
Blocked Clause Elimination for QBF

Armin Biere?, Florian Lonsing, and Martina Seidl

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

http://fmv.jku.at/

Abstract. Quantified Boolean formulas (QBF) provide a powerful frame-
work for encoding problems from various application domains, not least
because efficient QBF solvers are available. Despite sophisticated evalua-
tion techniques, the performance of such a solver usually depends on the
way a problem is represented. However, the translation to processable
QBF encodings is in general not unique and may either introduce vari-
ables and clauses not relevant for the solving process or blur information
which could be beneficial for the solving process. To deal with both of
these issues, preprocessors have been introduced which rewrite a given
QBF before it is passed to a solver.
In this paper, we present novel preprocessing methods for QBF based
on blocked clause elimination (BCE), a technique successfully applied in
SAT. Quantified blocked clause elimination (QBCE) allows to simulate
various structural preprocessing techniques as BCE in SAT. We have im-
plemented QBCE and extensions of QBCE in the preprocessor bloqqer.
In our experiments we show that preprocessing with QBCE reduces for-
mulas substantially and allows us to solve considerable more instances
than the previous state-of-the-art.

1 Introduction

Preprocessing in the context of SAT solving refers to techniques applied on a
propositional formula before the actual solving process is started [1,2,6,11]. The
intention behind preprocessing is to simplify the formula in such a way that
solving time spent on the preprocessed formula together with the time spent
on the preprocessing is less than the solving time of the original formula. The
term “simplification” denotes the reduction of the formula in size as well as
modifications extending the formula. On the one hand, state-of-the-art prepro-
cessors apply various techniques which result in safe substitution and removal
of single variable occurrences or even of complete clauses. On the other hand, in
some situations preprocessors are able to identify information which can be used
within the solving process and, consequently, might actually increase formula
size. Especially if only formulas in conjunctive normal form (CNF) are consid-
ered, the goal is to reconstruct structural information which has been blurred

? The 1st author is financially supported by the Austrian Science Foundation (FWF)
NFN Grant S11408-N23 (RiSE).

http://fmv.jku.at/

by the normal form transformation. The extra effort spent on the preprocessing
step is justified by the assumption that the costs of one single application of the
implemented techniques is negligible, whereas a dynamic application within the
solving process would be too expensive.

Preprocessing has been successfully applied to propositional formulas [1,2,6,11].
As SAT is the prototypical problem for NP, the problem of evaluating QBF
(QSAT) is prototypical for PSPACE, offering a powerful framework for impor-
tant application in artificial intelligence, knowledge representation, verification,
and synthesis.

During the last decade, much effort has been spent in the development of
efficient QBF solvers, but despite several success stories, the achievements are
far from the progress which has been made in SAT solving, particularly when
it comes to real applications. Motivated by the impact of preprocessing in SAT,
some preprocessors for QBF have recently been presented which implement var-
ious kinds of preprocessing techniques and which proved to be advantageous for
the evaluation of representative QBF benchmark sets [4,8,15,17,19]. Based on
these experiments, we present the preprocessor bloqqer which incorporates sev-
eral well established preprocessing techniques like (self-subsuming) resolution
and expansion-based variable elimination as well as preprocessing techniques
novel to QBF based on blocked clause elimination.

This paper is structured as follows. First, we introduce the basic terminol-
ogy and the concepts used within this paper in Section 2 and we shortly review
current preprocessing techniques for QBF in Section 3. In Section 4, we present
novel preprocessing techniques based on blocked clause elimination for QBF and
discuss the interrelationship with other approaches. We present our implemen-
tation bloqqer in Section 5 and compare and discuss the results obtained from
various experiments. Finally, we conclude with an outlook to our future work.

2 Preliminaries

A QBF φ in prenex conjunctive normal form (PCNF) defined over the set of
propositional variables V is an expression of the form φ = S1 . . . Skψ where ψ is
called the matrix and S1 . . . Sk is called the quantifier prefix.

The matrix is a propositional formula in conjunctive normal form, i.e., ψ =
C1 ∧ . . . ∧ Cn where C1, . . . , Cn are clauses. A clause is a disjunction of literals,
i.e., Ci = l1 ∨ . . . ∨ lm. A literal l is either a variable x or a negated variable ¬x
with x ∈ V . The function var(l) returns x if l is of the form x or ¬x. If l = x
then l = ¬x else l = x. If convenient, we consider the matrix as a set of clauses
and a clause as a set of literals. Consequently, we also write {C1, . . . , Cn} for
ψ and {l1, . . . , lm} for a clause C. A clause C is tautological if l, l̄ ∈ C. If not
stated otherwise, we assume clauses to be non-tautological in the following.

