
SAT and ATPG: Boolean engines for formal hardware verification

Armin Biere Wolfgang Kunz

Dept. of Computer Science Dept. of Electrical Engineering
 ETH, Zürich, Switzerland University of Kaiserslautern, Germany

Abstract
In this survey, we outline basic SAT- and ATPG-
procedures as well as their applications in formal
hardware verification. We attempt to give the reader a
trace trough literature and provide a basic orientation
concerning the problem formulations and known
approaches in this active field of research.

1 Background
Checking satisfiability (SAT) of propositional formulae in
conjunctive normal form (CNF) is the classical NP-
complete problem. A formula is in CNF if it is a product of
sums of literals. Many hard problems can be translated
into a SAT problem. This has been the main motivation to
work on good heuristics and algorithms. The idea is that
once implemented in a generic SAT-solver good heuristics
could be used and shared across multiple application
domains. Additionally, the abstract framework often
allows to find general heuristics more easily than it would
be possible with a narrow application point of view.
 The research around SAT-procedures started in the
context of automated theorem proving, where SAT was
identified as a simple instance of formally proving
theorems. Theorem proving is also regarded as a subfield
of artificial intelligence. Most of this work is reviewed in
[KB99]. In the last decade many advances in SAT were
driven by the electronic design automation (EDA)
community with their huge interest in efficiently solving
large SAT problems.
 Research in automatic test pattern generation (ATPG)
on the other hand was primarily driven by specific
applications in circuit testing. It is the task of an ATPG-
algorithm to generate a test for every fault in the circuit
according to some fault model. If the well-known stuck-at
fault model is assumed a test is obtained by finding a set of
input assignments such that the fault is controlled at the
fault location, i.e., a ´0´ is produced for a stuck-at-1 and a
´1´ is produced for a stuck-at-0, and the fault is observable,
i.e., a signal change at the fault location propagates to at
least one ouput of the circuit. We note that the problem
formulations of SAT and ATPG are closely related. The
controllability portion of the ATPG problem immediately
represents a SAT problem for a given signal (or its
inversion) in a gate netlist. Observability can be mapped to
Boolean satisfiability as well by using the notion of
Boolean difference [AB90]. ATPG for single stuck-at
faults can therefore be solved by a SAT-solver as was
shown in [La89, SB96]. Conversely, SAT problems can be

solved by ATPG tools, if the CNF is interpreted as a two-
level circuit description. In spite of these similarities,
however, there are important differences between SAT and
ATPG that result from the fact that SAT-algorithms
operate on a CNF while conventional ATPG-algorithms
operate on a multi-level Boolean network. This difference
along with the different historic background has lead to a
fairly different terminology in the SAT and ATPG
literature.

2 Converting a gate netlist into CNF
Early usage of SAT in EDA took place in the context of
minimizing two-level logic [BH84]. More generally, when
dealing with multi-level circuits, it is important to have an
efficient translation of a circuit structure into CNF. This
was first addressed in [Ts70]. The Tseitin translation
introduces new literals for all circuit nodes and generates
relational constraints in CNF to capture the functional
behaviour of each gate.
 As an example for the Tseitin construction consider
the circuit with three inputs a, b, c, the output o and the
sum of products representation o = a + bc. We introduce a
new variable t for the AND gate representing the
conjunction of b and c. The relation between the output o
and the input can then be described with the two equations
o = a + t and t = bc. Now we can translate these equations
into six implications: o → (a + t), a → o, and t → o for the
first equation and t → b, t → c, and (bc) → t for the
second equation. The resulting CNF is obtained by
replacing implications by disjunctions:

(o´ + a + t)(a´ + o)(t´ + o)(t´ + b)(t´ + c)(b´ + c´ + t)

Even for more complicated gates, such as gates with
multiple inputs or XOR gates, the translation of the
generated equalities into implications and then into CNF is
pretty straightforward. If we restrict counting gates like
XOR to have a constant maximal fanin, then the whole
translation remains linear in the number of gates.

