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Chapter 9

Preprocessing in SAT Solving
Armin Biere, Matti Järvisalo, and Benjamin Kiesl

Preprocessing has become a key component of the Boolean satisfiability (SAT)
solving workflow. In practice, preprocessing is situated between the encoding
phase and the solving phase, with the aim of decreasing the total solving time
by applying efficient simplification techniques on SAT instances to speed up the
search subsequently performed by a SAT solver. In this chapter, we overview
key preprocessing techniques proposed in the literature. While the main focus is
on techniques applicable to formulas in conjunctive normal form (CNF), we also
selectively cover main ideas for preprocessing structural and higher-level SAT
instance representations.

9.1. Introduction

One of the main reasons for the success of SAT solving is the ability of mod-
ern conflict-driven clause-learning solvers (described in Chapter 4 on CDCL) to
search over large CNF formulas with millions of variables and clauses. Neverthe-
less, real-world applications such as model checking (Chapter 18) and software
verification (Chapter 20) often yield formulas that are still too large for state-of-
the-art solvers, which in turn can limit the applicability of SAT solving as the
solution method of choice. The immense size of formulas is often caused by a
combination of the complex nature of the problems themselves, the propositional
encodings available, and the automated encoding techniques that generate the
formulas in practice.

Automated encoding techniques in particular can deteriorate solver perfor-
mance by introducing redundancies in the form of unnecessary clauses and vari-
ables. Moreover, one and the same problem can often be encoded in various
different ways, meaning that SAT solvers are at the mercy of the user in terms
of how a problem instance is actually encoded. This calls for preprocessing, that
is, the application of automated techniques that simplify formulas before passing
them to solvers in order to improve the efficiency of the whole solving pipeline.
Preprocessing not only improves efficiency in general, it also takes the burden
of crafting complex problem encodings from the user, thus allowing non-expert
users to leverage the power of modern SAT solvers.
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Preprocessing has within recent years become a key component of the SAT
solving workflow. A landmark in the history of preprocessing is the technique
of bounded variable elimination (BVE) [EB05], as implemented in the SatELite
preprocessor [EB05] and later integrated in version 2.0 [ES06] of MiniSat [ES03].1
In 2005 and 2006 it contributed to the largest improvement of solver performance
witnessed in the history of the SAT competitions. Even today, bounded variable
elimination is still arguably the most important practical preprocessing technique.

In the SAT solving workflow, preprocessing is situated between the encoding
phase, during which a user or a dedicated tool encodes a problem as a formula
of propositional logic, and the solving phase, during which a SAT solver tries to
determine the satisfiability of a formula. The distinction between these phases,
however, is not straightforward: on the one hand, preprocessing can be viewed as
an automated re-encoding of a formula, which would make it part of the encoding
phase; on the other hand, it can also be viewed as a form of reasoning itself, which
would make it part of the solving phase. The latter view is emphasized by the
recent rise of so-called inprocessing SAT solvers [JHB12, FBS19], which interleave
search with phases during which typical preprocessing techniques are applied. In
fact, since 2013 the SAT competitions have been dominated by CDCL solvers
that utilize inprocessing. However, combining incremental SAT solving [Hoo93,
KWS00, WKS01, ES03, ALS13, BBIS16] with preprocessing and inprocessing still
poses a challenge in practice [KNPH05, KN11, NRS12, NR12, NRS14, FBS19] and
will not be considered much further in this chapter.

From an abstract point of view, preprocessing techniques can be seen as
implementations of inference rules that, when applied to formulas arising from
real-world problem domains, yield equisatisfiable formulas that are easier to solve.
Most preprocessing techniques are designed to simplify CNF formulas on the
syntactic level by reducing the number of variables and the number of clauses.
A popular example of this is again the method of bounded variable elimination,
which uses Davis-Putnam resolution [DP60] and other techniques to eliminate
variables without increasing the number of clauses.

Reducing the size of formulas, however, does not always improve the efficiency
of the solving process. Sometimes SAT solvers actually benefit from redundant
formula parts, which makes the search for effective preprocessing more complex
than the search for methods that just yield equisatisfiable formulas of smaller size.
The most evident example of this is the clause learning mechanism at the heart
of CDCL solvers (Chapter 4 on CDCL): clause learning drastically improves the
solving process by adding clauses that are logically entailed by the input formula
and thus, by definition, redundant. Additionally, binary clauses (i.e., clauses
with only two literals) are often considered special and thus not removed by SAT
solvers due to their high potential for enabling more propagation.

A drastic example illustrating the worst-case impact of preprocessing tech-
niques that remove clauses comes from the theoretical study of proof systems
(Chapter 7): In 1985, Haken proved that a natural SAT encoding of the pigeon-
hole principle (PHP) admits only resolution proofs of exponential size [Hak85],
meaning that CDCL solvers—which are based on resolution—require exponential

1While tight integration of preprocessing with search is now more common there also exist
stand-alone preprocessing tools [Man12, WvdGS13] in the spirit of SatELite [EB05].
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time to solve this encoding [BKS04, PD11]. But, as shown by Cook [Coo76], if we
add specific clauses (so-called definition clauses) to the PHP encoding, the result-
ing CNF formulas have polynomial-size resolution proofs, meaning that CDCL
solvers can, at least in theory, solve them in polynomial time.

Unfortunately, popular preprocessing techniques such as bounded variable
elimination, blocked clause elimination [JBH10], and cone-of-influence reduc-
tion (a circuit-preprocessing technique described in Chapter 27) remove these
definition clauses, turning an instance that is tractable for CDCL solvers into an
intractable one. In practice, some of the most effective preprocessing techniques
still aim at removing formula parts, but others also add strong redundant clauses
such as binary or even unit clauses.

Another approach to analyze the effects and limits of preprocessing is offered
by kernelization as studied in the area of fixed-parameter complexity, the topic of
Chapter 17. However, while kernelization is an important theoretical concept in
the context of SAT, it has—unlike the other techniques discussed in this chapter—
so far not been used effectively in practical preprocessing.

Classifying practical preprocessing techniques in terms of their underlying
inference rules is difficult, but we can identify two main categories: The first
category consists of techniques that employ the resolution rule and its variations;
examples are unit propagation, bounded variable elimination [SP04, Bie04, EB05],
hyper binary resolution [Bac02, BW03, GS05, HJB13], and other advanced prob-
ing techniques such as distillation [HS07] and vivification [PHS08].

The second category consists of preprocessing techniques that identify literals
or clauses that are redundant under different notions of redundancy; examples
of such techniques are clause subsumption, hidden literal elimination [HJB11],
equivalent-literal substitution (called equivalence reduction in [Bac02, BW03]),
and blocked clause elimination [JBH10] together with its generalizations [HJL+15,
KSTB16, KSTB18, KSS+17, HKB17, HKB20].

Preprocessing techniques also vary in the ways in which they analyze formu-
las. Most techniques are applied syntactically on CNF formulas, but some utilize
graph representations of implication chains and other types of functional depen-
dencies, or even higher-level constraints—implicitly represented by clauses—to
preprocess a formula.

Although many individual preprocessing techniques are by themselves quite
simple, the potential of preprocessing and inprocessing lies in combining different
preprocessing techniques in such a way that they benefit from each other. For in-
stance, at points where one technique is unable to make further progress, another
technique might be applicable, and might even modify the formula in ways that
trigger the first technique again.

In practice, however, running a specific preprocessing technique until com-
pletion is often only feasible for techniques that are computationally inexpensive.
Because of this, even stand-alone preprocessors such as SatELite [EB05] rely on
limits that bound the maximum number of occurrences of a candidate variable
to be eliminated. Without such limits they would not be beneficial and run out
of time on many instances. Moreover, scheduling the effort spent on individual
preprocessing techniques is not trivial and has not seen much published research
to date [Bie14]. Different preprocessing techniques can also have similar effects
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in the sense that they perform the same modifications; for instance, both blocked
clause elimination and bounded variable elimination have been shown to simulate
cone-of-influence reduction on the CNF-level [JBH12].

Finally, the naive incorporation of preprocessing and inprocessing into the
solving pipeline can potentially lead to unexpected outcomes, including incorrect
solving results. Especially in inprocessing SAT solvers, a lot of care [JHB12] is
required to ensure that simplification techniques interact in a sound way with both
clause learning and clause forgetting (learned clauses are deleted quite frequently
during the reduce phase of a SAT solver to improve memory usage and speed up
propagation). Additionally, since many preprocessing techniques only maintain
equisatisfiability but not logical equivalence, solution-reconstruction methods are
sometimes required to transform a satisfying assignment of a preprocessed formula
into a satisfying assignment of the original formula.

Most techniques described in this chapter are also available in the SAT solver
CaDiCaL [Bie17]. The goal of developing CaDiCaL was to produce a SAT solver
that is thoroughly documented, easy to understand and modify, and in the end
still comparable to the state of the art (in the SAT Race 2019 it actually solved the
largest number of instances). Therefore, consulting the CaDiCaL source code
and its (inlined) documentation at https://github.com/arminbiere/cadical
in parallel to reading this chapter is highly recommended. As CaDiCaL has been
participating in the SAT competition since 2017, its solver descriptions [Bie17,
Bie18, Bie19, BFFH20] provide additional technical details.

In the rest of this chapter, we give an overview of key preprocessing tech-
niques proposed in the literature. Although our main focus is on CNF-level pre-
processing, we will also briefly discuss main ideas proposed for structure-based
preprocessing on the level of Boolean circuit representations of propositional for-
mulas. The chapter is organized into sections describing CNF-level techniques,
from basic concepts such as unit propagation (Section 9.2), over more advanced
resolution-based preprocessing such as bounded variable elimination (Section 9.3),
to preprocessing beyond resolution-based techniques, such as clause elimination
(Section 9.4), as well as how to reconstruct solutions to original input CNF for-
mulas after preprocessing (Section 9.5). Beyond CNF-level techniques we provide
an additional shorter overview of preprocessing techniques applicable on higher-
level propositional representations (Section 9.6), and conclude the chapter with
a short summary and future work (Section 9.7).

