, the only atomic proposition. The
tableau for checking EGp looks as follows

f0; 1g ` E(Gp)

f0; 1g ` E(p;XGp)

f0; 1g ` E(XGp)

0 1

pp

and the application of RX to the leaf sequent leads back to the root sequent.
The tableau represents one successful path that contains only one image calcu-
lation. However both matching singleton paths need two image computations
before the loop can be closed:

f0g ` E(Gp)

f0g ` E(p;XGp)

f0g ` E(XGp)

f1g ` E(Gp)

f1g ` E(p;XGp)

f1g ` E(XGp)

f1g ` E(Gp)

f1g ` E(p;XGp)

f1g ` E(XGp)

f0g ` E(Gp)

f0g ` E(p;XGp)

f0g ` E(XGp)

Again the application of RX to the leaf nodes yields the root. In general,
matching singleton paths may require longer closing cycles than a matched
path.

3.1 Algorithm

A more detailed description of the tableau construction is presented in this
section. The overall approach expands open branches in DFS manner and
stops when a successful path has been generated. In this case the formula can
be ful�lled. If no successful path can be found and the tableau has been fully
generated then the algorithm stops reporting that no witness has been found.

6

A. Biere and E. M. Clarke and Y. Zhu

1 2 3

Fig. 3. Example Kripke structure.

If a leaf of a tableau is expanded and a sequent is generated that already
occurred in the tableau then we found a successful path if the previous occur-
rence is on the path from the root to the expanded node and all eventualities
on this path are ful�lled. If the new sequent occurs in the tableau but not
on the path from the root to the expanded leaf, the parent of the new se-
quent, then we already have proven that the new sequent is unsatis�able.
In the remaining case, the new sequent occurs on the path from the root to
the expanded node and at least one eventuality is not ful�lled, the strongly
connected components of the tableau have to be considered, as in [1].

During the construction we have to remember the sequents that already
occurred in the tableau. This can be accomplished by a partial function
mapping a sequent to a node. To implement this we can sort the sequents in
the tableau, use a hash table, or simply an array. Hash tables work very well
in practice.

Our intention, of course, is to represent set of states with BDDs. We
associate with each formula E(�) the list of sequents in the tableau that
contain E(�). To check if a sequent already occurred, we just go through the
list of corresponding formulae and check whether the BDDs representing the
sets of states are the same. We can also combine several nodes on unsuccessful
branches with the same formula by computing the disjunction of the BDDs.
But keeping the BDDs separate results in a partitioning of the search space
and hopefully results in small BDDs. Note that the same approach works for
the optimization discussed in section 4 with the only modi�cation that we
check for non empty intersection instead of checking for equality.

3.2 Heuristics

The rule Rsplit is not really necessary but it helps to reduce the search space,
i.e. the size of the generated tableau. For instance consider the construction of
a tableau for the formula EFp. This formula is the negation of a simple safety
property. In this case a good heuristics is to build the tableau by expanding
the left successor of the rule RF �rst. Only if the left branch does not yield
a successful path, then the right successor is tried. If during this process a
sequent �0 = S 0 ` E(Ff) is found and a sequent �00 = S 00 ` E(Ff) occurs
on the path from the root to �0 and S 0 � S 00 then we can remove the set S 0

from S 00 by applying Rsplit with S1 = S 0 and S2 = S 00 � S 0. The left successor
immediately leads to an unsuccessful in�nite path and we can continue with
the right successor.

7

A. Biere and E. M. Clarke and Y. Zhu

f1g ` E(Fp)
RF
f1g ` E(p)
fg ` E(p)

f1g ` E(XFp)
f1; 2g ` E(Fp)

Rsplit

f1g ` E(Fp)

-

f2g ` E(Fp)
RF

f2g ` E(p)
fg ` E(p)

f2g ` E(XFp)
f2; 3g ` E(Fp)

Rsplit

f2g ` E(Fp)f3g ` E(Fp)

�

RF
f3g ` E(p)
fg ` E(p)

f3g ` E(XFp)
f1; 2g ` E(Fp)

Rsplit

f1g ` E(Fp) f2g ` E(Fp)

Fig. 4. Example for the usage of the split rule Rsplit.

Applying this heuristics essentially computes the set of reachable states in a
BFS manner while checking on-the-y for states violating the safety property.
An example of this technique is shown in �gure 4 using the Kripke structure
of �gure 3.

Another heuristic is to avoid splitting the tableau as long as possible. This
is one of the heuristics proposed in [26] for the construction of small tableau
as an intermediate step of translating LTL into the modal �-calculus with
the algorithm of [8]. In general, these heuristics are also applicable in our
approach.

4 Optimization

The number of di�erent left hand sides of sequents is exponential in j�j, the
number of states of the Kripke structure. If we only consider LTL properties
that do not contain eventualities, then we can apply an optimization that
reduces the maximal number of di�erent left hand sides, occurring in the
tableau, to j�j+ 1. This reduction can be achieved by modifying the tableau
construction in such a way that all sequents with the same formula contain
mutually exclusive set of states.