3 ATPG versus SAT procedures
Both, modern SAT- and ATPG-algorithms approach the
decision problem by a backtrack search in the finite
Boolean space that is spanned by the variables of the CNF
or the Boolean network, respectively. In SAT, this was
first formulated in the Davis-Logeman-Loveland (DLL)
procedure [DL62] and in VLSI testing the famous D-
algorithm [Ro66] was the first complete test generation
algorithm. Note that not DLL but the Davis-Putnam

0-7803-7607-2/02/$17.00 ©2002 IEEE

procedure [DP60] is the first complete SAT-solving
method. The Davis-Putnam procedure is based on
resolution which leads to a fundamentally different
reasoning scheme compared to backtrack search. Almost
all modern solvers are based on backtrack search,
however. They exhaust a binary decision tree and employ
resolution only as an optional instrument to prune the
search space. The first ATPG tool enumerating a binary
decision tree is PODEM [Go81]. Efficient heuristics to
prune the search space have further been proposed in
[FS83, KM87, GB91, GF01]. Later work in ATPG mainly
concentrated on effective implication procedures [SA89,
RC90, KP92, CA93, TG00, GF01]. Implications are
needed to determine necessary assignments in the search
process and help to avoid backtracks. Efficient implication
routines are also key in SAT. In the SAT terminology
making implications is referred to as Boolean constraint
propagation (BCP) and many notions of BCP can be
related to concepts of implication techniques in ATPG
[Ha02].
 In SAT procedures, the CNF representation facilitates
powerful methods to prune the search space based on
conflict analysis [MS99, BS97, Zh97]. When conflicts
occur clauses are added to the clause base and help to
avoid these and related conflicts in the future. Such clause
recording is quite specific for CNF-based solvers and has
been explored only little for ATPG algorithms operating
on multi-level gate netlists. Conflict analysis is often
combined with non-chronological backtracking. Non-
chronological backtracking deviates from the rigorous
scheme of the binary decision tree by analyzing the true
causes of a conflict using an implication graph [MW85,
Ma86, MS99]. Recent work, incorporates a special form of
non-chronological backtracking combined with conflict
analysis in an ATPG framework based on the D-algorithm
[WR02].
 The main differences between SAT and ATPG arise
from the slightly different problem formulation and the
different representation of the problem as CNF or multi-
level netlist. In ATPG-based logic synthesis (see the
following paper in these proceedings) the observability
part of the ATPG problem is crucial. In many other EDA
applications, however, observability is of little relevance
and only the controllability part of ATPG is used. With the
notable exception of [Br93], e.g., this is true for
applications in equivalence checking and property
checking. ATPG-algorithms that only solve the
controllability problem and operate on a multi-level gate
netlist are sometimes called structural SAT-solvers. This
terminology relates to the important issue of choosing an
appropriate representation of the problem. A represen-
tation as structural gate netlist facilitates many heuristics
that exploit structural circuit information and takes into
account the multi-level nature of circuits. A CNF-
representation, on the other hand, has the advantage that
logic relationships and constraints can be represented very
efficiently as clauses. Also, a CNF is very regular so that

efficient data structures can be developed. Especially, in
CNF-based SAT-solving a lot of progress has been
contributed by engineering efficient data structures for
BCP [Zh97]. Especially, CHAFF [MM01] is a well-known
example for this development. Current research
investigates a better merge between the SAT and ATPG
domain trying to exploit the best of the two worlds
[GZ02].

4 Application: combinational equivalence checking

SAT and ATPG have proved to be important instruments
in combinational equivalence checking. The task of
combinational equivalence checking is to check whether or
not two combinational circuits implement the same
Boolean functions. Given two outputs yA and yB of two
circuits A and B, it can be verified that yA and yB are
equivalent by showing that yA ⊕ yB is unsatisfiable. For
large circuits, however, this is generally intractable and
even sophisticated solvers will fail in practice. Fortunately,
the problem can be solved in many practical cases if the
solving procedure is refined based on the following
observation: most synthesis procedures perform many but
fairly local circuit transformations. This preserves some of
the original circuit structure so that the two designs of
comparison contain many equivalent functions at their
internal circuit nodes. These internal equivalencies [BT89]
can be identified by passing from the circuit inputs to the
outputs. A local analysis is usually sufficient to identify
many internal equivalences. Previously determined
equivalences serve as short cuts in the reasoning process
so that more and more equivalences can be computed
efficiently until the equivalence of the outputs is
determined. The first equivalence checkers that showed the
practicality of this paradigm were based on ATPG [Br93,
Ku93]. Further work refined the process by also
incorporating local BDDs [JM95, Ma96, KK97] and/or
SAT [MG99, KG01] so that modern equivalence checkers
can handle circuits with millions of gates.