9.2. Classical Preprocessing Techniques

We begin by discussing various classical CNF-level preprocessing techniques: unit
propagation (the main propagation mechanism in complete SAT solvers), pure
literal elimination, basic clause elimination techniques, and the detection of con-
nected components in a graph representation of formulas to identify formula parts
that can be solved independently of each other.

9.2.1. Unit Propagation

Unit propagation is a straightforward technique that has been common in SAT
solving for many decades [DP60]; it is based on the unit-clause rule: Given a
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formula in conjunctive normal form, the unit-clause rule checks if the formula
contains a unit clause, i.e., a clause that contains only a single literal. If so, it
removes all clauses that contain the literal from the formula (this step can be seen
as an instance of subsumed-clause removal) and it removes the negation of the
literal from the other clauses. Unit propagation repeatedly applies the unit-clause
rule until either it derives the empty clause or there are no more unit clauses left.
In the former case, we say that unit propagation derives a conflict.

Example 1. Consider the formula (x)∧ (x̄∨y)∧ (ȳ∨ z∨v). The unit-clause rule
takes the unit clause (x) and first removes it from the formula. It then removes
the literal x̄ from the clause (x̄ ∨ y), resulting in the formula (y) ∧ (ȳ ∨ z ∨ v).
Another application of the unit-clause rule first removes the unit clause (y) and
then removes the literal ȳ from (ȳ ∨ z ∨ v). We end up with the formula (z ∨ v).

Clearly, whenever a formula contains a unit clause, the formula can only be satis-
fied by assignments that make the literal of the unit clause true. The application
of unit propagation during preprocessing is therefore safe insofar as the resulting
formula and the original formula are equisatisfiable. If unit propagation derives
a conflict, we can conclude that the formula must be unsatisfiable. The converse,
however, is not true. For example, the formula (x∨ y)∧ (x̄∨ y)∧ (x∨ ȳ)∧ (x̄∨ ȳ)
is unsatisfiable, but since it does not contain any unit clauses, unit propagation
cannot derive a conflict.

Unit propagation (as well as several other preprocessing techniques we dis-
cuss later on) can be seen as the repeated application of the classical resolution
rule [Rob65]. Given two clauses (c1∨· · ·∨cm∨ l) and (d1∨· · ·∨dn∨ l̄), the resolu-
tion rule allows us to derive the clause (c1∨· · ·∨cm∨d1∨· · ·∨dn), which is called
the resolvent of the two clauses upon l. In case of unit propagation, the removal
of the literal l̄ from a clause can be seen as a resolution step with the clause (l)
and thus is also often called unit resolution. In the context of constraint program-
ming, unit propagation is also called Boolean constraint propagation (BCP). Unit
propagation is essential for the original search-based D(P)LL algorithm [DLL62]
as well as for the CDCL procedure described in Chapter 4.

9.2.2. Failed Literals

The notion of a failed literal [LB01, LaPMS03] forms the basis of a preprocessing
technique known as failed-literal probing, which is an integral part of look-ahead
solving (see Chapter 5). The origin of failed literals dates back to Zabih and
McAllester [ZM88], and is featured in the thesis of Freeman [Fre95]. The related
SLUR algorithm by Schlipf et. al. [SAFS95] has been used to characterize a class
of polynomially solvable formulas (see also [dV00] for a related line of work).

A literal l is a failed literal with respect to a formula F if unit propagation
derives a conflict on F ∧ (l). Clearly, if unit propagation derives a conflict on
F ∧ (l), then F ∧ (l) is unsatisfiable and therefore F implies l̄. The addition
of the unit clause (l̄) to F thus preserves equivalence, and the corresponding
preprocessing technique that adds the negations of failed literals to a formula is
called failed-literal probing.
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Example 2. Let F = (x ∨ u) ∧ (x̄ ∨ u) ∧ (ū ∨ z ∨ y) ∧ (ū ∨ z ∨ ȳ). Since F
does not contain any unit clauses, it cannot be simplified by unit propagation
alone. However, ū is a failed literal because unit propagation derives a conflict on
F ∧ (ū), caused by the first two clauses. The unit clause (u) is therefore implied
by F and so we can add it to F . If we then perform unit propagation on F ∧ (u),
we obtain the simplified formula G = (z ∨ y) ∧ (z ∨ ȳ).
In practical preprocessing, a list of candidate literals is considered, and for all
the candidate literals it is checked whether or not they are failed literals. It is
generally not clear how to order the candidate literals to minimize the number of
required decisions. For instance, in Example 2, the literal ū is the only failed literal
with respect to F . In the worst case, we would thus have tested all other literals
before (ū). After simplifying F , which yields G, we can see that z̄ becomes a failed
literal, but z, y, and ȳ are still no failed literals. Simplifying a formula until there
are no more failed literals can thus require us to test quadratically many literals
(with respect to the number of variables) in the worst case. Assuming the strong
exponential-time hypothesis (ETH), the quadratic upper bound is tight in terms
of both the number of variables and the number of clauses, even for Horn-3-CNF
formulas [JK14]. As each test performs unit propagation, this results in cubic
accumulated complexity in the worst case.

The cubic complexity can be reduced by marking the literals that were im-
plied by unit propagation in tests since the last time a failed literal has been
detected. These literals do not have to be tested until another failed literal is
found, since their propagation did not lead to a conflict. As soon as a test
yields a conflict—meaning that a new failed literal is found—all the marked lit-
erals have to be unmarked again (it is more efficient to use time-stamping tech-
niques though). This optimization was independently discovered and described
in [ABS99] and [SNS02].

Another optimization consists of testing only literals that do not occur in
binary clauses themselves (but their negation does), thus effectively only testing
the roots of the binary implication graph [GS05, Bie17].2 With these techniques,
failed-literal probing can run until completion even on large industrial SAT in-
stances or can be used as preprocessing for splitting and partitioning in distributed
SAT solving [HJN10]. Later in this chapter we will discuss an extension, based on
look-ahead (see also Chapter 5), that learns binary clauses on the fly by combining
hyper binary resolution with equivalent-literal reasoning.

9.2.3. Pure Literals

A pure literal is a literal whose negation does not occur in the formula. The cor-
responding technique of pure-literal elimination removes all clauses that contain
a pure literal, because these clauses can be trivially satisfied by making the pure
literal true without falsifying any other clauses.
Example 3. Consider the formula (x̄ ∨ y ∨ z) ∧ (ȳ ∨ z̄). The literal x̄ is a pure
literal in this formula whereas all the other literals are not pure.

2When focusing on roots, cyclic literal dependencies, as in (a∨b̄)∧(ā∨b)∧(a∨b), might prevent
detection of some failed literals though. This can be avoided by computing strongly connected
components and, for instance, equivalent-literal substitution as discussed in Section 9.3.2.
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Pure-literal elimination was introduced independently both by Davis and Put-
nam [DP60] and by Dunham, Fridshal, and Sward [DFS59]. While a failed literal
can be seen as a literal which we make false because making it true would lead
to a conflict, a pure literal can be seen as a literal which we make true because
making it true cannot lead to a conflict. Moreover, if a formula is unsatisfiable,
clauses containing a pure literal cannot be used productively in a resolution proof
because pure literals can never be resolved away.

An alternative to removing clauses that contain pure literals is to add the
pure literals as unit clauses. The addition of these unit clauses, however, does
not always preserve logical equivalence, because it could remove potential models
in which a pure literal is false. Nevertheless, adding pure literals as unit clauses
does not change the satisfiability status of a formula. This idea of performing
transformations that yield equisatisfiable—but not necessarily logically equiva-
lent—formulas is the corner stone of more advanced preprocessing techniques,
such as blocked clause addition, which we discuss later.

9.2.4. Subsumption

A clause C is subsumed by a clause D if the set of literals in C is a superset of the
literals in D. Analogously, a clause is subsumed by a formula if it is subsumed
by some clause in the formula. The removal of subsumed clauses is an important
technique that is often referred to as subsumption. The idea behind subsumption
is to eliminate clauses that are redundant in the sense that their removal does not
affect the satisfiability of a formula: if a formula contains two clauses C and D,
where D subsumes C, the removal of C yields a logically equivalent formula since
every assignment that satisfies D must also satisfy C.

Example 4. The clause (x̄ ∨ y ∨ z) is subsumed by the clause (x̄ ∨ z) since the
set {x̄, y, z} is a superset of the set {x̄, z}. Whenever (x̄ ∨ z) is true, (x̄ ∨ y ∨ z)
must also be true.

We have already seen an application of subsumption earlier: During unit propa-
gation, when a unit clause (l) is found, all the clauses containing the literal l are
removed from the formula. A corner case is the empty clause, which subsumes
all other clauses in a formula.

9.2.4.1. Forward Subsumption

Forward subsumption starts with a given clause C and a formula F , and checks if
C is subsumed by F . A simple technique to check if a clause is forward subsumed
by a formula F temporarily marks all literals of C as false and then checks whether
there is another (usually smaller) clause D in F with only false literals.

In order to find all potential candidates D without iterating over F , at least
one literal of every clause in F needs to be “watched”. Two-watched literal
schemes [ZS00, MMZ+01], as commonly used in CDCL solvers (see Chapter 4),
suffice too, while occurrence lists (an occurrence list contains all the clauses in
which a literal occurs) are not necessary. A similar technique has been described
in [Bra04] and refined in [Zha05].
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9.2.4.2. Backward Subsumption

In contrast to forward subsumption, which checks if a clause C is subsumed by
a clause D in F , backward subsumption checks if F contains clauses C that are
subsumed by a given clause D, and if so, removes them. Backward subsumption
is actually more common in practice; for example, in SAT solvers using clause
learning, learned clauses are never forward subsumed, but they might subsume
other clauses of the formula, in particular clauses that were learned recently.