The quantifier prefix S1 . . . Sk is an ordered partition of the variables V into
scopes Si. The size of a quantifier prefix |S1 . . . Sk| is given by |S1|+. . .+|Sk|. The
function quant(S) associates either an existential quantifier (quant(S) = ∃) or a
universal quantifier (quant(S) = ∀) with each scope S. For scopes Si and Si+1,

quant(Si) 6= quant(Si+1). Alternatively, we also write Qx1, . . . , xn for a scope
S = {x1, . . . , xn} with quant(S) = Q,Q ∈ {∀,∃}. For a clause C, its existential
and its universal literals are defined by LQ(C) = {l ∈ C | quant(l) = Q} with
Q ∈ {∀,∃}. For a literal l with var(l) ∈ S, quant(l) = quant(S) denotes the type
of l. For literals l, k with var(l) ∈ Si and var(k) ∈ Sj , l ≤ k if i ≤ j. The indices
i and, resp., j are called the level of l and, resp., of k.

Let l be a literal, then φ[l] denotes the QBF which is obtained by deleting
the clauses C with l ∈ C, by removing each occurrence of l, and by substituting
the scope Si with var(l) ∈ Si by Si\{var(l)}. The truth value of a QBF φ is
recursively defined as follows.

– If ψ = ∅ then φ is true, if ∅ ∈ ψ then φ is false.
– If quant(S1) = ∀ (resp., quant(S1) = ∃) and x ∈ S1, then φ is true iff φ[x]

and (resp., or) φ[¬x] is true.

The Q-resolvent C1 ⊗ C2 of two clauses C1 and C2 with l ∈ C1, l ∈ C2, and
quant(l) = ∃ is defined as C ′1\{l} ∪ C ′2\{l} where

C ′i = Ci\{k | k ∈ Ci, quant(k) = ∀,∀k′ ∈ Ci with quant(k′) = ∃ : k > k′}.

The literal l is called pivot element. The removal of a universally quantified literal
k from a clause which does not contain any existentially quantified variables with
a higher level than k is also referred to as forall reduction. The construction
rule of Q-resolvents enhanced with the forall reduction rule form the quantified
resolution calculus which is sound and complete for QBF [5].

A literal l is called pure in a QBF φ = S1 . . . Snψ if l ∈
⋃
C∈ψ and l 6∈

⋃
C∈ψ.

Then φ is equivalent to φ[l] if quant(l) = ∃ and equivalent to φ[l] if quant(l) =
∀. An existentially quantified literal l is called unit in φ if {l, k1, . . . , km} ∈ ψ
with quant(ki) = ∀ and l < ki. If l is unit in φ then φ is equivalent to φ[l]. If φ
contains a non-tautological clause with universally quantified literals only, then
φ is false.

3 Preprocessing Techniques for QBF

Recently, several preprocessors for QBF have been proposed which implement
different techniques to prepare formulas in PCNF for the actual solving process.
Only the preprocessor PReDom [15] operates on a circuit-based representation
with the aim to identify structural dominators. A node n1 of a circuit dominates
a node n2 if every path starting from n1 contains n2. PReDom reduces dominated
subcircuits such that the truth value of the original QBF is preserved.

The preprocessor realized within the logic framework proverbox [4], the pre-
processors sQueezeBF [8] and prequel [19], as well as the approach presented
in [17], all process formulas in PCNF encoded in the QDIMACS format and
implement—among other techniques—unit propagation, forall reduction, and
some kind of equality detection and substitution. The former three systems ad-
ditionally implement pure literal detection and subsumption as well. When these

basic simplification techniques are not applicable anymore, the preprocessor pre-
sented in [17] performs constant detection. If a literal is implied by the matrix
of the given QBF, then it may be added as unit clause. For testing whether
this implication holds, a SAT solver is applied. The preprocessor prequel [19]
uses hyper binary resolution which—if applicable—resolves a clause of arbitrary
length with binary clauses, until the resolvent is binary or even a unit clause. In
the preprocessor built upon the framework proverbox [4], universally quantified
variables are selectively expanded and consequently eliminated. Furthermore,
Q-resolution is integrated in order to reduce duplications introduced by univer-
sal expansion. The preprocessor sQueezeBF [8] also implements Q-resolution (cf.
[5]), but with the goal to remove existentially quantified variables. Similar to the
approach implemented in the QBF solver Quantor [3], an existentially quantified
variable may be eliminated from a formula, if all possible resolvents over this
variable are added to the formula instead.

All of the previously presented techniques are applied with the intention
to eliminate variables, literals, and/or clauses. Only hyper binary resolution is
used to uncover hidden information beneficial for the solving process. In the
preprocessor sQueezeBF [8], which we consider as the previous state-of-the-art,
two rewriting rules have been introduced. These rewrite rules which are applied
if the substitution of an equivalence would negatively affect the size of the QBF
are defined as follows.

Lemma 1 (RW1: Removed Implication, see [8]).
Let φ = S1 . . . Sn((l ∨ α) ∧ (l ⇔ γ) ∧ ψ) such that (i) quant(l) = ∃, (ii) l does
occur neither in ψ, α, nor γ, and (iii) k ≤ l forall literals k occurring in γ. Then
φ is equivalent to the formula S1 . . . Sn((l ∨ α) ∧ (l⇒ γ) ∧ ψ).

