
CADICAL, KISSAT,
PARACOOBA, PLINGELING and TREENGELING

Entering the SAT Competition 2020
Armin Biere Katalin Fazekas Mathias Fleury Maximilian Heisinger

Institute for Formal Models and Verification
Johannes Kepler University Linz

Abstract—This system description describes our new SAT solver
KISSAT, how it differs from CADICAL, as well as changes made
to CADICAL. We further present our new distributed cube-
and-conquer solver PARACOOBA. Previous parallel SAT solvers
PLINGELING and TREENGELING in essence remain unchanged.

I. CADICAL

Compared to the 2019 version of CADICAL [1], we
have improved inprocessing by implementing conditioning [2].
However, this feature does not seem to improve performance
and is not enabled by default (“--condition=true”).
The major difference is the implementation of a three-tier
system [3] to decide which clauses should be kept during
clause reduction: tier-0 clauses (LBD ≤ 2) are kept forever,
tier-1 clauses (2 < LBD ≤ 6) survive one round of reduction,
whereas tier-2 clauses can be deleted immediately. In any case,
clauses used since the last reduction are not deleted.

Moreover, even though CaDiCaL was designed to allow up
to INT MAX = 231 − 1 = 2 147 483 647 variables, represented
with the int type of C++, it had a serious flaw because the id-
iom “for (int i = 1; i <= max_var; i++)” was
used throughout the code. This lead to undefined behaviour
if INT MAX variables are used even though it works fine for
fewer. To avoid complicated iteration code and also to avoid
such issues in the future we implemented variable and literal
iterators, used as in “for (auto idx : vars)” or as
in “for (auto lit : lits)”. We would like to thank
Håkan Hjort for bringing this issue to our attention.

II. KISSAT

Experiments with large formulas, such as the DIMACS
formula “p cnf 2147483647 0” resulted in the following
observations. Even though CaDiCaL can handle formulas with
INT MAX variables, it needs a substantial amount of main
memory (more than 512 GB) as well as long time for initializa-
tion. One reason is using the C++ container “std::vector”
for most data structures (e.g., to hold flags, values, decision
levels, reasons, scores). They are also mostly zero initialized.
Instead, we now use the C memory allocator “calloc”. It

Supported by Austrian Science Fund (FWF) projects W1255-N23 and
S11408-N23, by the LIT AI and LIT Secure and Correct Systems Labs and the
LIT project LOGTECHEDU all three funded by the State of Upper Austria.

provides zero initialization on-demand by the virtual memory
system and reduces resident set size accordingly.

This design decision also raised the question, whether we
can reuse some other features of LINGELING [4] to further
reduce memory. In KISSAT we therefore completely inline
binary clauses in watcher stacks to reduce the size of watches
from 16 bytes in CADICAL to 4 bytes for binary and 8 bytes
for large clauses (due to the blocking literal). This in turn
requires to use 4-byte offsets instead of pointers to reference
large (non-binary) clauses. Note that binary clauses were still
allocated in CADICAL in the memory arena holding clauses
in the same way as larger clauses. In KISSAT they now really
only exist in watcher lists. LINGELING even inlined ternary
clauses which we consider less useful now.

We also revisited the data structure for holding watches
(watched lists). In KISSAT we use a dedicated implementation
of stacks of watchers, requiring only two offsets (of together
8 bytes in the compact competition configuration) instead of
3 pointers (requiring 24 bytes on a 64-bit architecture). This
became possible by assuming that the all-bits-one word is not
a legal watch and free memory in the watcher stack arena is
marked with all-bits-one words. Pushing a watch on a watcher
stack requires checking whether the word after the top element
is illegal (all-bits-one). If so, it is overwritten. Otherwise the
whole stack is moved to the end of the allocated part in the
watcher arena. This produces the overhead that once in a while
the watcher arena requires defragmentation and is usually
performed after collecting redundant clauses in “reduce”.