As described in Exercise 271 of [Knu15] and its solution, this situation might
occur frequently for certain formulas, and it is possible to eagerly subsume recently
learned clauses efficiently, by reusing the markings of the literals in the learned
clause at the end of conflict analysis (see Chapter 4 on CDCL again). Even though
this technique is efficient and simple to implement, subsumption algorithms are
more useful in combination with variable elimination (see Section 9.3), because
variable elimination focuses on irredundant original clauses and is allowed to
ignore redundant learned clauses [JHB12].

If an implementation maintains for each literal an occurrence list instead
of using a one-watched [Zha05] or two-watched [ZS00, MMZ+01] literal scheme,
then the search for a candidate clause C, checked for being backward subsumed
by the given clause D, can be restricted to iterate over the occurrences of a
single literal in the given clause D, chosen as one with the smallest number of
occurrences (shortest occurrence list). This observation, originally made in the
context of QBF solving [Bie04], is crucial for scaling backward subsumption to
large formulas, and was first used for SAT preprocessing in SatELite [EB05].

Another technique to improve the performance of backward subsumption in
practice is based on so-called signatures [Bie04], which are an instance of Bloom
filters [Blo70]. The basic idea is to avoid costly traversals of occurrence lists in
the (frequent) case where no subsumed clauses can be found. This is achieved
by checking a signature condition that must hold if there is a clause that can be
subsumed by the given clause. If the condition does not hold, the traversal can
be avoided. For details, we refer to the original paper.

A related backward-subsumption algorithm is due to Brafman [Bra04]. Given
a clause D and a formula F , the algorithm iteratively computes the set

S =
∩
l∈D

clausesF (l),

where clausesF (l) denotes the set of all clauses of F in which the literal l occurs.
The final set S contains all clauses of F that are subsumed by D. As soon as
the algorithm detects that S is empty, it can conclude that D does not subsume
any clauses. The original algorithm does not need to save signatures for clauses
and literals, but it needs to save the occurrence lists for all the literals in F . In
principle, though, it could also make use of signatures.

Backward subsumption can easily be turned into an algorithm that removes
all subsumed clauses from a formula: start with the empty formula and one-by-
one add original clauses with largest clauses first. Then check for each newly
added clause whether it subsumes any of the previous clauses. This observation
is particularly useful for applying subsumption during inprocessing. In practice,
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it is still advisable to limit the effort spent on subsumption checks. This can, for
instance, be done by limiting the maximum length of traversed occurrence lists.

9.2.4.3. Self-Subsuming Resolution

As observed in [EB05], subsumption is closely related to strengthening clauses,
more precisely to self-subsuming resolution as implemented in SatELite [EB05].
Consider two clauses C ∨ l and D ∨ l̄, which can be resolved upon l. If D sub-
sumes C, then the resulting resolvent is simply C, which in turn subsumes the
first antecedent C ∨ l. Thus, instead of adding the resolvent C, we can replace
C ∨ l by C, in effect strengthening the clause C ∨ l by removing the literal l. This
technique is called self-subsuming resolution.

Subsumption algorithms can easily be extended to perform self-subsuming
resolution. The only necessary change is to modify the subsumption check be-
tween two clauses: when checking if D subsumes C, we simply allow that at most
one literal l̄ of D occurs negated in C. If this is the case, and all other literals of
D occur in C, we can apply self-subsuming resolution to C and D by removing
l from C. Checking that the literals of D occur in C (with one possible excep-
tion) can be achieved by marking literals (possibly with time stamps) or by a
merge-sort-style check, assuming the literals in clauses are sorted [BP11].

Self-subsuming resolution was independently discovered as global subsumption
for instantiation-based first-order theorem proving [Kor08] and actually was intro-
duced in the SAT context via the notion of a subsuming resolvent in [OGMS02]
(though without detailed experiments). In [EB05], it was partially motivated
by the fact that clause learning (Chapter 4), and particularly clause minimiza-
tion [SB09], implicitly rely on it. On-the-fly subsumption [HJS10, HS09] is another
related technique that uses self-subsuming resolution to strengthen antecedent
clauses used for deriving learned clauses in CDCL.

9.2.4.4. Implementations

Finding subsumed clauses in CNF formulas is closely related to finding extremal
sets in data mining. In this context, Bayardo and Panda [BP11] showed that
backward-subsumption algorithms developed in the SAT community [EB05] were
competitive for this problem too, but their paper also presents a substantially
faster algorithm, which in our setting translates to forward-subsumption checking
and yields a substantial performance improvement also for SAT.

The basic idea is to use a one-watched-literal scheme and only watch literals
with the fewest occurrences. Clauses are added again one-by-one, but now starting
with the smallest clauses first. All one-watched-literal lists of the literals in a
processed clause are traversed to find clauses which subsume the processed clause.
If this is not the case (i.e., the forward-subsumption check fails), then the clause
is added, and the literal with the shortest watch list (at this point) is watched.
As already discussed above, the actual subsumption check between a previously
added clause and the processed clause can be made faster too (for instance, by
sorting literals in clauses [BP11]) and extends to self-subsuming resolution.

In the context of Quantor [Bie04], SatELite [EB05], and MiniSat [ES06]
backward subsumption was considered superior. However, forward-subsumption
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Figure 1. Hypergraph Representation of a CNF Formula.

algorithms inspired by ideas of [BP11], as implemented in Splatz [Bie16] and
CaDiCaL [Bie17], become more important, particularly during the process of
removing from a given CNF all subsumed clauses and performing self-subsuming
resolution until completion. These forward-subsumption algorithms are much
more efficient than previously used backward-subsumption algorithms and can
even regularly be applied to learned clauses during inprocessing too. Interleaved
with variable elimination (see Section 9.3), which needs full occurrence lists in
any case, there is still a benefit in using backward subsumption, since it allows to
focus on trying to subsume or strengthen other clauses by newly derived clauses
to trigger new variable-elimination attempts (as for instance in [BFFH20]).

9.2.5. Connected Components

The solving process for a formula can be significantly simplified by taking its
underlying graph structure into account. One way to represent a formula as a
graph is to define a hypergraph where variables correspond to vertices and clauses
correspond to hyperedges connecting their variables. For example, the formula

(x ∨ y ∨ z̄) ∧ (ȳ ∨ z) ∧ (u ∨ v̄) ∧ (v ∨ w̄)

can be represented by the hypergraph shown in Figure 1. As we can see in this
example, the graph contains two different connected components.

It has been observed that formulas in practical SAT solving often contain
multiple connected components [BS06]. Each of these components can be seen
as an independent SAT problem, with the whole formula being satisfiable only if
all of its components are satisfiable. Splitting a formula into its connected com-
ponents during preprocessing and then solving these components independently
has several advantages: the independent components can be solved in parallel,
and as soon as one component is identified as unsatisfiable, it can be concluded
that the whole formula is unsatisfiable. Even if all components are satisfiable, the
parallelism can speed up the solving process. Similar ideas are used in component
caching for model counting [BDP03, SBB+04], where the formula is preprocessed
at every search node and decomposed into disconnected components for which the
model count can be computed independently. The problem of model counting is
also called #SAT and extensively covered in Chapter 25 and 26.

In the context of CDCL SAT solving (Chapter 4), formulas consisting of inde-
pendent components can be simpler to solve even without relying on parallelism.
Suppose a typical CDCL solver tries to find a satisfying assignment for a formula
that consists of several independent components. During search, the solver might
find an assignment that already satisfies some of the components, but then realize
that the assignment falsifies another component. What the solver usually does in
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that situation is to backjump and thereby undo some of its variable assignments.
However, this could undo some of the assignments that are independent of the
falsified component and thereby unassign components that were already satisfied.

By splitting up a formula, such a situation can be avoided. However, the
same effect can be achieved by saving the last assigned truth value (also called
phase) of a variable and then always assigning that saved value when making
decisions. This phase saving technique was introduced in the RSat solver [PD07]
and has been standard in SAT solvers since then, making explicit component
decomposition obsolete, at least for sequential plain CDCL solving.

Since 2018 several state-of-the-art SAT solvers quite frequently reset saved
phases [Bie18, Bie19, BFFH20, ZC20, SCD+20, SSK+20], which counteracts the
effect of phase saving to remember satisfying assignments for components. As
an alternative to explicit component decomposition as in [BS06], it was proposed
in [BFFH20] to simply remove all clauses satisfied by the largest autarky within
saved phases following ideas in [KHB19], an application of autarky reasoning of
Chapter 14 within SAT solving.

9.3. Resolution-Based Preprocessing

We continue by discussing preprocessing techniques that rely heavily on resolu-
tion, starting with bounded variable elimination, which as high-lighted already in
the introduction is still considered the most important preprocessing technique
in practical SAT solving.

9.3.1. Bounded Variable Elimination

Bounded variable elimination [Bie03, Bie04, SP04, EB05] is based on the tech-
nique of clause distribution, which lies at the core of the original Davis-Putnam
procedure [DP60]. To perform clause distribution, we choose a variable, add
all resolvents upon this variable to the formula, and remove the original clauses
containing the variable.

Example 5. Consider the formula

F = (x ∨ e) ∧ (y ∨ e) ∧ (x̄ ∨ z ∨ ē) ∧ (y ∨ ē) ∧ (y ∨ z). (9.1)

To perform clause distribution with the variable e, we first add all resolvents
upon e. The clauses (x∨ e) and (y ∨ e) can both be resolved with (x̄∨ z ∨ ē) and
(y ∨ ē). We thus add the corresponding four resolvents to obtain the formula

F ∧ (x ∨ x̄ ∨ z) ∧ (x ∨ y) ∧ (y ∨ x̄ ∨ z) ∧ (y).

Now we remove all clauses that contain e to obtain

(y ∨ z) ∧ (x ∨ x̄ ∨ z) ∧ (x ∨ y) ∧ (y ∨ x̄ ∨ z) ∧ (y). (9.2)

Repeated clause distribution can increase the number of clauses exponentially,
rendering its unbounded use as a preprocessing technique unaffordable. Actually,
already eliminating a single variable might increase the size quadratically. To
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deal with this problem, the original technique of bounded variable elimination
applies clause distribution only on variables whose elimination does not increase
the number of clauses, which explains the name bounded variable elimination.