This rewriting may be beneficial with respect to two aspects: (i) the formula
becomes smaller, and (ii) when α becomes true, l is pure. In the next section, we
will argue that quantified blocked clause elimination is able to simulate RW1.
In the case that l occurs in two polarities, the following rewrite rule may be
applied.

Lemma 2 (RW2: Splitted Equivalence, see [8]).
Let φ = S1 . . . Si . . . Sn((l ∨ α) ∧ (l ∨ β) ∧ (l ⇔ γ) ∧ ψ) such that (i) quant(l) =
∃, var(l) ∈ Si, (ii) l does occur neither in ψ, α, β, nor γ, and (iii) k ≤ l forall
literals k occurring in γ. Then φ is equivalent to the formula

S1 . . . S
′
i . . . Sn((l ∨ α) ∧ (l′ ∨ β) ∧ (l⇒ γ) ∧ (l′ ⇒ γ) ∧ ψ)

where l′ is a fresh variable with quant(l′) = ∃ and the same polarity as l and
S′i = Si ∪ {var(l′)}.

The application of this rewrite rule does not reduce formula size, but it may
trigger pure literal elimination. If α (resp., β) becomes true, then (l⇒ γ) (resp.,
(γ ⇒ l′)) may be removed. At first sight, this rewrite rule affects unit literal
propagation adversely, because the original QBF φ reduces to β ∧ γ ∧ ψ if α is

false and to α∧γ∧ψ if β is false. Having the rewrite rule applied, we only obtain
(l′ ∨ β) ∧ γ ∧ (l′ ⇒ γ) ∧ ψ in the one case and (l ∨ α) ∧ ¬γ ∧ (l ⇒ γ) ∧ ψ in
the other case. To overcome this limitation, the efficiency clause (l ∨ l′) which
is obviously entailed by (l⇒ γ)∧ (l′ ⇒ γ) has to be added to the formula when
the rewrite rule is applied.

4 Quantified Blocked Clause Elimination

Originally introduced for restricting worst-case upper bounds for SAT-algorithms
[12], blocked clauses have proven to be effective for preprocessing in SAT [11,16],
because blocked clauses may be eliminated while preserving satisfiability. In the
following, we generalize the notion of blocked clauses and blocked clause elim-
ination (BCE) for QBF. We prove that also in the case of QBF under certain
restrictions blocked clauses may be omitted. Subsequently, we shortly discuss
the integration of quantified BCE (QBCE) with other preprocessing techniques,
before we propose extensions for QBCE.

4.1 Definition

Within a resolution proof, blocked clauses of a formula only generate clauses
which are tautological. Consequently, blocked clauses may be removed without
changing the truth value of a formula. In the following we describe the charac-
teristics which allow the syntactical identification of blocked clauses in QBF.

Definition 1 (Quantified Blocking Literal). A literal l with quant(l) = ∃ in
a clause C ∈ ψ of a QBF φ = S1 . . . Snψ is called a quantified blocking literal
if forall C ′ ∈ ψ with l̄ ∈ C ′, a literal k with k ≤ l exists such that k, k̄ ∈ C ⊗C ′.

Definition 2 (Quantified Blocked Clause). A clause is quantified blocked
if it contains a quantified blocking literal.

Example 1. Both clauses in ∀x∃y((x ∨ ¬y) ∧ (¬x ∨ y)) are quantified blocked
clauses, whereas none of the clauses in ∃x∀y((x∨¬y)∧ (¬x∨ y)) is a quantified
blocked clause.

As the following theorem shows, quantified blocked clauses contain redundant
information only, and may therefore be removed from the formula.

Theorem 1 (Quantified Blocked Clause Elimination (QBCE)). Let φ =
S1 . . . Sn(ψ ∪ C) be a QBF and let C be a quantified blocked clause in φ with
blocking literal l. It holds that φ⇔ S1 . . . Snψ.

Proof. Let C be a quantified blocked clause with the quantified blocking literal
l with var(l) ∈ Si, i ≤ n. The direction φ⇒ S1 . . . Snψ trivially holds. We show
S1 . . . Snψ ⇒ φ by induction over q = |S1 . . . Si−1|. W.l.o.g. assume i = n.

In the base case, we have q = 0, i.e., var(l) ∈ S1 with quant(S1) = ∃. The
same argument as in SAT applies: Let σ be a satisfying assignment for ψ, i.e.,

for each C ′ ∈ ψ there exists a literal l′ such that σ(l′) = >. If σ satisfies C,
the implication S1ψ ⇒ φ holds, otherwise we construct a satisfying assignment
σ′ for ψ ∪ C as follows. Let σ′(l′) = σ(l′) for l′ 6= l and σ′(l) = >. σ′ satisfies
not only C but also all other clauses C ′ ∈ ψ. If l̄ ∈ C ′, there exists a literal
k 6= l such that k ∈ C and k̄ ∈ C ′, with σ(k) = σ(C) = σ′(k) = ⊥ and thus
σ′(C ′) = σ′(k̄) = > [12]. Note that k ∈ S1 due to the restriction k ≤ l.

