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Abstract 
In this survey, we outline basic SAT- and ATPG- 
procedures as well as their applications in formal 
hardware verification.  We attempt to give the reader a 
trace trough literature and provide a basic orientation 
concerning the problem formulations and known 
approaches in this active field of  research.   
 
1  Background 
Checking satisfiability (SAT) of propositional formulae in 
conjunctive normal form (CNF) is the classical NP- 
complete problem. A formula is in CNF if it is a product of 
sums of literals. Many hard problems can be translated 
into a SAT problem. This has been the main motivation to 
work on good heuristics and algorithms. The idea is that 
once implemented in a generic SAT-solver good heuristics 
could be used and shared across multiple application 
domains. Additionally, the abstract framework often 
allows to find general heuristics more easily than it would 
be possible with a narrow application point of view. 
 The research around SAT-procedures started in the 
context of automated theorem proving, where SAT was 
identified as a simple instance of formally proving 
theorems. Theorem proving is also regarded as a subfield 
of artificial intelligence.  Most of this work is reviewed in 
[KB99].  In the last decade many advances in SAT were 
driven by the electronic design automation (EDA) 
community with their huge interest in efficiently solving 
large SAT problems. 
 Research in automatic test pattern generation (ATPG) 
on the other hand was primarily driven by specific 
applications in circuit testing. It is the task of an ATPG- 
algorithm to generate a test for every fault in the circuit 
according to some fault model. If the well-known stuck-at 
fault model is assumed a test is obtained by finding a set of 
input assignments such that the fault is controlled at the 
fault location, i.e., a ´0´ is produced for a stuck-at-1 and a 
´1´ is produced for a stuck-at-0, and the fault is observable, 
i.e., a signal change at the fault location propagates to at 
least one ouput of the circuit. We note that the problem 
formulations of SAT and ATPG are closely related. The 
controllability portion of the ATPG problem immediately 
represents a SAT problem for a given signal (or its 
inversion) in a gate netlist. Observability can be mapped to 
Boolean satisfiability as well by using the notion of 
Boolean difference [AB90]. ATPG for single stuck-at 
faults can therefore be solved by a SAT-solver as was 
shown in [La89, SB96]. Conversely, SAT problems can be 

solved by ATPG tools, if the CNF is interpreted as a two-
level circuit description. In spite of these similarities, 
however, there are important differences between SAT and 
ATPG that result from the fact that SAT-algorithms 
operate on a CNF while conventional ATPG-algorithms 
operate on a multi-level Boolean network. This difference 
along with the different historic background has lead to a 
fairly different terminology in the SAT and ATPG 
literature. 
  
2  Converting a gate netlist into CNF 
Early usage of SAT in EDA took place in the context of 
minimizing two-level logic [BH84]. More generally, when 
dealing with multi-level circuits, it is important to have an 
efficient translation of a circuit structure into CNF. This 
was first addressed in [Ts70]. The Tseitin translation 
introduces new literals for all circuit nodes and generates 
relational constraints in CNF to capture the functional 
behaviour of each gate. 
 As an example for the Tseitin construction consider 
the circuit with three inputs a, b, c, the output o and the 
sum of products representation o = a + bc.  We introduce a 
new variable t for the AND gate representing the 
conjunction of b and c. The relation between the output o 
and the input can then be described with the two equations 
o = a + t and t = bc.  Now we can translate these equations 
into six implications: o → (a + t), a → o, and t → o for the 
first equation and t → b, t → c, and (bc) → t for the 
second equation.  The resulting CNF is obtained by 
replacing implications by disjunctions: 

(o´ + a + t)(a´ + o)(t´ + o)(t´ + b)(t´ + c)(b´ + c´ + t) 

Even for more complicated gates, such as gates with 
multiple inputs or XOR gates, the translation of the 
generated equalities into implications and then into CNF is 
pretty straightforward.  If we restrict counting gates like 
XOR to have a constant maximal fanin, then the whole 
translation remains linear in the number of gates. 
 