However, as proposed in the variable-elimination procedure of the QBF solver
Quantor [Bie04], it has become common in SAT to relax the bound on additional
clauses: in incrementally relaxed bounded variable elimination, introduced in the
SAT solver GlueMiniSat [NII15], the bound is increased3 incrementally every
time a round of variable elimination has completed without increasing the size of
the formula too much. This technique was ported to the highly influential SAT
solver COMiniSatPS [Oh16] that has formed the basis of the MapleSAT series
of SAT solvers [LGPC16, LLX+17, NR18], which ranked at the top in the SAT
competitions from 2016 to 2018.

Since bounded variable elimination produces many redundant clauses, it is
often combined with tautology elimination (as in NiVER [SP04]) as well as with
subsumption and strengthening (in SatELite [EB05]). Subsumption might lead
to further variables being eliminated, triggered by removing clauses or literals.

Example 6. Consider again the formula (9.2), which resulted from the formula
(9.1) by eliminating the variable e. We can observe that the resolvent (x∨ x̄∨ z)
is a tautology and that it can therefore be removed from the formula. Moreover,
the clauses (y∨ z), (x∨y), and (y∨ x̄∨ z) are all subsumed by the clause (y), and
so they can be eliminated as well. Thus, after eliminating only a single variable,
we end up with the trivially satisfiable formula (y).

On the implementation side, clause distribution is best interleaved with sub-
sumption using the generated resolvents immediately to subsume and strengthen
existing clauses through backward subsumption. Furthermore, bounded variable
elimination can be improved by on-the-fly subsumption during variable elimina-
tion [HS09] as follows: Whenever a (non-tautological) resolvent R of two clauses
C and D is computed, check if |R| = |C| − 1 or |R| = |D| − 1 (after removing
repeated literals, i.e., interpreting clauses as literal sets). In the former case, C is
subsumed by R and so it can be replaced by R; in the latter case, D is subsumed
by R and so it can also be replaced by R. Moreover, the replacement can be
performed regardless of whether e is actually eliminated or not (in case elimina-
tion of e would produce too many new clauses). Variables of removed clauses or
literals have to be (re)scheduled as candidates for further elimination attempts.

Another important implementation detail is how to organize the schedule of
elimination candidates. Common practice is to use a priority queue implemented
as a binary heap in which the variables are ordered by their number of occurrences
within the formula. Variables with the smallest number of occurrences are tried
first, and the priority queue is updated dynamically as clauses are strengthened,
removed, and added. In order to scale variable elimination to large formulas,
variables that—when resolved—produce large resolvents or occur in large or in
too many clauses, should not be eliminated. Limits vary by implementation,
but typically the clause size or the resolvent size is limited to 20 to 100 literals.
Variables that occur more than 100 to 1000 times, either negatively or positively,
are typically skipped too.

3For instance, the bounds form a geometric series 0, 8, 16, 32, . . . , 8192.
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The effectiveness of bounded variable elimination is highlighted by the ob-
servation that it automatically performs the earlier discussed elimination of pure
literals, because there are no resolvents upon pure literals. Moreover, if a for-
mula contains a unit clause (e) and either on-the-fly subsumption is performed
or the formula contains no clauses that are subsumed by (e), then the result of
eliminating the variable e is the same as applying the unit-clause rule with (e).

As observed in [EB05], the elimination of variables for which the CNF con-
tains a functional definition produces redundant clauses; these clauses are actually
resolvents of clauses that are not part of the functional definition. Thus, searching
for such definitions (see Section 9.6.2) during elimination attempts reduces the
number of required resolvents and often allows more variables to be eliminated.

Alternatively, as implemented in Lingeling [Bie10], it is possible to simplify
the CNF of resolvents on the fly, for instance by applying “semantically” the dual
of Minato’s algorithm for producing an irredundant sum-of-products [Min92] to
CNF [EMS07]. The idea is to compile the CNF of the clauses containing the
variable to be eliminated into a “semantic” representation, such as a binary deci-
sion diagram (BDD) [Bry86], eliminate the variable from the BDD by existential
quantification, and then as in [EMS07] encode the resulting BDD back into an
irredundant CNF (using Minato’s algorithm). Instead of using BDDs function
tables represented as bit-maps as in Lingeling will also do. In any case, this
approach avoids searching for functional definitions explicitly and captures all
types of functional dependencies. Otherwise it reduces the number of produced
clauses at least as much as the explicit method [EB05] discussed above.

For the sake of completeness, it should also be mentioned that there exist sym-
bolic variants of bounded variable elimination that use decision diagrams [CS00,
vDEB18], more precisely zero-suppressed decision diagrams (ZDD) [Min93]; but
in practice they currently work only on very restricted sets of formulas (e.g.,
pigeon-hole formulas).

Finally, bounded variable elimination can also be applied “in reverse”, result-
ing in what is called bounded variable addition (BVA), as proposed in [MHB12].
Since the elimination of variables can increase the number of clauses, perform-
ing variable elimination in reverse (adding variables instead of eliminating them)
can potentially shrink the size of a formula. Requiring to distinguish between two
types of variables (i.e., original and added) makes the implementation of bounded
variable addition much more problematic than implementing bounded variable
elimination, particularly in the context of incremental SAT solving, where also
the need of “recycling” variables might become an issue. In contrast to bounded
variable elimination, bounded variable addition has therefore not yet established
itself as a central preprocessing technique.

9.3.2. Techniques Based on Implication Graphs

Analyzing the structure of binary clauses (i.e., clauses that contain exactly two
literals) in a CNF formula gives rise to preprocessing techniques through the
notion of a (binary) implication graph [APT79] (BIG). Given a CNF formula, its
binary implication graph is a directed graph that is obtained as follows: Introduce
a vertex for every literal, and add the edges (l̄, k) and (k̄, l) for every binary clause
(l ∨ k), where l and k are (possibly negative) literals.
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x̄ȳz̄

ū
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Figure 2. The original (binary) implication graph (BIG) for the formula of Example 7 is shown
on the left and on the right the result after one round of equivalent-literal substitution.

Example 7. The implication graph of the formula

(x̄ ∨ y) ∧ (ȳ ∨ z) ∧ (z̄ ∨ u) ∧ (ū ∨ y) ∧ (x̄ ∨ z̄) ∧ (x ∨ z ∨ u)

is shown on the left in Figure 2. Notice that the ternary clause (x ∨ z ∨ u) does
not affect the implication graph.

An edge in the implication graph directly represents an implication that is
equivalent to a binary clause in the formula. In the example, x implies y, y implies
z, z implies u, and so on. Notice also that for every edge of the form (e1, e2),
the implication graph contains a corresponding edge (ē2, ē1), representing the
contraposition of the implication.

By construction, every strongly connected component4 of a binary implication
graph represents a set of equivalent literals [VGT93, Li00], i.e., literals who must
have the same truth value in every satisfying assignment of the formula. The set
of literals prescribed by a strongly connected component can therefore be replaced
by a single representative literal in the underlying CNF formula; this replacement
is known as equivalence reduction and equivalent-literal substitution (ELS).

Example 8. In the implication graph on the left in Figure 2, the literals y, z,
and u form a strongly connected component. Their negations ȳ, z̄, and ū also
form a strongly connected component. Since a clause (x ∨ y) is represented by
the two edges (ȳ, x) and (x̄, y) in the binary implication graph, every strongly
connected component has a corresponding strongly connected component that
consists of its complementary literals. In the example, we can replace the strongly
connected component {y, z, u} by the vertex y, and the strongly connected com-
ponent {ȳ, z̄, ū} by the vertex ȳ, to obtain the simplified formula

(x̄ ∨ y) ∧ (x̄ ∨ ȳ) ∧ (x ∨ y).

Note that the clause (x∨y) stems from the original ternary clause (x∨z∨u). The
simplified formula corresponds to the implication graph depicted on the right of
Figure 2 (with two new strongly connected components).

There are several different implementations for finding and replacing strongly
connected components [APT79, dV01, BW03, VG05, GS05] in the context of SAT.
For details, we refer to the respective literature, but usually the implementations
are based on a depth-first search of the implication graph.

4A strongly connected component is a maximal set of vertices such that every vertex in the
set is reachable from all other vertices in the set.
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In certain cases, strongly connected components can even be used for detect-
ing unsatisfiability: if both a literal l and its complement l̄ are contained in the
same strongly connected component, then the formula is unsatisfiable. Addition-
ally, the implication graph can be used for the detection of failed literals. In
particular, if there is a path from a literal l to its complement l̄, then l is a failed
literal [VG05].

Example 9. In the binary implication graph shown in Figure 2, x is a failed
literal because there is a path from x to x̄. Note, however, that the implication
graph does not always contain a path from a failed literal l to its complement l̄.
To see this, consider the formula F = (x̄ ∨ y ∨ z) ∧ (x̄ ∨ ȳ) ∧ (x̄ ∨ z̄) and the
literal x. Although it can be checked that x is a failed literal with respect to F ,
there is no path from x to x̄ in the implication graph, because the ternary clause
(x̄ ∨ y ∨ z), without which x would not be a failed literal, is not considered when
constructing the implication graph.

9.3.3. Hyper Binary Resolution

We have already seen in the context of unit propagation how a formula can be
simplified by continuously performing inference steps (namely, the unit-clause
rule) until either a conflict is derived or no more inference steps are applicable.
Hyper binary resolution is based on the same idea, but uses stronger inferences.

Towards hyper binary resolution, consider first binary resolution. The binary-
resolution rule is obtained from the ordinary resolution rule by restricting it
to binary clauses. A binary-resolution step can either produce another binary
clause—for instance, if we resolve (x∨ y) with (x̄∨ z) to obtain (y ∨ z)—or it can
yield a unit clause—for instance, if we resolve (x ∨ y) with (x̄ ∨ y) to obtain (y).
Applying the binary-resolution rule and the unit-clause rule until none of them
is applicable anymore can simplify a formula more aggressively than performing
only unit propagation.