In order to distinguish binary and large watches in watcher
stacks, we use bit-stuffing as in LINGELING. This leaves
effectively 31 bits to reference large clauses. Since these large
clauses are allocated 8-byte aligned in the clause arena, the
maximum size of this arena is 8 ·231 bytes (16GB). Note that
in practice many large CNFs consist mostly of binary clauses,
which due to inlining do not require any space in this arena.
Further, beside data structures for variables, watch lists occupy
a large fraction of the overall memory. Actually the largest
CNFs we ever encountered in applications easily stay below
this limit while in total KISSAT reaches 100GB memory
usage. On top of that, other solvers including CADICAL often
need more than 4 times more main memory than KISSAT.

Due to inlining binary clauses redundant and irredundant
binary clauses have to be distinguished [5], which requires an-



other watcher bit (“redundant”). Finally, as in CADICAL,
hyper binary resolvents are generated in vasts amounts [6]
during failed literal probing and vivification [7] and have to
be recycled quite aggressively. To mark these hyper binary
resolvents we need a third watcher bit (“hyper”) and the
effective number of bits for literals is reduced to 29. Thus, the
solver can only handle 268 435 455 = 228 − 1 variables.

In “dense mode” (during for instance variable elimination)
the solver maintains full occurrence lists for all irredundant
clauses. In the default “sparse mode” (during search) only two
literals per large clause are watched and large clause watches
have an additional blocking literal. Thus, as in LINGELING,
watch sizes vary between one and two words, whichs lead
to very cumbersome and verbose watch list traversal code in
LINGELING repeated all over the source code. For KISSAT
we were able to almost completely encapsulate this complexity
using macros. The resulting code resembles ranged-based for
loops in C++11 as introduced in CADICAL last year.

These improved data structures described above obviously
require too many changes and we decided to start over with
a new solver. In order to keep full control of memory layout,
it was written in C. Otherwise we ported all the important
algorithms from CADICAL, and were also able to reconfirm
their effectiveness in a fresh implementation. In this regard
using “target phases” as introduced last year in CADICAL [1]
should be emphasized, which after careful porting, gave a large
improvement on satisfiable instances.

We want to highlight the following algorithmic differences.
The first version of CADICAL had a sophisticated implemen-
tation of forward subsumption, building on the one in SPLATZ
inspired by [8], which was efficient enough to be applied
to learned clauses too. Only later we added vivification [9],
which is now used in most state-of-the-art solvers, and is
particularly effective on learned clauses [7]. Thus subsumption
on learned clauses becomes less important and we only apply
it on irredundant clauses before and during bounded variable
elimination. We have both a fast forward subsumption pass for
all clauses as well incremental backward but now also forward
subsumption during variable elimination, carefully monitoring
variables occurring in added or removed (irredundant) clauses,
which allows us to focus the inprocessing effort.

The clause arena keeps irredundant clauses before redundant
clauses, which allows during reduction of learned clauses in
“reduce” to traverse only the redundant part of the arena.
Since watches contain offsets to large clauses in the arena we
can completely avoid visiting irredundant (original) clauses
during this procedure. This substantially reduces the hot-spot
of flushing and reconnecting watchers in watch lists during
clause reduction. Note, that “reduce” beside “restart” is the
most frequently called procedure in a CDCL solver (after the
core procedures “propagate”, “decide”, and “analyze”).

In comparison to CADICAL inprocessing procedures are
scheduled slightly differently. First there is no forward sub-
sumption of clauses outside of the “eliminate” procedure. In
KISSAT compacting the variable range is part of “reduce”
and actually always performed if new variables became inac-

tive (eliminated, substituted or unit). Otherwise “probe” and
“eliminate” call the same algorithms as in CADICAL, except
for vivification which became part of “probe” and duplicated
binary clause removal (aka hyper unary resolution), which has
moved from “subsume” (thus in CADICAL triggered during
search and during variable elimination) to “eliminate”.

More importantly we have a more sophisticated scaling
procedure for the number of conflicts between calls to “probe”
and “eliminate”, which as in CADICAL takes the size of the
formula into account, but now applies an additional scaling
function instead of just linearly increasing the base interval in
terms of n denoting how often the procedure was executed.

For variable elimination (“elim”) the scaling function of the
base conflict interval is n · log2 n. For “probe” it is n · log n.
Similarly we scale the base conflict interval for “reduce” by
n/ log n, while for “rephase” it remains linear. More precisely
as logarithm we use log10(n+10). Thus “reduce” occurs most
often, followed by “rephase”, then “probe” and least often
“elim”, all in the long run, independently of the base conflict
interval, and the initial conflict interval.