For the induction step, assume q > 0. Let h be a literal with var(h) = y
and y ∈ S1. Note that var(l) 6= y. We show that S1\{y} . . . Snψ[h] ⇒ φ[h].
The rest follows from lifting the implication over the conjunction that defines
the semantics of universal quantification if quant(S1) = ∀ and respectively over
the disjunction that defines the semantics of the existential quantification if
quant(S1) = ∃. Three cases have to be considered for showing that C[h] is a
blocking clause or removed in φ[h].

1. h ∈ C. Then C is removed from φ[h].
2. h 6∈ C and h̄ 6∈ C. Consequently, C[h] = C. Furthermore, C is still a quan-

tified blocked clause in φ[h], since h was not used to make a resolvent on l
tautological. Then the induction hypothesis is applicable.

3. h̄ ∈ C. Consequently, C[h] = C\{h̄} which is a quantified blocked clause in
φ[h], because each clause C ′ with h, h̄ ∈ C ⊗ C ′ is removed from φ[h] and
other clauses C ′ with k, k̄ ∈ C⊗C ′ and y 6= var(k) still produce tautological
resolvents with C on l. Note l ∈ C[h] since l 6= h̄.

For a QBF φ in PCNF, quantified blocked clause elimination repeats the
removal of quantified blocked clauses from φ until fixpoint. The resulting QBF
is denoted by QBCE(φ).

Theorem 2. The application of QBCE(φ) on a QBF φ is confluent.

Proof. The argument is similar as for propositional logic (cf. [11]).

Note that for the soundness of quantified blocked clause elimination for QBF as
stated in Theorem 1, the level of the blocking literal must be equal or higher
than the level of the literal making the resolvent tautological as the following
example illustrates.

Example 2. As we have seen in Example 1, the QBF

∃x∀y((x ∨ ¬y) ∧ (¬x ∨ y))

contains no blocking clause. If we loosen the criterion and do not consider the
quantifier levels of the variables, then all clauses become blocking clauses and
according to Theorem 1, they may be removed immediately. Consequently, the
formula evaluates to true, what is in contrast to the formula’s original truth
value. In this formula, a contradiction is directly derivable if forall reduction is
applied. An extended example, where forall reduction is not applicable, is given
by the formula

∃x∀y∃z((x ∨ ¬z) ∧ (¬x ∨ z) ∧ (y ∨ ¬z) ∧ (¬y ∨ z))

which contains an additional existential variable z which is equivalent to y. The
variable z prohibits the application of the forall reduction rule. Furthermore, the
first two clauses are not quantified blocked on x and ¬x, respectively, because
z < x does not hold. If they are removed, the formula evaluates to true.

4.2 Discussion

Quantified blocked clauses as defined above may be eliminated from a formula
without changing its truth value, because they contain redundant information
only. Hence, quantified blocked clause elimination is applied in order to re-
move clauses from a QBF which may result in a reduction in the number of
variables occurring in the formula too. The following properties established for
SAT [11,12], also hold for QBF. For the sake of compactness, we omit the prefix
“quantified” if no confusion arises.

1. Formulas which are smaller with respect to their number of clauses poten-
tially contain more blocked clauses. If the matrix of a QBF φ1 is a subset of
the matrix of the QBF φ2 then there might be clauses which are blocked in
φ1, but not in φ2. If there is a clause C which is blocked in φ2, but not in
φ1, then C 6∈ φ1.

2. From the statement above, it follows immediately that QBCE has a unique
fixpoint. If a clause C is blocked in a QBF φ, then any clause C ′ with C 6= C ′

blocked in φ is also blocked in φ\{C}.
3. If a clause C is subsumed by a blocked clause C ′, i.e., C ′ ⊆ C, then C is also

a blocked clause. Obviously, the other direction does not hold.
4. Clauses containing a pure literal are blocked. The pure literal is the blocking

literal. In fact, QBCE may be considered as a generalization of pure literal
elimination rule.

5. If the clauses C1 . . . Cn are the only clauses of a QBF φ which contain the
literal l, then a clause C with l̄ ∈ C is blocked if for each clause Ci, the
clause C contains a literal ki with k̄i ∈ Ci and ki < l. In particular, if a QBF
φ contains an equivalence of the form (l, k̄1, . . . , k̄n), (l̄, k1), . . . , (l̄, kn) and l
occurs in no other than these clauses, then the equivalence may be removed
due to QBCE.

The fifth property indicates that QBCE may be used to eliminate equivalences
under certain conditions. In fact, like BCE in SAT [11], QBCE is able to achieve
similar simplifications on a formula in PCNF as other techniques directly applied
on the original encoding with more structural information (e.g., a circuit-based
representation) before the transformation to normal form is performed. There-
fore, we show the close connection between QBCE and the rewriting rules RW1
and RW2 given in Definition 1 and Definition 2. As argued by [8], the appli-
cation of equivalence rewriting together with the application of the pure literal
elimination rule show a similar effect than don’t care propagation performed on
the original, non-CNF formula.

Theorem 3. QBCE subsumes RW1 given in Definition 1.

Proof. First we argue, that with QBCE the same effect may be obtained as with
RW1, and then we provide a QBF which may be simplified by the application
of QBCE, but not by the application of RW1.