Example 10. Let F = (x ∨ y) ∧ (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (x̄ ∨ ȳ). As there are no
unit clauses in F , unit propagation has no effect on the formula. However, by
performing binary resolution of (x ∨ y) with (x̄ ∨ y), we derive (y). After this,
unit propagation can derive a conflict with the clauses (y), (x ∨ ȳ), and (x̄ ∨ ȳ).

As observed by Bacchus [Bac02], every unit clause that can be derived by per-
forming binary resolution in combination with unit propagation (as described
above) can also be derived by failed-literal detection, but not vice versa.

Example 11. With respect to the formula F = (x̄∨y∨z)∧ (x̄∨ ȳ)∧ (x̄∨ z̄) from
Example 9 above, the literal x is a failed literal since unit propagation derives
a conflict on F ∧ (x). Therefore (x̄) can be derived by failed-literal detection.
However, both unit propagation and binary resolution do not affect F . The reason
for this is that they cannot use the first clause, which contains three literals.

Simply performing all resolutions, also with longer clauses, would produce too
many clauses. This leads to the definition of hyper binary resolution [Bac02], an
instance of hyper resolution [Rob74], which contracts several resolution steps into
a single inference step.
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l1 ∨ · · · ∨ ln

l̄1 ∨ l

l2 ∨ · · · ∨ ln ∨ l

l̄2 ∨ l

· · · ln−1 ∨ ln ∨ l

l̄n−1 ∨ l

ln ∨ l︸ ︷︷ ︸
implicit

Figure 3. Hyper binary resolution. Only the last resolvent (ln ∨ l) is actually added after a
hyper binary resolution step. The intermediate resolvents are implicit.

Definition 12. Given an n-ary clause (l1 ∨ · · · ∨ ln) and n − 1 binary clauses
(l̄1 ∨ l), . . . , (l̄n−1 ∨ l), hyper binary resolution allows the derivation of the clause
(ln ∨ l), which is called a hyper binary resolvent.

Observe that the hyper binary resolvent (ln ∨ l) can be derived from the previous
clauses by applying a number of resolution steps. We start with (l1∨· · ·∨ ln) and
first resolve it with (l̄1 ∨ l) to obtain (l2 ∨ · · · ∨ ln ∨ l), which we then resolve with
(l̄2 ∨ l) to obtain (l3 ∨ · · · ∨ ln ∨ l) and so on until we finally derive (ln ∨ l). The
intermediate resolvents, however, are not derived explicitly. Figure 3 illustrates
the (implicit) resolutions involved in a single hyper binary resolution step.

By repeatedly performing hyper binary resolution in combination with unit
propagation until no more inference steps are possible (or a conflict is derived), a
formula can be simplified significantly. In fact, this combination derives the same
literals that would be derived by performing failed-literal detection on all literals
in combination with unit propagation [Bac02]. It can, for instance, derive the
literal (x̄) from the formula F in Example 11 by a single application of the hyper
binary resolution rule.

Hyper binary resolution and unit propagation have been used in combina-
tion with the detection of binary equivalences (replacing them by single liter-
als, similar to the technique based on strongly connected components discussed
in Section 9.3.2). The resulting preprocessing technique can be implemented
based on probing failed literals in a depth-first search of the binary implication
graph [BW03]. As soon as a large (non-binary) clause is used to derive a unit
clause during probing, a hyper binary resolvent is learned. A less general but
faster version of this technique, which only probes roots of the binary implication
graph, has been implemented by Gershman and Strichman [GS05].

More sophisticated algorithms for hyper binary resolution [HJB13] reuse de-
cisions and propagation effort by scheduling decisions along the structure of the
binary implication graph, but using multiple decisions at the same time, similar
in spirit to efficient “distillation” on tries [HS07], with more details provided at
the end of the next section.

These approaches avoid “transitive” hyper binary resolvents by prioritizing
unit propagation over binary clauses. For instance, the set {(āi∨ai+1) | 1 ≤ i < n}
of binary clauses has quadratically many hyper binary resolvents (āi ∨ aj), with
1 ≤ i < j ≤ n. Note that these additional transitive clauses are redundant with
respect to detecting strongly connected components of equivalent literals as well
as unit propagation (see also the discussion of “empowering” in [PD11]) and thus
should not be derived (and stored). It is further useful to apply transitive reduc-
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tion of the binary implication graph pro-actively [HJB10a]. As first implemented
in PrecoSAT [Bie09] and further refined in [HJS11], there is also an on-the-fly
variant of hyper binary resolution that learns binary clauses during propagation
using dominator analysis on the binary implication graph (see also [HJB13]).

However, removing transitive resolvents does not prevent the worst case of
quadratically many non-transitive hyper binary resolvents [HJB13], and running
hyper binary resolution until completion is only feasible for certain formulas
(mostly small and hard combinatorial problems). For large application formu-
las, hyper binary resolution has to be preempted, and it is advisable to “forget”
hyper binary resolved clauses aggressively [BFFH20] during the “reduce” phase
of the SAT solver which deletes useless learned clauses.

9.3.4. Advanced Probing Techniques

We start with asymmetric5 tautologies, which are a generalization of tautologies
based on the concept of an asymmetric literal:

Definition 13. A literal l is an asymmetric literal in a clause C ∨ l with respect
to a formula F if unit propagation deduces the unit clause l̄ from F ∧ C, where
C is the conjunction of the negations of the literals in C.

Accordingly, if l is an asymmetric literal in C ∨ l w.r.t. F , then all models
that falsify C but satisfy F , falsify l. In this case, l is redundant in C ∨ l and
F ∧ (C ∨ l) can be simplified to F ∧ C by “strengthening” C ∨ l and removing l.
This simplification is also called asymmetric literal elimination (short ALE).

Example 14. Consider the formula F = (a∨x̄)∧(x∨l̄) and the clause C = (a∨b).
Unit propagation on F ∧C = F ∧(ā)∧(b̄) produces the unit clause (l̄). Therefore,
l is an asymmetric literal in C∨l with respect to F , and (a∨x̄)∧(x∨ l̄)∧(a∨b∨l) =
F ∧(C∨l) can be simplified to (a∨x̄)∧(x∨ l̄)∧(a∨b) = F ∧C through asymmetric
literal elimination.

In order to deduce that clauses are “redundant” based on this notion, we add
literals instead of removing them, and during this process obtain a tautological
clause [HJB10a].

Definition 15. A clause C is an asymmetric tautology (AT) with respect to F
if there is a sequence l1, . . . , ln of literals such that C ∨ l1 ∨ · · · ∨ ln is a tautology
and each li is an asymmetric literal in C ∨ l1 ∨ · · · ∨ li with respect to F .

Example 16. Consider the formula F = (x̄∨z)∧(ȳ∨z̄) and the clause C = (x̄∨ȳ).
The literal z̄ is an asymmetric literal in (x̄∨ ȳ∨ z̄) w.r.t. F since unit propagation
on F ∧ (x) ∧ (y) deduces the unit clause (z) (propagation of F ∧ (x) is enough).
Then z is an asymmetric literal in (x̄ ∨ ȳ ∨ z̄ ∨ z) w.r.t. F as unit propagation
deduces also z̄ from F ∧ (x)∧ (y)∧ (z) (again already unit propagation of F ∧ (y)
suffices). At this point we can stop, since we have already shown that C in
combination with F is equivalent to a tautology, thus an asymmetric tautology.

5The term “asymmetric” has its origin in the notion of “asymmetric (tableau) rules” [DM94],
which apparently inspired the MiniSat authors [ES03] to name a command line option “-asymm”
used to enable a “strengthening” procedure now called “asymmetric literal elimination”.
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Note that in this example we used the fact that unit propagation is confluent
in the sense that the order in which the unit-clause rule is applied is irrelevant
to the outcome; it is also monotonic in the sense that every unit clause that can
be derived from a formula F can also be derived from every larger formula that
contains all the clauses of F .

It can further be shown that if a clause C is an asymmetric tautology w.r.t. a
formula F , then F implies C. This in turn means that C can be safely eliminated
from the formula F ∧C. Moreover, if only asymmetric literals from binary clauses
need to be added to turn a clause into a tautology, then that clause is also called
a hidden tautology, and the corresponding clause-elimination technique is called
hidden tautology elimination (HTE) [HJB10a].

The related technique of unhiding [HJB11] avoids quadratic computation dur-
ing repeated unit propagation. It is based on randomized depth-first traversal of
the binary implication graph and relies on the parenthesis theorem to detect in
almost constant time if a clause is a hidden tautology or if clauses can be strength-
ened by removing hidden literals. This form of literal removal is also known as
hidden literal elimination (HLE), which can be seen a restricted variant of asym-
metric literal elimination which only propagates over binary clauses.

It is well-known that a clause C is an asymmetric tautology with respect to
a formula F if and only if it is a reverse unit propagation (RUP) clause [VG12].

Definition 17. A clause C is a RUP clause with respect to a formula F if unit
propagation derives a conflict on F ∧ C.

To test if a clause is an asymmetric tautology with respect to a formula F , it thus
suffices to check if propagating its negation leads to a conflict. Note that RUP
clauses are a generalization of the earlier-mentioned failed literals: a unit clause
(l) is a RUP clause with respect to a formula F if and only if l̄ is a failed literal
with respect to F . From the RUP definition it also becomes clear why asymmetric
tautologies are implied, since unit propagation can only derive a conflict if the
conjunction of the formula with the negated clause is unsatisfiable, which is the
case if and only if the clause is implied by the formula.

Failed-literal probing alone is often already quite expensive. Thus checking
all clauses for being asymmetric tautologies is even more costly. Still, removing
them can benefit other preprocessing algorithms such as variable elimination.

The basic approach of asymmetric tautology checking takes a clause C, then
assigns all its literals to false, followed by unit propagation. Advanced probing
techniques like distillation [HS07] and vivification [PHS08] interleave assignments
and propagations instead. This works as follows.