5 Application: property checking
More recently checking properties of circuits became an
area of intense research. It is regarded as one mean, some
insiders even argue the only mean, to keep verification
costs at an acceptable level. Another motivation is the
increasing interest in reusing designs, or intellectual
property (IP), in the context of system-on-chip (SoC). The
business model for IP requires that the interface of an IP is
specified as precisely as possible, for example with
assertions. An interface contract contains assertions about
what is required from the environment in which the IP is
deployed. Then, the IP will provide certain properties.
These properties are most naturally formulated as
assertions. Clearly it is a business advantage to be able to
formally prove that these assertions always hold.
 Assertions come in two flavors: combinational and
sequential. Checking combinational assertions can easily
be formulated as a SAT problem by the Tsetin translation

discussed above. A typical example is checking for bus
contention combinationally. With “combinationally” we
mean that only the combinational logic is taken into
account.
 For example, if there are two potential drivers of a bus
and their write enable signals are e1 and e2, respectively,
assuming two valued signals only, then the SAT problem
of checking for bus contention will use the CNF obtained
by the Tsetin translation of the whole circuit and two
additional sum terms consisting of a single literal each, e1
and e2, respectively. The addition of these two literals
makes the CNF satisfiable if and only if both write signals
can be asserted to one at the same time.
 A weaker form of bus contention would only require
that the write signals are never both asserted to one unless
the driving values v1 and v2 are identical. To derive the
required sum terms in this case may not look as easy as in
the first case. But in general we can always encode such a
property (e1 = e2) → (v1 = v2) as an assertion, which in turn
can be translated into a circuit itself. The single output of
this monitor is ´1´ if and only if the propery holds. Then
we translate this monitor circuit into CNF as before.
Finally it remains to add a single literal, which forces the
output of the monitor to become ´0´ and check again for
satisfiability. The CNF is satisfiable if and only if the
property fails.
 One could also check sequential designs for bus
contention, where bus contention is only avoided for valid
state assignments reachable after a proper reset. Similarly
a property which says that a certain vector of signals is a
one-hot encoding, can be checked combinationally, for
instance if the signal vector is the output of combinational
logic. In this case, we only check whether the vector is
one-hot no matter in what state the system is. Sequentially
checking the one-hot property means that the property only
has two hold after a reset and we have to analyze the state
space of the system.
 Sequential property checking is also called model
checking after [CE81, CG99]. In addition to checking
assertions for all reachable states, model checking targets
more involved properties, such as liveness. Liveness
properties allow us to formulate the expected behaviour
that necessarily will happen, such as a request will always
be acknowledged. Even nested properties and relations
between properties can be specified. Typically temporal
logic is used for this purpose.
 A standard approach for checking temporal properties
is similar to the monitor circuit idea discussed above for
combinational properties: the temporal formula is
translated into a Büchi automata, a type of automata
working on infinite execution sequences (traces), which is
added to the circuit. The resulting system is checked for
traces violating the temporal property.
 The first algorithms to find such violating traces
worked on the explicit state graph of the system,
restricting their usage to circuits with a very small state
space and a small set of primary inputs. With the invention

of symbolic model checking [Mc93] it became possible to
reason about much larger designs with more than 1020
states. The key idea was to use binary decision diagrams
(BDDs) for the representation and manipulation of the
characteristic functions for transition relations and sets of
states.
 Sequential property checking is much harder than
combinational property checking. One can actually prove
that it is PSPACE complete to check assertions for all
reachable states of a design as opposed to NP
completeness of combinational property checking. This is
also reflected in the maximal size of the largest circuits
that can typically checked. In practice model checking is
restricted to designs with several hundreds of flip-flops
while combinational property checking scales up to
millions of gates.
 If completeness is dropped and checking is only done
to find bugs, similar to simulation, then sequential
properties of much larger designs can be checked. This is
the approach taken by bounded model checking (BMC)
[BC99]. In addition it allows the use of SAT instead of
BDDs which makes the checker much more robust. In
BMC the sequential circuit is unrolled as in the time frame
expansion approach for sequential ATPG. Then an
additional monitor like formula is generated, restricting
valid execution traces to be a counter example to the
temporal formula being checked.
 There are certain ideas to make BMC more complete,
such as checking for diameters [BC99, BK02], using some
type of restricted induction [SS00], or using SAT for
image computation [Mc02]. In the future it may well
happen that for certain applications BMC may replace
BDD based model checking. Today BMC is already in
widespread use as a fast filter before more costly temporal
property checking algorithms based on BDDs are used.
Finally it is apparent that some of the ideas that grew out
of BMC can well be combined with sequential ATPG
using ATPG as a replacement for SAT.