The tableau is built with DFS. The construction is stopped immediately
if a successful path has been found. Otherwise the still open branches are
expanded. If there are no more open branches the construction terminates
with failure.

Assume that the result of applying a rule is a new sequent � = S ` E(f)
and there is another sequent �0 = S 0 ` E(f) with the same formula already in
the tableau. First, if �0 is not on the path from the root to � (this is a cross
edge in terms of DFS), then we already have proven that all states s 2 S 0

8

A. Biere and E. M. Clarke and Y. Zhu

can not ful�ll s j= Ef . This allows us to remove all states in the intersection
S \ S 0 and we use S � S 0 ` E(f) instead of � as new tableau node.

Second let �0 be a predecessor of �. Then we have to check if there is a
self loop of a state in the intersection S \ S 0 along the segment. If this is the
case a successful path has been found, since by our restriction the path does
not contain any eventuality, and we can terminate the search immediately.
Otherwise we can remove the intersection as in the previous case.

To check for a successful path, as in the last case, is similar to the gen-
eration of witnesses of Section 4. We start with the intersection S \ S 0 at
�0 and compute all images along the segment restricting the image set to the
set of states occurring in the sequents along the segment. If we reach � and
the set of states has become empty, then no loop is possible. This conclu-
sion remains correct even if the path contains eventualities. Otherwise we
repeat the calculation with the intersection of the calculated set with S \ S 0

restricting the images to previously calculated images. If we reach a �x point,
a set that yields the same result after one iteration, then a successful path
exists. A witness (resp. counterexample) can be extracted with the algorithm
of Lemma 3.2.

If the optimization is applied without the restriction, i.e. the root formula
contains eventualities, then our optimized procedure becomes incomplete, but
the size of the tableau is linear in j�j. Incompleteness means, that a witness
for an existential model checking problem, found by the optimized procedure,
is indeed a witness. However if the procedure can not �nd a successful path,
applying the optimization, then the root sequent might still be satis�able.

5 Complexity and Related Work

In this section we discuss the complexity of our algorithm. Then we compare
our approach with other local and global techniques for LTL model checking.

The size of a tableau with root �0 ` E(f), not using the optimization of
the last section, is in O(exp(j�j) � exp(jf j)). The time taken is polynomial in
the size of the tableau. Thus the time complexity is (roughly) the same as the
space complexity.

The optimization of the last section generates a tableau with the property
that sequents with the same formula have mutually exclusive sets of states.
Because there are no more than j�j sets of states that are mutually exclusive,
any formula occurs in at most j�j sequents. Therefore the size of the resulting
tableau is linear in the number of states and exponential in the size of the
formula. Consequently our algorithm is polynomial in the number of states,
with a small degree polynomial, and exponential in the size of the formula.
However to achieve this complexity we have to restrict the class of properties
or give up completeness.

This result almost matches the worst case complexity of explicit state
model checking algorithms for LTL [20,1,15], which are linear in the number

9

A. Biere and E. M. Clarke and Y. Zhu

of states and exponential in the size of the formula. However, with our ap-
proach we are able to use e�cient data structures to represent set of states
symbolically and thus can hope to achieve exponentially smaller tableaux and
exponentially smaller running times for certain examples.

The method of [8] translates an LTL formula into a tableau similar to the
tableaux in our approach. In [8] the nodes contain only formulae and no states.
The tableau can be exponential in the size of the LTL formula. The second
step is a translation of the generated tableau into a �-calculus formula that
is again exponential in the size of the tableau. Additionally, the alternation
depth of the �-calculus formula can not be restricted. With [12,21] this results
in a model checking algorithm with time and space complexity that is double
exponential in the size of the formula and single exponential in the size of the
model K.

In [14] an ELTL formula is translated to a B�uchi automata with the method
of [27]. This leads to an exponential blow up in the worst case. But see [13] for
an argument why this explosion might not happen in practice, which also ap-
plies to our approach. The resulting B�uchi automata is translated to post-�, a
forward version of the standard modal �-calculus, for which similar complexity
results for model checking as in [12,21] can be derived. This translation pro-
duces a �-calculus formula of alternation depth 2 which results in practically
the same complexity as our algorithm.

The LTL model checking algorithm of [14] is also forward oriented. A
forward state space traversal potentially avoids searching trough non reachable
states, as it is usually the case with simple backward approaches. However,
it is not clear how DFS can be incorporated into symbolic �-calculus model
checking.

The method of [5] translates an LTL model checking problem into a FairCTL
model checking problem. With the result of [12] this leads to a model checking
algorithm that is linear in the size of the model and exponential in the size of
the formula. Again, these complexity results are only valid for explicit state
model checking. If [5] is not combined with [16,17], then it also shares the
following disadvantage with the LTL model checking algorithm of [14]. The
algorithm is based on BFS and it is not clear how to combine it DFS.