1. Whenever RW1 is applicable, also QBCE is applicable. Recall that RW1
substitutes the matrix of a QBF of the form (l∨α)∧(l⇔ γ)∧ψ by (l∨α)∧(l⇒
γ) ∧ ψ with the restriction that l does occur neither in α, γ, nor ψ and that
all literals of γ have a lower level than l. The rule RW1 therefore removes
clauses of the form γ̄ ∨ l. Since l̄ occurs only in the clauses representing the
equivalence, the clauses of γ̄ ∨ l are blocked and may be omitted.

2. In some situations, QBCE is applicable, but not RW1. For example, the QBF

∀y∃x∃z((x ∨ z) ∧ (x̄ ∨ z̄) ∧ (z ∨ ȳ ∨ x) ∧ (z̄ ∨ y ∨ x̄))

is reducible by QBCE, but not by RW1. Only if we had applied subsumption
first, also RW1 would have been applicable.

Consequently, the application of QBCE has at least the same effects as the ap-
plication of RW1:

– The number of clauses is reduced. If γ is a disjunction of n literals then n
binary clauses are blocked, if γ is a conjunction of n literals then a clause of
size n+ 1 is blocked.

– The application of QBCE may directly trigger the application of other prun-
ing techniques. For example, if a clause (l ∨ x̄) is removed then x might be-
come pure and, depending on the quantification type of x, either all clauses
containing x or all occurrences of x may be removed immediately.

– Other pruning techniques may become applicable during preprocessing or
even during the solving process. For example, if QBCE has been applied and
α later becomes true, then the literal l becomes pure.

The application of RW1 enables similar optimizations achieved by using
the Plaisted-Greenbaum transformation [18] instead of the Tseitin transforma-
tion [20]. In this case, the subformula which shall be abbreviated by a freshly
introduced variable occurs in one polarity only, therefore one direction of the
implication may be omitted. When the subformula occurs in both polarities,
then it is possible to treat positive and negative occurrences independently and
to introduce two new variables.

The retrospective application of this approach is covered by RW2. The rule
RW2 provides no direct simplifications itself and even introduces an extra vari-
able, but after its application, it becomes more likely that (i) more variables
become pure and (ii) RW1 or QBCE become applicable. In fact, if RW2 is used
during preprocessing, then there exist situations, where the pure literal elimina-
tion rule, which is implemented by most state-of-the-art QBF solvers, performs
reductions. The same effect can be achieved, if QBCE is applied dynamically
during the solving process without applying RW2. Hence, no new variables have
to be introduced to achieve the same effects. Consider the following formula.

Let ψ = ((l ∨ α) ∧ (l̄ ∨ β) ∧ (l ⇔ γ) ∧ δ) be the matrix of a QBF and let
ψ′ = ((l ∨ α) ∧ (l′ ∨ β) ∧ (l ⇒ γ) ∧ (γ ⇒ l̄′) ∧ δ) be the formula obtained after
the application of RW2. Then the benefits of RW2 in combination with the pure
literal elimination rule identified by [11], can also be obtained by QBCE.

1. If α (resp. β) becomes true in ψ′, then l (resp. l′) becomes pure and ψ′ may
be simplified to ((l′ ∨ β) ∧ (γ ⇒ l̄′) ∧ δ) (resp. ((l ∨ α ∧ (l ⇒ γ)) ∧ δ)). If α
(resp. β) becomes true in ψ then the same reductions may be obtained by
the application of QBCE on ψ.

2. If both α and β become true, then ψ′ may be reduced to δ because l and l′

are pure. Also ψ may be reduced to γ by the application of QBCE if α and
β become true.

When combining RW2 and QBCE, the two techniques potentially influence
each other as follows:

– The application of RW2 preserves existing blocked clauses and might even
uncover new blocked clauses.

– The application of QBCE might limit or even inhibit the application of RW2,
namely when one of the clauses forming the equivalence is removed.

These observations indicate that it might be advantageous to apply RW2
before QBCE. As we will see in the next section, our experiments confirm this
conjecture.

4.3 Extensions

For SAT, several extensions of BCE and related clause elimination procedures
have been proposed. Based on the adoption of BCE for QSAT, also these exten-
sions may be applied for preprocessing QBF. The goal is to add literals to clauses
for making them either tautological or for triggering the application of blocked
clause elimination. For SAT, covered clauses have been introduced in [9,10]. In
the following, we leverage covered clauses from SAT to QBF.

Quantified Blocked Covered Clause Elimination. Covered clauses are
clauses which are blocked or tautological when they are enriched with literals
contained in any resolvent with pivot element l, the covering literal.

Definition 3 (Quantified Covered Literal). Let the set of resolution can-
didates Rφ(C, l) = {C ′\{l̄} | C ′ ∈ ψ, l̄ ∈ C ′, 6 ∃k : {k, k̄} ⊆ C ⊗ C ′} where φ
is a QBF with matrix ψ, C ∈ ψ, l ∈ C. The set of quantified covered literals
Cφ(C, l) with respect to a clause C and a literal l is given by the intersection of
the resolution candidates

Cφ(C, l) =
⋂
{C ′′ | C ′ ∈ Rφ(C, l), C ′′ ⊆ C ′,∀k ∈ C ′′ : k ≤ l}.