References
[AB90] M. Abramovici, M. Breuer, and A. Friedman, Digital Systems

Testing and Testable Design. Computer Science Press, New
York, 1990.

[AS01] F. A. Aloul and K. A. Sakallah, “SAT using ZBDDs,” in
Dagstuhl Seminar 01051 on Computer Aided Design and Test
-- BDDs versus SAT, Schloss Dagstuhl, Germany, Jan/Feb. 01.

[BC99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic Model
Checking without BDDs”, in Proc. Intl. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems,
April 1999.

 [BS97] R. Bayardo Jr. and R. Schrag, “Using CSP look-back
techniques to solve real-world SAT instances,” in Proc. Natl.
Conf. on Artificial Intelligence, pp. 203--208, 1997.

[BT89] C.L. Berman, and L.H. Trevillyan, “Functional Comparison of
Logic Designs for VLSI Circuits”, in Proc. Intl. Conf. on
Comp.-Aided Design (ICCAD), pp. 456-459, 1989.

[Br93] D. Brand, “Verification of Large Synthesized Designs”, Proc.
IEEE International Conference on Computer-Aided Design
(ICCAD), Santa Clara, pp. 534-537, Nov. 1993.

[BH84] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L.
Sangiovanni-Vincentelli, Logic Minimization Algorithms for
VLSI Synthesis. Kluwer Academic Publishers, 1984.

[BK02] J. Baumgartner and A. Kühlmann, “Property Checking via
Structural Analysis”, Proc. Intl. Conf on Computer Aided
Verification, July 2002.

 [CA93] S. Chakradhar, V. D. Agrawal, and S. Rothweiler, “A
transitive closure algorithm for test generation,” IEEE Trans.
on CAD, vol. 12, pp. 1015-1028, July 1993.

[CE81] E. Clarke, and E. Emerson. Synthesis of synchronization
skeletons for branching time temporal logic, in Proc. Logic of
Programs Workshop, 1981

[CG99] E. Clarke, O. Grumberg, and D. Peled, Model Checking, MIT
Press, 1999.

 [DL62] M. Davis, G. Logemann, and D. Loveland, “A machine
program for theorem-proving,” Communications ACM, vol. 5,
pp. 394--397, July 1962.

[DP60] M. Davis and H. Putnam, “A computing procedure for
quantification theory,” Journal of the Association for
Computing Machinery, vol. 7, pp. 201-215, 1960.

[FS83] H. Fujiwara and T. Shimono, ”On the acceleration of test
generation algorithms,” IEEE Trans. on Comp., pp. 1137-
1144, Dec. 1983.

[GZ02] M.K. Ganai, L. Zhang, P. Ashar, A. Gupta, and S. Malik,
“Combining strengths of circuit-based and CNF-based
algorithms for a high performance SAT-solver”, in Proc.
Design Automation Conf. (DAC), pp. 747-750 , 2002.

[GB91] J. Giraldi and M. Bushnell, “Search state equivalence for
redundancy identification and test generation,” in Proc. Intl.
Test Conference, pp. 184--193, 1991.

[GF01] E. Gizdarski and H. Fujiwara, “SPIRIT: A Highly Robust
Combinational Test Generation Algorithm,” 19th IEEE Proc.
on VTS, 2001, pp 346-351.

[Go81] P. Goel, “An implicit enumeration algorithm to generate tests
for combinational logic circuits,” IEEE Trans. on Comp., vol.
C-30, pp. 215-222, March 1981.

[JM95] Jain J., Mukherjee R., and Fujita M., “Advanced Verification
Techniques Based on Learning”, Design Automation
Conference (DAC), pp. 420 - 426, June 1995.

[KM87] T. Kirkland and R. Mercer, “A topological search algorithm
for ATPG,” in Proc. Design Automation Conference, vol. 24,
pp. 502--508, 1987.

[KB99] H. Kleine Büning and T. Lettmann. Propositional logic:
deduction and algorithms. (Cambridge tracts in theoretical
computer science 48) Cambridge University Press, 1999.
ISBN-0-521-63017-7.

[KK97] A. Kühlmann, and F. Krohm, “Equivalence Checking using
Cuts and Heaps”, Proc. Design Automation Conference, San
Fransisco, Juni 1997.

[KG01] A. Kühlmann, M. Ganai, V. Paruthi, “Circuit-based Boolean
Reasoning”, Design Automation Conference (DAC), pp. 232 -
237, June 2001.