Since boolean constraint propagation is considered the hot-
spot for SAT solvers, CADICAL uses separate specialized
propagation procedures during search, failed literal probing
and vivification. In KISSAT we have factored out propagation
code in a header file which can be instantianted slightly dif-
ferently by these procedures, so taking advantage of dedicated
propagation code while keeping the code in one place.

The concept of quiet “stable phases” without many restarts
and “non-stable phases” with aggressive restarting was re-
named. We call it now “stable mode” and “focused mode”
to avoid the name clash with “phases” in “phase saving”
(and “target phases”). We further realized that mode switching
should not entirely be based on conflicts, since the conflict
rate per second varies substantially with and without frequent
restarts (as well as using target phases during stable mode).

Since the solver starts in focused mode, these focused mode
intervals can still be based on a (quadratically) increasing
conflict interval. For the next stable interval we then attempt
to use the same time. Of course, in order to keep the solver
deterministic, this requires to use another metric than run
time. In CADICAL we simply doubled the conflict interval
after each mode switch which did not perform as well in our
experiments as this new scheme.

Our first attempt to limit the time spend in stable mode
was to use the number of propagations as metric. But this
was not precise enough, since propagations per second still
vary substantially with and without many restarts. Instead we
now count “ticks”, which approximate the number of cache
lines accessed during propagations. This refines what Donald
Knuth calls “mems” but lifted to cache lines and restricted to
only count watcher stack access and large clause dereferences,
ignoring for instance accessing the value of a literal.

Cache line counting is necessary because in certain large
instances with almost exclusively binary clauses most time is
spend in accessing the watches with inlined binary clauses in
watcher stacks and not in dereferencing large clauses, while in



general, and for other instances with a more balanced fraction
of large and binary clauses, a single clause dereference is
still considerably more costly than accessing an inlined binary
clause. Computing these “ticks” was useful limit the time spent
in other procedures, e.g., vivification, in terms of time spent
during search (more precisely the time spend in propagation).

While porting the idea of target phases [1], we realized that
erasing the current saved phases by for instance setting them
to random phases, might destroy the benefit of saved phases to
remember satisfying assignments of disconnected components
of the CNF [10]. Instead of decomposing the CNF explicitly
into disconnected components, as suggested in [10], we simply
compute the largest autarky of the full assignment represented
by saved phases, following an algorithm originally proposed
by Oliver Kullman (also described in [2]).

This unique autarky contains all the satisfying assignments
for disconnected components (as well as for instance pure lit-
erals). If the autarky is non-empty, its variables are considered
to be eliminated and all clauses touched by it are pushed on
the reconstruction stack. We determine this autarky each time
before we erase saved phases in “rephase” and once again if
new saved phases have been determined through local search.

Finally, combining chronological backtracking [11] with
CDCL turns out to break almost the same invariants [12] as on-
the-fly self-subsuming resolution [13], [14] and thus we added
both, while CADICAL is missing the latter. Both techniques
produce additional conflicts without learning a clause and thus
initially we based all scheduling on the number of learned
clauses instead on the number of conflicts, but our experiments
revealed that using the number of conflicts provides similar
performance and we now rely on that for scheduling.

As last year for CADICAL we submit three configurations
of KISSAT, one targeting satisfiable instances (“sat”) always
using target phases (also in focused mode), one for unsat-
isfiable instances (“unsat”), which stays in focused mode,
and the default configuration (“default”), which alternates
between stable and focused mode as described above, but only
uses target phases in stable mode.

III. PARACOOBA

Our new solver PARACOOBA [15] has been submitted to
the cloud track. It is a distributed cube-and-conquer solver.
The input DIMACS is split on the master node into various
subproblems (cubes) that can be solved independently. The
work is distributed over the network first from the master
node to other nodes and then across nodes depending on the
workload of nodes.