The literals of C are still assigned to be false in an arbitrary fixed order, but a
complete round of propagation is started immediately after every single assumed
assignment. If during such a propagation round a conflict is found or another
not yet assigned literal of C is forced to true, then the clause is an asymmetric
tautology and can in principle be removed. Alternatively, particularly if applied
to learned clauses in CDCL [LLX+17, LXL+20], such asymmetric tautologies
can be replaced by clauses learned through the standard CDCL conflict analysis,
if, for instance, the learned clause turns out to be shorter. If, however, during
propagation another not yet assigned literal of C is forced to false, then this
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literal is actually an asymmetric literal and the clause C can be strengthened,
by removing the literal from C. This presents the real benefit of interleaving
assignments and propagation in vivification and distillation.

A disadvantage of clause-based probing, in contrast to literal based prob-
ing discussed before, is that potentially many redundant propagations are per-
formed, for instance when many clauses share the same literals. These literals
are then repeatedly assigned to false and propagated. An attempt to reduce
this redundant propagation effort was made in distillation by reorganizing the
clauses in a trie (i.e., as a shared prefix tree) and reusing propagations along the
same prefix [HS07]. The implementation of vivification in CaDiCaL [Bie17] and
Kissat [BFFH20] achieves the same effect by sorting clauses and literals, thus
simulating a trie structure on a plain CNF formula.

Another important question is which clauses should be checked, particularly if
these techniques are applied to learned clauses during inprocessing [JHB12]. One
proposal was to check learned clauses in parallel [WH13] in a separate thread. An-
other, which was actually the basis for the revival of these techniques [LLX+17],
was to focus on learned clauses, check all clauses at most once, and check only
those which have a high chance of being used (e.g., clauses of small LBD [AS09]).
For more details see [LXL+20].

9.4. CNF Preprocessing Beyond Resolution

So far, we have only considered the elimination of clauses that are implied. How-
ever, as we discussed in the section on subsumption, in SAT solving often a more
general notion of redundancy is used, requiring only that the elimination of a
clause has no effect on the satisfiability status of a formula (see [JHB12]).

One of the most important types of clauses that are redundant but not nec-
essarily implied, are blocked clauses. Intuitively, a clause is blocked if it contains
a literal such that all resolvents upon this literal are tautologies [Kul99].
Definition 18. Given a formula F and a literal l, we denote by Fl the set of
clauses of F that contain l. Then a clause C is a blocked clause in a formula F if
it contains a literal l such that for every clause D ∈ Fl̄, the resolvent of C and D
upon l is a tautology. We say that l blocks C in F .
Example 19. Consider the formula F = (x̄∨ z)∧ (ȳ ∨ x̄) and the clause (x∨ y).
The literal x does not block (x∨ y) in F since the resolvent (y ∨ z) of (x∨ y) and
(x̄∨z) is not a tautology. However, the literal y blocks (x∨y) in F since the only
clause in Fȳ is the clause (ȳ ∨ x̄), and the resolvent (x ∨ x̄) of (x ∨ y) and (ȳ ∨ x̄)
is a tautology. Therefore, (x ∨ y) is blocked in F .
Blocked clauses were initially introduced by Kullmann [Kul99] as a general-
ization of the definition clauses in extended resolution [Tse68], and were later
proposed as a basis for the preprocessing technique of blocked clause elimina-
tion [JBH10] (BCE). As further shown in [JBH12], blocked clause elimination can
simulate several structural simplification techniques (see also Section 9.6) on the
CNF-level, in particular non-shared-input elimination, monotone-input reduction,
and cone-of-influence reduction. Moreover, the effectiveness of bounded variable
elimination can be increased by interleaving it with blocked clause elimination.
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Blocked clauses have been generalized in several ways. One well-known gener-
alization are resolution asymmetric tautologies, better known as RATs. The RAT
definition is obtained from the blocked-clause definition by replacing tautologies
with asymmetric tautologies [JHB12].

Definition 20. A clause C is a resolution asymmetric tautology (RAT) in a
formula F if it contains a literal l such that for every clause D ∈ Fl̄, the resolvent
of C and D upon l is an asymmetric tautology with respect to F .

From this definition it immediately follows that every blocked clause in formula F
is also a RAT with respect to F . Although the explicit elimination of RATs
has not yet been shown to boost solver performance in SAT, generalizations of
RAT elimination for quantified Boolean formulas (QBFs) have led to significant
performance improvements in QBF solving [LE18].

Moreover, RAT lies at the core of the well-known DRAT proof system, which
is the de-facto standard in modern SAT solving. Other generalizations of blocked
clauses and RATs (e.g., set-blocked clauses [KSTB16, KSTB18] and propagation-
redundant clauses (PR) [HKB17, HKB20]) have also not yet been used for clause
elimination but instead for clause addition during solving and for proof generation,
which we are not going to discuss here.

One type of clauses that generalizes blocked clauses, and whose elimination
has shown some performance improvements in the SAT solver Lingeling [Bie17],
are covered clauses. Intuitively, a clause is a covered if it can be turned into a
blocked clause by adding so-called covered literals [HJB10b].

Definition 21. A literal k is a covered literal in a clause C with respect to a
formula F if C contains a literal l such that all non-tautological resolvents of C
upon l with clauses D in Fl̄ contain k.

The addition of covered literals preserves satisfiability in the sense that F ∧ C
and F ∧ (C ∨ k) are equisatisfiable if k is covered by C in F ; before an example,
we give the definition of covered clauses [HJB10b] based on covered literals.

Definition 22. A clause C is a covered clause with respect to a formula F
if there exists a sequence k1, . . . , kn of literals such that each ki is covered by
C ∨ k1 ∨ · · · ∨ ki−1 with respect to F and C ∨ k1 ∨ · · · ∨ kn is blocked in F .

Example 23. Consider the formula F = (x̄∨y)∧(ȳ∨z) and the clause C = (x∨z̄).
Although C is not blocked in F , we can add the literal y since it is contained in
the only resolvent upon x, namely (y ∨ z̄), obtained by resolving with (x̄ ∨ y).
The resulting clause (x ∨ z̄ ∨ y) is then blocked as there is only the tautological
resolvent (x ∨ z̄ ∨ z) upon y, obtained by resolving with (ȳ ∨ z). Thus, C is a
covered clause with respect to F .

There exist even more general types of redundant clauses, such as resolution-
subsumed clauses [JHB12] (“the clause contains a literal such that all resol-
vents upon the literal are tautological or subsumed”), and asymmetric variants of
blocked as well as covered clauses (“the addition of asymmetric or covered literals
turns the clause into a blocked clause”) [HJL+15, JHB12], thus extending blocked
clause elimination (BCE) and covered clause elimation (CCE) to the more general
concept of asymmetric covered clause elimination (ACCE).
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It is, however, not clear if the elimination of such clauses can lead to no-
ticeable performance improvements in practical SAT solving. The same applies
to the elimination of globally blocked clauses [KHB19] motivated by circuit pre-
processing techniques. There is also some renewed interest in covered clauses,
which were recently shown to have orthogonal strength to propagation-redundant
clauses [BCB20].

9.5. Solution Reconstruction

For many practical applications it is not sufficient to regard SAT as a mere decision
problem. Consider, for instance, bounded model checking (Chapter 18): If a SAT
solver determines that a propositional encoding of a safety property is satisfiable,
we know that a bad state is reachable and thus that the safety property is violated.
Without a concrete satisfying assignment, however, we cannot obtain an execution
trace to analyze and diagnose the reason for the property violation. A similar
situation occurs in SAT-based planning (Chapter 19), where a simple yes/no
answer without the ability to generate actual plans is (mostly) useless.

Other applications require proofs after the SAT solver determined a formula
to be unsatisfiable (e.g., to extract clausal cores or to generate interpolants).
Preprocessors thus also need to make sure that valid proofs of a simplified formula
can be turned into valid proofs of the original formula. For clausal proofs, which
have been the dominant proof variant in the SAT competition since 2013, this
is often easy to achieve [JHB12], and only requires that added clauses can be
derived via a sequence of simple proof steps (for many techniques, a simple proof
step via a RAT addition often suffices). Producing deletion information, used to
speed up proof checking for DRAT proofs [HHJW13, WHHJ14], is slightly more
involved, as additional care needs to be taken to avoid that clauses are deleted
too early. See Chapter 15 on proofs of unsatisfiability for more details.

In the rest of this section, we focus on satisfiable formulas, and, following
the literature [JB10], we use the terms satisfying assignment, model, and solution
interchangeably. Moreover, we interpret solution reconstruction as the process
of turning a satisfying assignment of the simplified formula (i.e., the formula
produced by preprocessing) into a satisfying assignment of the original formula.

In order to obtain solution reconstruction for unit propagation (Section 9.2.1),
it is common practice to simply keep unit literals permanently assigned. That
is also the reason why they are sometimes called root-level assigned, root-level
forced or simply fixed literals, where the root level is the top-most decision level
(where no decisions have been made) in a CDCL solver (Chapter 4). This covers
also the effect of failed-literal probing. Solvers might actually contain a global
Boolean flag to record that the formula is root-level inconsistent, meaning that
either the input CNF contains the empty clause or the empty clause has been
derived (through preprocessing or in conflict analysis during CDCL search).

In industrial applications, it is not uncommon that preprocessing removes
around 80% of the variables [EB05]. Focusing on the remaining “working set” of
active variables can therefore improve cache efficiency and reduce memory con-
sumption. Variables become inactive during search or inprocessing if they are
for instance fixed (or eliminated). Accordingly, several SAT solvers distinguish
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internal variables and external variables in order to keep the working set com-
pact. External variables are those seen by the user of the (incremental) SAT
solver and are mapped (and occasionally remapped during inprocessing) to the
remaining internal variables on which the SAT solver works internally. Fixed
external variables can either be recorded to be fixed (to a certain Boolean value)
in this mapping directly, or can be mapped to a unique internal fixed variable
(positively or negated), which represents all the fixed (external) variables.