[KP92] W. Kunz and D. Pradhan, “Recursive learning: An attractive
alternative to the decision tree for test generation in digital
circuits,” in Proc. Intl. Test Conference, pp. 816-825,
September 1992.

[Ku93] W. Kunz, “HANNIBAL: An Efficient Tool for Logic
Verification Based on Recursive Learning”, Proc. Intl.
Conference on Computer-Aided Design (ICCAD), Santa
Clara, pp. 538-543, Nov. 1993.

[Ha02] W. Kunz, J. Marques-Silva and S. Malik, “SAT and ATPG :
Algorithms for Boolean Decision Making,” in S. Hassoun and

T. Sasao (Eds.) Logic Synthesis and Verification, Kluwer
Academic Publishers, 2002. ISBN- 0-7923-7606-4.

[La89] T. Larrabee, “Efficient generation of test patterns using
Boolean difference,” in Proc. Intl. Test Conference, pp. 795-
801, 1989.

[Ma86] R. Marlett, “An effective test generation system for sequential
circuits,” in Proc. Design Automation Conf., pp. 250-256,
1986.

[Mc93] K. McMillan, Symbolic Model Checking : An Approach to the
State Explosion Problem, Kluwer Academic Publisher, 1993.

[Mc02] K. McMillan, “Applying SAT Methods in Unbounded
Symbolic Model Checking”, Proc. Intl. Conf on Computer
Aided Verification, July 2002.

[MW85] S. Mallela and S. Wu, “A sequential circuit test generation
system,” in Proc. Intl. Test Conf., pp. 57-61, 1985.

[MG99] J. P. Marques-Silva and T. Glass, “Combinational equivalence
checking using satisfiability and recursive learning,” in Proc.
Design, Automation and Test in Europe Conf., pp. 145-149,
March 1999.

[MS99] J. P. Marques-Silva and K. A. Sakallah, “GRASP-A search
algorithm for propositional satisfiability,” IEEE Trans. on
Comp., vol. 48, pp. 506-521, May 1999.

[Ma96] Y. Matsunaga, “An efficient equivalence checker for
combinational circuits”, Proc. Design Automation
Conference, pp. 629-634, Las Vegas, 1996.

[MM01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Engineering an efficient SAT solver,” in Proc. Design
Automation Conf., 2001., Part II (1970), pp. 115-125.

[RC90] J. Rajski and H. Cox, “A method to calculate necessary
assignments in algorithmic test pattern generation,” in Proc.
Intl. Test Conference, pp. 25-34, 1990.

[Ro66] J. P. Roth, “Diagnosis of automata failures: A calculus and a
method, ”IBM Journal of Research and Development, vol. 10,
pp. 278-291, July 1966.

[SA89] M. Schulz and E. Auth, “Improved deterministic test pattern
generation with applications to redundancy identification,”
IEEE Trans. on CAD, vol. 8, pp. 811-816, July 1989.

[St89] G. Stålmarck, “A system for determining propositional logic
theorems by applying values and rules to triplets that are
generated from a formula,” 1989, Swedish Patent 467 076, US
Patent 5 276 897, European Patent 0 403454.

[SB96] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli,
“Combinational test generation using satisfiability,” IEEE
Trans. on CAD, 1996.

 [SS00] M. Sheeran, S. Singh, and G. Stålmarck, “Checking Safety
Properties Using Induction and a SAT Solver,” in Proc. Intl.
Conf. on Formal Methods in CAD, November 2000.

[TG00] P. Tafertshofer, A. Ganz, and K. Antreich, “Igraine - an
implication graph based engine for fast implication,
justification, and propagation,” IEEE Trans. on CAD, vol. 19,
pp. 907-927, August 2000.

[Ts70] G.S. Tseitin, “On the Complexity of Derivation in
Propositional Calculus”, in A.O. Slikenko (Ed.): Studies in
Constructive Mathematics and Mathematical Logic

[WR02] C. Wang, S. Reddy, I. Pomeranz, X. Lin, and J. Rajski,
“Conflict Driven Techniques for Improving Deterministic
Test Pattern Generation”, in Proc. IEEE International
Conference on Computer-Aided Design (ICCAD), Nov. 2002.

[Zh97] H. Zhang, “SATO: An efficient propositional prover,” in
Proc. Intl. Conf. on Automated Deduction, pp. 272-275, July
1997.

	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index