A literal l is called covering literal if Cφ(C, l) 6= ∅, i.e., l covers the literals in
Cφ(C, l).

Lemma 3. The replacement of a clause C in a QBF φ by C∪Cφ(C, l) preserves
unsatisfiability.

Proof. Analogous to the proof of Theorem 1.

In the following, Cφ(C) denotes the clause C extended with all quantified
covered literals, i.e., for all l ∈ Cφ(C) it holds that Cφ(C, l) ⊆ Cφ(C).

Lemma 4 (Quantified Covered Literal Addition). The replacement of a
clause C in a QBF φ by Cφ(C) preserves unsatisfiability.

Proof. Iterative application of Lemma 3.

Definition 4 (Quantified Covered Clause). A clause C in a QBF φ is cov-
ered if Cφ(C) is tautological or blocked w.r.t. φ.

Theorem 4 (Quantified Covered Clause Elimination). The removal of a
covered clause preserves unsatisfiability.

Proof. According to Lemma 4, each clause may be replaced by the clause Cφ(C).
If this clause is blocked, it may be removed according to Theorem 1. If it is
tautological, it may be removed due to standard rewriting rules.

Example 3. In the QBF ∀a, b, c ∃x, y((x∨¬a)∧(¬x∨y∨b)∧(¬x∨y∨c)∧(¬y∨a))
the literal x of the clause (x∨¬a) covers the literal y. We therefore may replace
this clause by (x∨¬a∨y) which is blocked, and, consequently, can be eliminated.

As discussed in [10] covered clause elimination is confluent and more effective
than QBCE.

Quantified Hidden Blocked Clause/Tautology Elimination. Quantified
hidden blocked clauses and quantified hidden tautologies are uncovered by the
addition of literals which are derivable from implications contained within a
QBF. For SAT, these techniques have been presented in [9].

Definition 5 (Quantified Hidden Literal). Let φ be a QBF with matrix ψ.
A literal l is called quantified hidden literal w.r.t. a clause C ∈ ψ if ψ contains
a clause (l1, . . . , ln, l̄) with li ≤ l and l1, . . . , ln ∈ C.

Lemma 5. The replacement of a clause C in a QBF φ with C ∪ {l} preserves
unsatisfiability if l is a quantified hidden literal with respect to C.

Proof. Analogous to the proof of Theorem 1.

Theorem 5. Let C ′ be a clause obtained from a clause C ∈ φ by adding hid-
den literals. If C ′ is blocked or tautological, the removal of C from φ preserves
unsatisfiability.

Proof. Due to the (iterative) application of Lemma 5, C may be replaced by
C ′ in ψ. If C ′ is blocked, it may be removed according to Theorem 1. If C ′ is
tautological, it may be replaced due to standard rewriting rules.

Table 1. Impact of preprocessors

Family no preprocessing bloqqer sQueezeBF

V C A %V %C A %V %C A

Abduction 1474 3435 2 -38 -22 -2 -7 -20 -1

Adder 3527 4405 3 -67 266 -1 -26 -37 0

blackbox* 11437 27819 153 -95 -77 -145 4 -81 -145

Blocks 518 6756 2 -44 -47 -1 7 -48 0

BMC 265932 680732 2 -98 -92 -1 -78 -95 0

Chain 3290 19663 2 -100 -100 -2 -100 -100 -2

circuits 1400 1920 2 -61 137 0 0 -40 0

confplan 1285 47890 2 -56 -6 -1 49 -70 0

Connect4 218810 93504 46 -99 -82 -32 -89 -45 -5

Counter 1951 5169 28 -80 -61 -22 1 -1 0

Debug 159502 1036810 2 -3 -15 0 -63 -52 0

evadepursue 7666 74014 9 -40 -54 0 -2 -51 0

FPGA* 65 433 2 332 828 0 1 -5 0

Impl 74 146 36 -100 -100 -36 -100 -100 -36

jmc quant 508 995 4 25 321 0 0 -68 0

mqm 1724 5060 18 -50 10 -2 0 -14 0

pan 1847 10999 32 -91 -87 -31 38 -40 -11

Rintanen 1871 178750 2 -8 -1 0 7 0 0

Sakallah 44526 29282 2 -81 -50 -1 -79 -76 -1

Scholl-Becker 2758 7712 5 -83 -30 1 34 -43 -1

SortNet 1491 4972 2 -70 -10 0 21 -30 0

SzymanskiP 148973 168917 2 -100 -100 -2 -7 -70 0

tipdiam 5397 15428 2 -91 -79 -1 4 -78 0

tipfixpoint 9103 26407 2 -95 -88 -1 7 -71 0

Toilet 365 3129 2 -52 -100 -2 30 -44 -2

VonNeumann 1040116 1523169 2 -100 -100 -2 -100 -100 -2

5 Experimental Evaluation

Together with variable expansion, equivalence replacement, pure and unit literal
elimination as well as with subsumption (cf. Section 3), the previously presented
techniques are implemented in the preprocessor bloqqer1. To test our implemen-
tation, we applied bloqqer on the benchmark set used at the QBF Competition
20102 which consists of 568 formulas. For the sake of compactness, we aggre-
gated the 36 families to 26 sets. All experiments were performed on 2.83 GHz
Intel Core 2 Quad machines each equipped with 8 GB memory and running