The “quality” of the cubes is important for the efficiency of
the solver. We have submitted two versions to the competition:
one relies on the state-of-the-art lookahead solver MARCH [16]
for splitting; another uses our own implementation of tree-
based lookahead [6]. Our implementation is part of CADICAL
and is much less tuned than MARCH. It is run with a timeout
and, whenever splitting takes too long (more than 30 s), we
fall back on the number of occurrences.

During solving, whenever a subproblem takes too long, i.e.,
based on a moving average of solving times, then we split
the problem again into two or more subproblems. If many
nodes are unused, we generate more (and hopefully simpler)
subproblems in order to increase the amount of work that can
be distributed onto further nodes.

Generated subproblems are solved using the incremental
version of CADICAL described below in Sect. V and we aim
at solving similar cubes on the same CADICAL instance to
reuse the results of previous inprocessing.

IV. PLINGELING AND TREENGELING

We submitted PLINGELING and TREENGELING to the par-
allel track. Compared to the version submitted to the 2018
SAT Competition [17] we have made essentially no changes
to PLINGELING and TREENGELING nor to the SAT solver
LINGELING that is used internally.

V. INCREMENTAL TRACK

CADICAL also enters the incremental track of the com-
petition. It relies on our method [18] to identify and restore
the necessary clauses when new clauses are added and can
thereby make use of most of all the implemented inprocessing
techniques. A sequence of incremental problems is considered
as a stand-alone run from the perspective of inprocessing
scheduling, i.e. none of the relevant inprocessing counters are
reset in between iterations. The assumptions of each iteration
are internally frozen (i.e. excluded from inprocessing), but
beyond that there is no special treatment regarding them.

VI. LICENSE

Our solvers are all available under MIT license at
http://fmv.jku.at/cadical for CADICAL, http://fmv.jku.at/kissat
for KISSAT, https://github.com/maximaximal/Paracooba for
PARACOOBA, and https://github.com/arminbiere/lingeling for
PLINGELING and TREENGELING.

REFERENCES

[1] A. Biere, “CaDiCaL at the SAT Race 2019,” in SAT Race 2019, ser.
Department of Computer Science Series of Publications B, M. Heule,
M. Järvisalo, and M. Suda, Eds., vol. B-2019-1. University of Helsinki,
2019, pp. 8–9.

[2] B. Kiesl, M. J. H. Heule, and A. Biere, “Truth assignments as
conditional autarkies,” in ATVA 2019, ser. LNCS, Y. Chen, C. Cheng,
and J. Esparza, Eds., vol. 11781. Springer, 2019, pp. 48–64. [Online].
Available: https://doi.org/10.1007/978-3-030-31784-3 3

[3] C. Oh, “Between SAT and UNSAT: the fundamental difference in
CDCL SAT,” in SAT 2015, ser. LNCS, M. Heule and S. A. Weaver,
Eds., vol. 9340. Springer, 2015, pp. 307–323. [Online]. Available:
https://doi.org/10.1007/978-3-319-24318-4 23

[4] A. Biere, “Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering
the SAT Competition 2016,” in SAT Competition 2016, ser. Department
of Computer Science Series of Publications B, T. Balyo, M. Heule, and
M. Järvisalo, Eds., vol. B-2016-1. University of Helsinki, 2016, pp.
44–45.

[5] M. Järvisalo, M. Heule, and A. Biere, “Inprocessing rules,” in
IJCAR 2012, ser. LNCS, B. Gramlich, D. Miller, and U. Sattler,
Eds., vol. 7364. Springer, 2012, pp. 355–370. [Online]. Available:
https://doi.org/10.1007/978-3-642-31365-3 28

[6] M. Heule, M. Järvisalo, and A. Biere, “Revisiting hyper binary
resolution,” in CPAIOR 2013, ser. LNCS, C. P. Gomes and
M. Sellmann, Eds., vol. 7874. Springer, 2013, pp. 77–93. [Online].
Available: https://doi.org/10.1007/978-3-642-38171-3 6

http://fmv.jku.at/cadical
http://fmv.jku.at/kissat
https://github.com/maximaximal/Paracooba
https://github.com/arminbiere/lingeling
https://doi.org/10.1007/978-3-030-31784-3_3
https://doi.org/10.1007/978-3-319-24318-4_23
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-642-38171-3_6