All forms of strengthening and subsumption considered in this chapter, in-
cluding vivification and distillation, preserve logical equivalence and thus can be
ignored from the perspective of solution reconstruction (for satisfiable formulas).
For pure literals solution reconstruction can be achieved by simply adding the cor-
responding unit clauses (which are RAT). However, as discussed in Section 9.2.3,
this method does not preserve logical equivalence, since the formula might also
allow models where pure literals are false. This is considered problematic for in-
cremental SAT, since the user could be interested in such models in consecutive
SAT queries. An alternative is to use a reconstruction stack as discussed further
down, in essence treating pure literals in the same way as eliminated variables.

Equivalent-literal substitution (ELS) (see Section 9.3.2) also only preserves
satisfiability, since substituted literals do not occur in the simplified formula any-
more and can assume any value. One way of dealing with this situation, as
implemented in Lingeling [Bie11], is to maintain a global union-find data struc-
ture [Tar79] of substituted literals which maps literals to the representative literal
of their equivalent-literal class. The user can then obtain the solution value of a
literal from its representative literal. This has the additional benefit that users
can rather cheaply query the SAT solver, whether two literals have already been
determined to be equivalent. This union-find data structure can also be shared
among several solver threads efficiently as in Plingeling [Bie11]. Fixed literals
(units) can be handled within the same scheme by adding a pseudo-representative
constant literal (for, say, the Boolean constant false).

9.5.1. Reconstruction Stack

Bounded variable elimination, is on the one hand the most important preprocess-
ing technique, but on the other hand does not preserve logical equivalence, by the
same argument as for equivalent-literal substitution: after elimination, the elim-
inated variable is not restricted anymore and can assume any value. Therefore,
we really need a method for solution reconstruction.

One way to perform solution reconstruction for variable elimination works
as follows. Take the given solution of the simplified formula (restricted to the
remaining variables) and add satisfied literals as unit clauses to the original for-
mula. Alternatively, add back the eliminated clauses to the simplified formula
plus the satisfied literals of the solution as units to obtain the augmented formula.
Then call a second time a (plain) SAT solver on this augmented formula, which
is guaranteed to be satisfiable, and that way compute a satisfying assignment of
the original formula. The hope is that the additional unit clauses make it easy to
solve the augmented formula, which is not guaranteed though. A similar scheme
was employed in the SAT preprocessor SatELite [EB05], using temporary (bi-
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nary) files for communicating the simplified CNF and the eliminated clauses to
the second SAT solver.

A more sophisticated approach, guaranteed to have even linear complexity
in the number of eliminated clauses, which was first described in the literature
in [JB10], goes back to Niklas Sörensson. He observed that the given solution
of the simplified formula can be “extended” to a solution of the original formula
by propagating along the eliminated clauses in a specific way. The corresponding
reconstruction algorithm can be described as follows.

Assume that whenever a variable is eliminated, the clauses in which the vari-
able occurs are pushed on a stack, called the reconstruction stack. Further, make
sure that the first literal in each pushed clause is either the eliminated variable
or its negation, in order to map eliminated clauses to eliminated variables.

After obtaining a solution of the simplified formula, it is first extended by
assigning an arbitrary value (e.g., false) to all eliminated variables. Then, solution
reconstruction goes over the clauses on the reconstruction stack in reverse order,
starting from the last pushed clause. Each clause is checked to be satisfied, and
if not (i.e., all its literals are assigned to false), then the value of its first literal,
which corresponds to the eliminated variable, is flipped (assigned opposite value).

Example 24. Consider the formula (ā ∨ b) ∧ (a ∨ b̄) ∧ (b ∨ c) ∧ (b̄ ∨ c̄) which
is satisfiable and encodes that a and b need to have the same truth value but b
and c need to have opposite values. Now assume that variable elimination first
eliminates a, then b, and during this process pushes these four clauses in the
given order onto the reconstruction stack. The simplified formula consists of the
empty CNF and has as extended solution the assignment where all variables are
set to false. Now going backward over the reconstruction stack the algorithm
first checks whether the last clause (b̄∨ c̄) is satisfied, which is the case. The next
clause in reverse order (b∨c) is falsified however. Thus we flip the value of its first
literal b and set b to true. The next clause to be checked (a ∨ b̄) is also falsified
(since a is still false and b just became true). Accordingly, we flip the value of its
first literal a and set a to true. The last clause to be checked, (ā∨ b), is satisfied.
Thus the reconstructed solution has both a and b set to true (assigned to the
same value), while c remains false (assigned differently).

In fact, this simple algorithm also works for more advanced clause elimination
procedures: Blocked clauses are just pushed on the reconstruction stack with
the blocking literal as first witness literal. The same principle extends without
modification to more powerful clause redundancy properties [HJB10a, HJB10b,
HJL+15], including RAT, CCE and ACCE [JHB12], the latter two with the
caveat of requiring to potentially push multiple clauses on the reconstruction stack
when eliminating a clause [BCB20]. This scheme also allows to handle autarky
elimination [BFFH20] as well as equivalent-literal substitution elegantly [FBS19],
instead of using a union-find data structure. Finally, solution reconstruction for
propagation-redundant clauses [HKB17, HKB20] can be achieved in a similar way,
using a reconstruction stack, even for incremental SAT solving [FBS19]. The
only change needed, as implemented in CaDiCaL to support globally blocked
clauses [KHB19], is to replace the single witness literal by a set of witness literals,
which are all set to true if the corresponding clause is falsified.
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9.6. Structure-Based Preprocessing

So far we have focused on preprocessing techniques developed specifically for
formulas in conjunctive normal form. We now extend the discussion to prepro-
cessing techniques that were proposed for more expressive constraints and struc-
tural representations. In particular, we discuss parity-reasoning techniques and
preprocessing techniques applicable on Boolean circuits, which offer a compact
representation of arbitrary propositional formulas.

9.6.1. Parity Reasoning

Although the CNF representation of propositional formulas has many advantages,
it can be suboptimal in some cases. One such case, which occurs frequently, is
when formulas encode so-called XOR constraints or equivalence clauses. An XOR
constraint is of the form

l1 ⊕ l2 ⊕ . . .⊕ lk = b,

where l1, . . . , lk are propositional literals and b is either 0 or 1. Following the
standard semantics of the ⊕ operator (x ⊕ y is true if and only if x and y are
assigned different truth values), an assignment satisfies an XOR constraint with
b = 1 if and only if it satisfies an odd number of the literals l1, . . . , lk. Respec-
tively, it satisfies an XOR constraint with b = 0 if it satisfies an even number
of the literals. Equivalence clauses are closely related to XOR constraints. An
equivalence clause is of the form

l1 ↔ l2 ↔ . . . ↔ lk.

An assignment satisfies an equivalence clause if and only if it falsifies an even
number of the literals l1, . . . , lk. Observe that an equivalence clause of the form
l1 ↔ . . . ↔ l2i+1, having an odd number of literals, is equivalent to the XOR
constraint l1⊕ . . .⊕ l2i+1 = 1. Likewise, an equivalence clause l1 ↔ . . . ↔ l2i with
an even number of literals is equivalent to the XOR constraint l1 ⊕ . . .⊕ l2i = 0.
Thus equivalence clauses and XOR constraints are essentially the same concept.

An effective strategy for dealing with XOR constraints is to first scan the CNF
encoding of a formula for sets of clauses that represent XOR constraints, and to
then handle these constraints differently than ordinary clauses [Li00, HvM04,
SNC09, Che09, Soo10, LJN10, LJN12a, LJN12b, Bie12, HJ12, SM19, SGM20].

The naive CNF encoding of an XOR constraint with k literals consists of
2k−1 clauses, where each clause rules out exactly one assignment that would
falsify the constraint. More specifically, the CNF encoding of an XOR constraint
l1⊕. . .⊕lk = b consists of all k-sized clauses over l1, . . . , lk, where an even number
of literals occurs negated if b = 1 and an odd number occurs negated if b = 0.
Example 25. The XOR constraint

l1 ⊕ l2 ⊕ l3 = 1

is falsified by every assignment that satisfies an even number of the literals l1, l2, l3.
Its CNF encoding thus rules out all such assignments, leading to the clauses
(l1 ∨ l2 ∨ l3), (l̄1 ∨ l̄2 ∨ l3), (l1 ∨ l̄2 ∨ l̄3), (l̄1 ∨ l2 ∨ l̄3).
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A popular method for dealing with XOR constraints, which is used by sev-
eral solvers, including CryptoMiniSat [SNC09, Soo10], Lingeling [Bie12], and
March [HvM04], is Gaussian elimination. Gaussian elimination is based on the
observation that XOR constraints can be viewed as equations over the finite field
GF(2) (also denoted F2 or Z2), where the ⊕ operation corresponds to addition
modulo 2 (and the ∧ operation corresponds to multiplication modulo 2).

A set of XOR constraints can then be seen as a system of linear equations,
and we can derive new equations by adding together existing ones, just as known
from high school algebra. If Gaussian elimination is performed in a preprocessing
phase, it can possibly derive new unit clauses.

Example 26. Consider the clauses

(x̄ ∨ y ∨ z), (x ∨ ȳ ∨ z), (x ∨ y ∨ z̄), (x̄ ∨ ȳ ∨ z̄),

(y ∨ z), (ȳ ∨ z̄).

These clauses correspond to the two XOR constraints

x⊕ y ⊕ z = 0, (9.3)
y ⊕ z = 1. (9.4)

As there are no unit clauses, unit propagation would not have an effect on the
clauses. However, by adding the XOR constraint 9.3 to 9.4, and by using the fact
that l ⊕ l = 0 and l ⊕ 0 = l for every literal l, we can derive the XOR constraint

x = 1, (9.5)

which is equivalent to the unit clause (x).

Gaussian elimination can even show the unsatisfiability of particular formulas, as
illustrated next.

Example 27. Consider the XOR constraints

x⊕ y = 1, (9.6)
y ⊕ z = 1, (9.7)
x⊕ z = 1. (9.8)

By adding 9.6 to 9.7, we derive

x⊕ z = 0. (9.9)

If we add 9.8 to 9.9, we end up with the trivially unsatisfiable constraint 0 = 1.