3  ATPG versus SAT procedures 
Both, modern SAT- and ATPG-algorithms approach the 
decision problem by a backtrack search in the finite 
Boolean space that is spanned by the variables of the CNF 
or the Boolean network, respectively. In SAT, this was 
first formulated in the Davis-Logeman-Loveland (DLL) 
procedure [DL62] and in VLSI testing the famous D-
algorithm [Ro66] was the first complete test generation 
algorithm. Note that not DLL but the Davis-Putnam 
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procedure [DP60] is the first complete SAT-solving 
method. The Davis-Putnam procedure is based on 
resolution which leads to a fundamentally different 
reasoning scheme compared to backtrack search. Almost 
all modern solvers are based on backtrack search, 
however. They exhaust a binary decision tree and employ 
resolution only as an optional instrument to prune the 
search space. The first ATPG tool enumerating a binary 
decision tree is PODEM [Go81]. Efficient heuristics to 
prune the search space have further been proposed in 
[FS83, KM87, GB91, GF01]. Later work in ATPG mainly 
concentrated on effective implication procedures [SA89, 
RC90, KP92, CA93, TG00, GF01]. Implications are 
needed to determine necessary assignments in the search 
process and help to avoid backtracks. Efficient implication 
routines are also key in SAT. In the SAT terminology 
making implications is referred to as Boolean constraint 
propagation (BCP) and many notions of BCP can be 
related to concepts of implication techniques in ATPG 
[Ha02].   
  In SAT procedures, the CNF representation facilitates 
powerful methods to prune the search space based on 
conflict analysis [MS99, BS97, Zh97]. When conflicts 
occur clauses are added to the clause base and help to 
avoid these and related conflicts in the future. Such clause 
recording is quite specific for CNF-based solvers and has 
been explored only little for ATPG algorithms operating 
on multi-level gate netlists. Conflict analysis is often 
combined with non-chronological backtracking. Non-
chronological backtracking deviates from the rigorous 
scheme of the binary decision tree by analyzing the true 
causes of a conflict using an implication graph [MW85, 
Ma86, MS99]. Recent work, incorporates a special form of 
non-chronological backtracking combined with conflict 
analysis in an ATPG framework based on the D-algorithm 
[WR02]. 
 The main differences between SAT and ATPG arise 
from the slightly different problem formulation and the 
different representation of the problem as CNF or multi-
level netlist. In ATPG-based logic synthesis (see the 
following paper in these proceedings) the observability 
part of the ATPG problem is crucial. In many other EDA 
applications, however, observability is of little relevance 
and only the controllability part of ATPG is used. With the 
notable exception of [Br93], e.g., this is true for 
applications in equivalence checking and property 
checking. ATPG-algorithms that only solve the 
controllability problem and operate on a multi-level gate 
netlist are sometimes called structural SAT-solvers. This 
terminology relates to the important issue of choosing an 
appropriate representation of the problem. A represen-
tation as structural gate netlist facilitates many heuristics 
that exploit structural circuit information and takes into 
account the multi-level nature of circuits. A CNF-
representation, on the other hand, has the advantage that 
logic relationships and constraints can be represented very 
efficiently as clauses. Also, a CNF is very regular so that 

efficient data structures can be developed. Especially, in 
CNF-based SAT-solving a lot of progress has been 
contributed by engineering efficient data structures for 
BCP [Zh97]. Especially, CHAFF [MM01] is a well-known 
example for this development. Current research 
investigates a better merge between the SAT and ATPG 
domain trying to exploit the best of the two worlds 
[GZ02].  
 
4  Application: combinational equivalence checking 

SAT and ATPG have proved to be important instruments 
in combinational equivalence checking. The task of 
combinational equivalence checking is to check whether or 
not two combinational circuits implement the same 
Boolean functions. Given two outputs yA and yB of two 
circuits A and B, it can be verified that yA and yB are 
equivalent by showing that yA ⊕ yB is unsatisfiable. For 
large circuits, however, this is generally intractable and 
even sophisticated solvers will fail in practice. Fortunately, 
the problem can be solved in many practical cases if the 
solving procedure is refined based on the following 
observation: most synthesis procedures perform many but 
fairly local circuit transformations. This preserves some of 
the original circuit structure so that the two designs of 
comparison contain many equivalent functions at their 
internal circuit nodes. These internal equivalencies [BT89] 
can be identified by passing from the circuit inputs to the 
outputs. A local analysis is usually sufficient to identify 
many internal equivalences. Previously determined 
equivalences serve as short cuts in the reasoning process 
so that more and more equivalences can be computed 
efficiently until the equivalence of the outputs is 
determined. The first equivalence checkers that showed the 
practicality of this paradigm were based on ATPG [Br93, 
Ku93]. Further work refined the process by also 
incorporating local BDDs [JM95, Ma96, KK97] and/or 
SAT [MG99, KG01] so that modern equivalence checkers 
can handle circuits with millions of gates. 
 