1 available at http://fmv.jku.at/bloqqer
2 available at http://www.qbflib.org

http://fmv.jku.at/bloqqer
http://www.qbflib.org

Table 2. Experiments with various solvers

formulas runtime (sec)

preprocessor
S
O
LV

E
D

S
A
T

U
N
S
A
T

U
N
K
N

Σ
(1
0
3)

A
V
G

M
E
D
IA

N

D
ep
Q
B
F

sQueezeBF/bloqqer 482 234 248 86 102 180 5

bloqqer 467 224 243 101 112 198 5

bloqqer/ sQueezeBF 452 213 239 116 147 258 19

sQueezeBF 435 201 234 133 131 231 6

no preprocessing 373 167 206 195 189 332 26

Q
u
B
E

sQueezeBF/bloqqer 454 207 247 114 129 227 7

bloqqer 444 200 244 124 139 246 5

bloqqer/sQueezeBF 421 183 238 147 174 307 27

sQueezeBF 406 181 225 162 177 313 31

no preprocessing 332 135 197 236 242 426 258

N
en
o
fe
x

bloqqer/sQueezeBF 271 134 137 297 273 482 76

sQueezeBF/bloqqer 270 136 134 298 277 488 31

bloqqer 268 132 136 300 276 487 23

sQueezeBF 246 122 124 322 297 524 88

no preprocessing 221 107 114 347 319 561 113

Q
u
an

to
r

bloqqer 288 145 143 280 266 468 34

sQueezeBF/bloqqer 285 147 138 283 268 472 39

bloqqer/sQueezeBF 270 131 139 298 276 486 34

sQueezeBF 222 106 116 346 318 561 49

no preprocessing 206 100 106 362 333 587 38

Ubuntu 9.04. The time limit and memory limit were set to 900 seconds and 7
GB, respectively. Time spent on the preprocessing is included in the time limit.
If the preprocessor has not terminated after 900 seconds, the preprocessing is
aborted and the formula is considered to be unsolved. In the following evaluation,
sQueezeBF [8] serves as reference preprocessor, because sQueezeBF incorporates
similar features as bloqqer except that bloqqer implements QBCE and sQueezeBF
implements RW1 and RW2. Furthermore, sQueezeBF was shown to be the most
effective state-of-the art preprocessor in [8].

First, we evaluated the impact of bloqqer on the formula size in terms of
number of variables (V), number of clauses (C), and number of quantifier al-
ternations in the prefix (A). Table 1 shows the concrete results for the different
formula sets. The first column (no preprocessing) contains the average values
for the number of variables, number of clauses, and quantifier alternations of
the unpreprocessed formulas. The second column (bloqqer) indicates the effects
of applying bloqqer on these formulas. For the subcolumns V and C the aver-

Table 3. # formulas (# satisfiable formulas) solved by DepQBF

Family (set size)
sQueezeBF/ bloqqer/

bloqqer sQueezeBF no preproc.
bloqqer sQueezeBF

Abduction (52) 48 (29) 49 (30) 49 (30) 48 (29) 50 (31)

Adder (15) 3 (3) 4 (3) 4 (3) 1 (1) 0 (0)

blackbox∗ (61) 52 (2) 45 (2) 46 (2) 55 (2) 43 (0)

Blocks (5) 4 (2) 5 (2) 5 (2) 5 (2) 4 (1)

BMC (18) 14 (5) 16 (6) 15 (5) 13 (5) 12 (5)

Chain (1) 1 (1) 1 (1) 1 (1) 1 (1) 0 (0)

circuits (3) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2)

conf planning (15) 5 (4) 5 (4) 5 (4) 5 (4) 4 (3)

Connect4 (11) 8 (0) 8 (0) 8 (0) 8 (0) 8 (0)

Counter (4) 3 (3) 3 (3) 4 (4) 2 (2) 2 (2)

Debug (5) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

evader-pursuer (22) 17 (7) 11 (2) 11 (3) 10 (3) 10 (3)

FPGA∗ (3) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)

Impl (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

jmc quant (3) 3 (2) 3 (2) 3 (2) 3 (2) 0 (0)

mqm (136) 136 (66) 123 (58) 136 (66) 136 (66) 136 (66)

pan (80) 75 (41) 76 (41) 76 (41) 44 (22) 26 (15)

Rintanen (1) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

Sakallah (19) 11 (10) 13 (11) 15 (13) 10 (9) 0 (0)

Scholl-Becker (24) 15 (5) 14 (4) 14 (4) 13 (5) 11 (4)