The use of Gaussian elimination can lead to exponential speedups in SAT solving.
It has been shown that Tseitin formulas [Tse68] over expander graphs have only
exponential-size resolution proofs [Urq87], meaning that CDCL solvers require
exponential time to solve them. In contrast, Gaussian elimination can show the
unsatisfiability of these formulas in polynomial time.

25



Moreover, Gaussian elimination can be expressed polynomially with extended
resolution [SB06] and thus in the DRAT proof system [PR16]. It is still un-
clear though how many new variables are needed. For simple problems which
require parity reasoning new variables can be avoided by reusing eliminated vari-
ables [CH20]. Note that Gaussian elimination can be seen as an instance of the
more general approach of algebraic SAT solving in Chapter 7 on proof complexity.

There exist several approaches that extract and utilize equivalence clauses,
especially in preprocessing. Already in 1998, Warners and van Maaren [WvM98]
presented a preprocessor that utilizes linear programming to extract equivalence
clauses from CNF formulas. By reasoning over these equivalence clauses in an ini-
tial solving phase and then running a basic DPLL procedure, their approach was
the first to solve the notorious parity formula [CKS94] within reasonable time.
Heule and van Maaren [HvM04] later improved this approach and integrated
equivalence reasoning into the look-ahead solver March (see Chapter 5 for de-
tails on look-ahead based solvers), which could achieve a considerable speedup
by avoiding look-ups on variables for which look-ups on equivalent literals (as
indicated via binary equivalences) had already been performed.

Another approach that relies on inference rules over equivalence clauses was
presented by Li [Li00]. In an inprocessing fashion, he incorporated these inference
rules—which apply to equivalence clauses with at most three literals—into the
solver Satz. The resulting solver, EqSatz, was able to outperform the approach
of Warners and van Maaren on some, but not all, of the parity formulas.

The current state of the art in parity reasoning, applied to approximate model
counting, focuses on parity reasoning during search [SM19, SGM20], where much
more efficient algorithms are required, extending ideas from [HJ12].

9.6.2. Circuit-Level Reasoning

Propositional encodings tend to be more natural to develop using the full lan-
guage of propositional logic rather than aiming directly at a CNF-level encoding.
Boolean circuits offer a succinct structural representation for propositional for-
mulas. Succinctness comes from refining syntax trees of propositional formulas to
directed acyclic graph structures by allowing structural hashing, i.e., by represent-
ing each subcircuit (subformula) only once. This is a common implementation
technique for representing immutable data structures, also called hash consing in
the context of functional languages; it is used in most BDD libraries (in form of
a “unique table”) and related to common subexpression elimination in optimiz-
ing compilers. In practical implementations of circuit-level reasoning, restricted
classes of circuits are used, with and-inverter graphs (AIGs) [KGP01] as one
prominent example.

While SAT solvers working directly on the level of circuits have been devel-
oped (see, for instance, [Lar92] and in general Chapter 27), SAT solvers today
tend to be implemented specifically for CNF formulas. In fact, standard Boolean
constraint propagation achieved on the level of circuits is equivalently achieved
by unit propagation on the CNF obtained via the Tseitin encoding [Tse68].

However, circuits offer a view to developing further structure-based CNF
encodings and simplification techniques, by exploiting functional dependencies
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explicit in circuits. A classical argument for the necessity of such structural
information and against CNF is that this information is lost in the CNF encoding
phase. While structural information is not evident in CNF, it has turned out that
such arguments are partly wrong. In particular, CNF-level reasoning can achieve
the same effects for various forms of circuit-level reasoning techniques.

One example is the Plaisted-Greenbaum CNF encoding of propositional for-
mulas [PG86] which, based on the notion of polarities of subformulas, refines
the Tseitin encoding [Tse68]. It allows to drop clauses representing one direc-
tion of the bi-implications used in the Tseitin encoding, thus locally encoding
a unipolar subformula. While subformula polarities are computed following the
circuit structure of a formula, it has been shown [JBH12] that blocked clause
elimination, working “blindly” on the CNF, can remove all clauses left out by
the Plaisted-Greenbaum encoding. This implies that blocked clause elimination
from Section 9.4 achieves monotone-input reduction, i.e., it detects if the under-
lying circuit of the formula is monotone in terms of a particular input variable
(input gate or primary input). As blocked clause elimination can be implemented
efficiently, this renders the Plaisted-Greenbaum encoding on its own unnecessary.

Evidently, there are limits to what can be achieved (both in theory and in
practice) in terms of structure-based simplifications solely on the CNF-level, but
these limits are to an extent unclear. Structural hashing, for example, can be
simulated by hyper binary resolution of Section 9.3.3 on the Tseitin encoding of
AIGs, as shown in [HJB13]. However, for other gate types such as XORs and if-
then-else, also called multiplexer (MUX), hyper binary resolution does not achieve
structural hashing [HJB13].

More general hashing for minimizing circuit representations through detection
of logically equivalent substructures can be achieved on the circuit level through
BDD sweeping [KK97] and SAT sweeping [Kue04, MCJB05, ZKKS06, WKK12].
Stålmarck’s procedure [SS00] and Recursive Learning [KP92] are earlier circuit-
level preprocessing techniques with similar effects.

There are CNF-level versions of Stålmarck’s procedure [GW00], Recursive
Learning [MSG99] or more general SAT sweeping [HJB13, JLaMS15, CFM13].
These procedures allow to deduce literal equivalences implied by the CNF as well
as literals forced to a specific truth value, because they have that same truth value
in all models (so-called “backbones” [JLaMS15]). In contrast to hyper binary
resolution, which also produces equivalences, sweeping is able to find more of these
equivalences or even all, if required by some applications. These equivalences are
typically used to reduce the CNF as described in Section 9.3.2.

The current state of the art in encoding circuits into CNF [EMS07] is based
on techniques from circuit synthesis: circuit-level rewriting [BB04, BB06] with cut
enumeration [MCB06a] and technology mapping [MCB06b]. Related work uses
similar criteria [MV07, CMV09]. We are not aware of any CNF-level preprocessing
technique able to simulate these optimizations.

When having to start with CNF, one approach to exploit circuit-level tech-
niques is to first attempt to algorithmically recover a circuit-level representation
potentially underlying the CNF formula, on which circuit-level techniques can
then be applied. This process is also called gate extraction or mining func-
tional definitions. Even though there is already a substantial amount of work
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in this direction starting with [OGMS02, RMB04, FM07, IKS17] and most re-
cently [LLM20, Sli20] with more references, the task of the recovery step is in
general non-trivial and rarely used in practical SAT solving.

There is a related technique, called blocked clause decomposition [HB13,
BFHB14, Che15], with a similar purpose: it partitions a given CNF into a set
of blocked clauses (which is maximized) and some remaining clauses. The set
of blocked clauses has similar properties as a circuit, i.e., clauses are ordered
and models can be constructed polynomially, which has applications usually at-
tributed to circuit-level reasoning, including SAT sweeping [HB13].

Beside circuits and XOR constraints already discussed in Section 9.6.1, there
are other high-level representations or constraints for which dedicated preprocess-
ing algorithms exist, but currently no (efficient) CNF-level technique is known. As
explained for parity reasoning, a common approach is to extract such constraints,
apply high-level preprocessing, and then encode the resulting constraints back
to CNF. Closely related to XOR constraints are polynomials modulo 2 as con-
sidered in [CK07, CSCM19], and using Gröbner bases theory for preprocessing
and inprocessing. Regarding pseudo-Boolean and cardinality constraints (see also
Chapter 28) a similar argument applies [BLBLM14].

9.7. Conclusion

The development of novel types of preprocessing techniques and the optimized
implementation of these techniques has made preprocessing a central part of the
SAT solving workflow. In this chapter, we have discussed major developments
in preprocessing in SAT, focusing mostly on CNF-level preprocessing techniques,
but also considering some techniques on other representations.

In practice, the role of preprocessing is intertwined on one hand with the
encoding phase, providing an automated way to re-encode CNF instances, and
on the other hand with CDCL SAT solving. Developments in the latter direction
have brought on the influential inprocessing SAT solving paradigm, which inter-
leaves core CDCL search with complex combinations of preprocessing techniques.

Arguably, bounded variable elimination [EB05] is still the most important
practical preprocessing technique today. However, the many other types of pre-
processing techniques, developed in particular during the 21st century, play an
evident role as well. In terms of supporting variable elimination, various other
techniques are important for triggering further elimination steps of bounded vari-
able elimination, by performing crucial redundancy-elimination steps that are not
enabled by bounded variable elimination alone. Other individual techniques and
their combinations can be central in different types of problem-specific applica-
tions of SAT solvers.

Going further, the various developments in CNF-level preprocessing have had
a wide impact, well beyond mere preprocessing. By making use of polynomial-
time checkable clause-redundancy properties, inprocessing SAT solving breaks
the long-standing “resolution barrier” of standard CDCL SAT solvers, making
the solvers more powerful than the resolution proof system. Clause redundancy
properties have also resulted in generally applicable practical proof checking mech-
anisms, enabling the automated verification of proofs constructed by SAT solvers,
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thus lifting the trustworthiness of “no” answers provided by SAT solvers to new
levels (see Chapter 15).

There is much ongoing work on combining high-level and CNF-level prepro-
cessing, particularly for non-linear algebraic reasoning [CSCM19, KBK19], while
producing proofs for even parity reasoning is still a challenge [CH20]. In this
context, revisiting techniques using binary decision diagrams might also be in-
teresting [MM02, FKS+04, SB06, WFS06, BD09, vDEB18]. We also consider
parallelization of preprocessing to still be in its infancy [WH13, GM13, HW13,
BS18, OW19].

Finally, we want to point out that many of the preprocessing techniques
discussed in this chapter have been lifted to more general logics and problems,
such as QBF, MaxSAT, #SAT, and first-order logic, but instead of listing these
extensions here, we refer to the chapters on these extensions in this handbook or
the corresponding literature instead.
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