5  Application: property checking 
More recently checking properties of circuits became an 
area of intense research.  It is regarded as one mean, some 
insiders even argue the only mean, to keep verification 
costs at an acceptable level.  Another motivation is the 
increasing interest in reusing designs, or intellectual 
property (IP), in the context of system-on-chip (SoC).  The 
business model for IP requires that the interface of an IP is 
specified as precisely as possible, for example with 
assertions.  An interface contract contains assertions about 
what is required from the environment in which the IP is 
deployed.  Then, the IP will provide certain properties. 
These properties are most naturally formulated as 
assertions.  Clearly it is a business advantage to be able to 
formally prove that these assertions always hold. 
 Assertions come in two flavors: combinational and 
sequential. Checking combinational assertions can easily 
be formulated as a SAT problem by the Tsetin translation 



discussed above.  A typical example is checking for bus 
contention combinationally.  With “combinationally” we 
mean that only the combinational logic is taken into 
account.   
 For example, if there are two potential drivers of a bus 
and their write enable signals are e1 and e2, respectively, 
assuming two valued signals only, then the SAT problem 
of checking for bus contention will use the CNF obtained 
by the Tsetin translation of the whole circuit and two 
additional sum terms consisting of a single literal each, e1 
and e2, respectively.  The addition of these two literals 
makes the CNF satisfiable if and only if both write signals 
can be asserted to one at the same time. 
 A weaker form of bus contention would only require 
that the write signals are never both asserted to one unless 
the driving values v1 and v2 are identical.  To derive the 
required sum terms in this case may not look as easy as in 
the first case.  But in general we can always encode such a 
property (e1 = e2) → (v1 = v2) as an assertion, which in turn 
can be translated into a circuit itself.  The single output of 
this monitor is ´1´ if and only if the propery holds.  Then 
we translate this monitor circuit into CNF as before.  
Finally it remains to add a single literal, which forces the 
output of the monitor to become ´0´ and check again for 
satisfiability.  The CNF is satisfiable if and only if the 
property fails. 
 One could also check sequential designs for bus 
contention, where bus contention is only avoided for valid 
state assignments reachable after a proper reset.  Similarly 
a property which says that a certain vector of signals is a 
one-hot encoding, can be checked combinationally, for 
instance if the signal vector is the output of combinational 
logic. In this case, we only check whether the vector is 
one-hot no matter in what state the system is.  Sequentially 
checking the one-hot property means that the property only 
has two hold after a reset and we have to analyze the state 
space of the system. 
 Sequential property checking is also called model 
checking after [CE81, CG99]. In addition to checking 
assertions for all reachable states, model checking targets 
more involved properties, such as liveness. Liveness 
properties allow us to formulate the expected behaviour 
that necessarily will happen, such as a request will always 
be acknowledged.  Even nested properties and relations 
between properties can be specified.  Typically temporal 
logic is used for this purpose. 
 A standard approach for checking temporal properties 
is similar to the monitor circuit idea discussed above for 
combinational properties: the temporal formula is 
translated into a Büchi automata, a type of automata 
working on infinite execution sequences (traces), which is 
added to the circuit.  The resulting system is checked for 
traces violating the temporal property. 
 The first algorithms to find such violating traces 
worked on the explicit state graph of the system, 
restricting their usage to circuits with a very small state 
space and a small set of primary inputs. With the invention 

of symbolic model checking [Mc93] it became possible to 
reason about much larger designs with more than 1020 
states. The key idea was to use binary decision diagrams 
(BDDs) for the representation and manipulation of the 
characteristic functions for transition relations and sets of 
states. 
 Sequential property checking is much harder than 
combinational property checking. One can actually prove 
that it is PSPACE complete to check assertions for all 
reachable states of a design as opposed to NP 
completeness of combinational property checking. This is 
also reflected in the maximal size of the largest circuits 
that can typically checked.  In practice model checking is 
restricted to designs with several hundreds of flip-flops 
while combinational property checking scales up to 
millions of gates. 
 If completeness is dropped and checking is only done 
to find bugs, similar to simulation, then sequential 
properties of much larger designs can be checked.  This is 
the approach taken by bounded model checking (BMC) 
[BC99]. In addition it allows the use of SAT instead of 
BDDs which makes the checker much more robust. In 
BMC the sequential circuit is unrolled as in the time frame 
expansion approach for sequential ATPG. Then an 
additional monitor like formula is generated, restricting 
valid execution traces to be a counter example to the 
temporal formula being checked. 
 There are certain ideas to make BMC more complete, 
such as checking for diameters [BC99, BK02], using some 
type of restricted induction [SS00], or using SAT for 
image computation [Mc02]. In the future it may well 
happen that for certain applications BMC may replace 
BDD based model checking.  Today BMC is already in 
widespread use as a fast filter before more costly temporal 
property checking algorithms based on BDDs are used. 
Finally it is apparent that some of the ideas that grew out 
of BMC can well be combined with sequential ATPG 
using ATPG as a replacement for SAT. 
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