[7] C. Li, F. Xiao, M. Luo, F. Manyà, Z. Lü, and Y. Li, “Clause vivification
by unit propagation in CDCL SAT solvers,” Artif. Intell., vol. 279,
2020. [Online]. Available: https://doi.org/10.1016/j.artint.2019.103197

[8] R. J. Bayardo and B. Panda, “Fast algorithms for finding extremal
sets,” in SDM 2011. SIAM / Omnipress, 2011, pp. 25–34. [Online].
Available: https://doi.org/10.1137/1.9781611972818.3

[9] M. Luo, C. Li, F. Xiao, F. Manyà, and Z. Lü, “An effective learnt
clause minimization approach for CDCL SAT solvers,” in IJCAI 2017,
C. Sierra, Ed. ijcai.org, 2017, pp. 703–711. [Online]. Available:
https://doi.org/10.24963/ijcai.2017/98

[10] A. Biere and C. Sinz, “Decomposing SAT problems into connected
components,” J. Satisf. Boolean Model. Comput., vol. 2, no. 1-4, pp.
201–208, 2006. [Online]. Available: https://satassociation.org/jsat/index.
php/jsat/article/view/26

[11] A. Nadel and V. Ryvchin, “Chronological backtracking,” in SAT
2018e, O. Beyersdorff and C. M. Wintersteiger, Eds., vol. 10929.
Springer, 2018, pp. 111–121. [Online]. Available: https://doi.org/10.
1007/978-3-319-94144-8 7

[12] S. Möhle and A. Biere, “Backing backtracking,” in SAT 2019, ser. LNCS,
M. Janota and I. Lynce, Eds., vol. 11628. Springer, 2019, pp. 250–266.
[Online]. Available: https://doi.org/10.1007/978-3-030-24258-9 18

[13] H. Han and F. Somenzi, “On-the-fly clause improvement,” in SAT 2009,

ser. LNCS, O. Kullmann, Ed., vol. 5584. Springer, 2009, pp. 209–222.
[Online]. Available: https://doi.org/10.1007/978-3-642-02777-2 21

[14] Y. Hamadi, S. Jabbour, and L. Sais, “Learning for dynamic
subsumption,” in ICTAI 2009. IEEE Computer Society, 2009, pp.
328–335. [Online]. Available: https://doi.org/10.1109/ICTAI.2009.22

[15] M. Heisinger, M. Fleury, and A. Biere, “Distributed cube and conquer
with Paracooba,” in SAT 2020, L. Pulina and M. Seidl, Eds. Springer,
2020, (Accepted).

[16] M. J. H. Heule, M. Dufour, J. van Zwieten, and H. van Maaren,
“March eq: Implementing additional reasoning into an efficient look-
ahead SAT solver,” in SAT 2004, ser. LNCS, vol. 3542. Springer, 2004,
pp. 345–359. [Online]. Available: https://doi.org/10.1007/11527695 26

[17] A. Biere, “CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT
Entering the SAT Competition 2018,” in SAT Competition 2018, ser.
Department of Computer Science Series of Publications B, M. Heule,
M. Järvisalo, and M. Suda, Eds., vol. B-2018-1. University of Helsinki,
2018, pp. 13–14.

[18] K. Fazekas, A. Biere, and C. Scholl, “Incremental inprocessing in
SAT solving,” in SAT 2019, ser. LNCS, M. Janota and I. Lynce,
Eds., vol. 11628. Springer, 2019, pp. 136–154. [Online]. Available:
https://doi.org/10.1007/978-3-030-24258-9 9

https://doi.org/10.1016/j.artint.2019.103197
https://doi.org/10.1137/1.9781611972818.3
https://doi.org/10.24963/ijcai.2017/98
https://satassociation.org/jsat/index.php/jsat/article/view/26
https://satassociation.org/jsat/index.php/jsat/article/view/26
https://doi.org/10.1007/978-3-319-94144-8_7
https://doi.org/10.1007/978-3-319-94144-8_7
https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.1007/978-3-642-02777-2_21
https://doi.org/10.1109/ICTAI.2009.22
https://doi.org/10.1007/11527695_26
https://doi.org/10.1007/978-3-030-24258-9_9