The work by Iwashita [16,17] does not handle full LTL and no complexity
analysis is given. But if we restrict our algorithm to the path expressions of
[16,17], then our algorithm subsumes the algorithms of [16,17], even for the
layered approach of [17], the combination of DFS and BFS.

6 Conclusion

Although our technique clearly extends the work of [16,17] and bridges the gap
between local and global model checking, we still need to show that it works
in practice. In addition, a formalization of the optimization in Section 4
is necessary. We are also working on a complete tableau construction for

10

A. Biere and E. M. Clarke and Y. Zhu

eventualities with linear tableau size in the number of states. Finally, we
want to investigate heuristics for applying the split rule. The approximation
techniques of [24,25] are a good starting point.

References

[1] G. Bhat, R. Cleaveland, and O. Grumberg. E�cient on-the-y model checking
for CTL*. In LICS'95. IEEE Computer Society, 1995.

[2] A. Biere, A. Cimatti, Edmund M. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In TACAS'99, LNCS. Springer, 1999.

[3] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8), 1986.

[4] J. R. Burch, E. M. Clarke, and K. L. McMillan. Symbolic model checking: 1020

states and beyond. Information and Computation, 98, 1992.

[5] E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model
checking. In CAV'94, LNCS. Springer, 1994.

[6] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Logic of Programs: Workshop,
LNCS. Springer, 1981.

[7] R. Cleaveland. Tableau-based model checking in the propositional mu-calculus.
Acta Informatica, 27, 1990.

[8] M. Dam. CTL* and ECTL* as fragments of the modal mu-calculus. Theoretical
Computer Science, 126, 1994.

[9] D. L. Dill. The Mur� veri�cation system. In CAV'96, LNCS. Springer, 1996.

[10] Y. Dong, X. Du, Y.S. Ramakrishna, C. T. Ramkrishnan, I. V. Ramakrishnan,
S. A. Smolka, O. Sokolsky, E. W. Starck, and D. S. Warren. Fighting livelock in
the i-protocol: A comparative study of veri�cation tools. In TACAS'99, LNCS.
Springer, 1999.

[11] E. A. Emerson and J. Y. Halpern. \Sometimes" and \Not Never" revisited: on
branching time versus linear time temporal logic. Journal of the Association
for Computing Machinery, 33(1), 1986.

[12] E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time
strikes back. Science of Computer Programming, 8, 1986.

[13] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-y automatic
veri�cation of linear temporal logic. In Proceedings 15th Workshop on Protocol

Speci�cation, Testing, and Veri�cation. North-Holland, 1995.

[14] Thomas A. Henzinger, Orna Kupferman, and Shaz Qadeer. From Pre-historic
to Post-modern symbolic model checking. In CAV'98, LNCS. Springer, 1998.

11

A. Biere and E. M. Clarke and Y. Zhu

[15] G. J. Holzmann. The model checker SPIN. IEEE Trans. on Software

Engineering, 5(23), 1997.

[16] H. Iwashita and T. Nakata. CTL model checking based on forward state
traversal. In ICCAD'96. ACM, 1996.

[17] H. Iwashita, T. Nakata, and F. Hirose. Forward model checking techniques
oriented to buggy design. In ICCAD'97. ACM, 1997.

[18] A. Kick. Generierung von Gegenbeispielen und Zeugen bei der Modellpr�ufung.
PhD thesis, Fakult�at f�ur Informatik, Universit�at Karlsruhe, 1996.

[19] D. Kozen. Results on the propositional �-calculus. Theoretical Computer

Science, 27, 1983.

[20] O. Lichtenstein and A. Pnueli. Checking that �nite state concurrent programs
satisfy their linear speci�cation. In Symposium on Principles of Programming

Languages, New York, 1985. ACM.

[21] D. E. Long, A. Browne, E. M. Clarke, S. Jha, and W. R. Marrero. An
improved algorithm for the evaluation of �xpoint expressions. In CAV'94,
LNCS. Springer, 1994.

[22] K. L. McMillan. Symbolic Model Checking. Kluwer, 1993.

[23] J. P. Quielle and J. Sifakis. Speci�cation and veri�cation of concurrent systems
in CESAR. In Proc. 5th Int. Symp. in Programming, 1981.

[24] K. Ravi, K. L. McMillan, T. R. Shiple, and F. Somenzi. Approximation and
decomposition of binary decision diagrams. In DAC'98. ACM, 1998.

[25] K. Ravi and F. Somenzi. High-density reachability analysis. In ICCAD'95.
ACM, 1995.

[26] F. Re�el. Modellpr�ufung von Unterlogiken von CTL*. Masterthesis, Fakult�at
f�ur Informatik, Universit�at Karlsruhe, 1996.

[27] M. Y. Vardi and P. Wolper. Reasoning about in�nite computations.
Information and Computation, 115(1), 1994.

12