Sorting networks (6) 3 (1) 3 (1) 2 (1) 3 (1) 6 (4)

SzymanskiP (2) 2 (0) 2 (0) 2 (0) 2 (0) 0 (0)

tipdiam (14) 13 (12) 8 (8) 8 (8) 11 (10) 3 (3)

tipfixpoint (24) 19 (10) 13 (4) 13 (4) 16 (7) 9 (0)

Toilet (41) 41 (27) 41 (27) 41 (27) 40 (26) 40 (26)

VonNeumann (2) 2 (0) 2 (0) 2 (0) 2 (0) 2 (0)

age increase/decrease in percent w.r.t. the original formulas is shown, whereas
for A the number of additional quantifier alternations is given. The third col-
umn shows how the application of sQueezeBF effects the formula size. bloqqer
decreases the variable number of all but two formula sets by about 70 percent
on average. For 21 formulas sets, we observe a decrease of the clause number
of about 60 percent. For the majority of formula sets also a reduction of the
quantifier prefix is achieved. This decrease of the formula size may be observed
although bloqqer implements preprocessing techniques like variable expansion
which adds new clauses and variables. QBCE is performed during the existential
variable elimination through resolution. Hidden tautologies and hidden blocked
clauses are found in the backward subsumption phase after variable elimination.

Overall, 116 ∗ 104 blocked clauses, 79 ∗ 104 hidden blocked clauses as well as
196 ∗ 104 hidden tautologies have been detected. The size reduction achieved by
sQueezeBF is more moderate (cf. third column of Table 1). bloqqer is able to
directly evaluate 148 formulas and has no timeouts, sQueezeBF solves only 39
formulas and does not terminate on 14 formulas.

Second, we evaluated the impact of bloqqer on the runtimes of the four state-
of-the-art QBF solvers DepQBF [14], QuBE [7], Nenofex [13], and Quantor [3]. For
each solver we considered five preprocessing variants: (1) no preprocessing, (2)
preprocessing with bloqqer only, (3) preprocessing with sQueezeBF only, (4) pre-
processing with the combination bloqqer/sQueezeBF, and (5) preprocessing with
the combination sQueezeBF/bloqqer. The results in Table 2 clearly show the pos-
itive impact of preprocessing on the number of solved formulas as well as on the
runtime. The time values include a penalty of 900 for each unsolved formula.
All solvers have in common that the omission of preprocessing negatively influ-
ences the solvers. The experiments also indicate that it might be advantageous
not to use sQueezeBF alone, but in combination with bloqqer. Which variant
is preferable seems to be solver dependent. The best results are obtained with
sQueezeBF/bloqqer and the solver DepQBF. In the benchmark set, some fami-
lies are represented very prominently compared to other families. Table 3 shows
the detailed results when the solver DepQBF is applied. We clearly see that the
accumulated results are also valid for the various sets.

Finally, we were interested in the impact of the different preprocessing tech-
niques implemented in bloqqer and therefore we ran bloqqer with various options
and passed the formals to DepQBF. Recall that with all options enabled, 467 for-
mulas are solved and that with no preprocessing only 373 formulas are solved.
If QBCE only is enabled, then still 403 formulas are solved, if all options except
the extensions of QBCE are enabled, then 454 formulas are solved. Due to space
limitations, we kindly refer to the web page of bloqqer for more details.

6 Conclusion and Future Work

As blocked clause elimination is an effective simplification technique for SAT,
quantified blocked clause elimination is an effective simplification technique
for QSAT. With QBCE similar effects can be achieved as with simplifications
performed on formulas not in PCNF in combination with the polarity-based
Plaisted-Greenbaum transformation. We provide an implementation of QBCE
and extended variants together with well established simplification techniques
in the preprocessor bloqqer. The application of QBCE results in a considerable
reduction of formula size and improved solving time.

For future work, we consider to integrate QBCE and its extensions directly
into a QBF solver. During the solving process clauses may become blocked which
then may be removed immediately. Furthermore, we will investigate if it is possi-
ble to loosen the blocking criterion by taking variable dependencies into account.

References

1. F. Bacchus and J. Winter. Effective Preprocessing with Hyper-Resolution and
Equality Reduction. In Proc. of the 6th Int. Conf. on Theory and Applications of
Satisfiability Testing (SAT 2003), pages 341–355. Springer, 2004.

2. D. Le Berre. Exploiting the Real Power of Unit Propagation Lookahead. Electronic
Notes in Discrete Mathematics, 9:59–80, 2001.

3. A. Biere. Resolve and Expand. In Proc. of the 7th Int. Conf. on the Theory and
Applications of Satisfiability Testing (SAT 2004), pages 59–70. Springer, 2005.

4. U. Bubeck and H. Kleine Büning. Bounded Universal Expansion for Preprocessing
QBF. In Proc. of the 10th Int. Conf. on Theory and Applications of Satisfiability
Testing (SAT 2007), volume 4501, pages 244–257, 2007.

5. H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for Quantified Boolean
Formulas. Information and Computation, 117(1):12–18, 1995.

6. N. Eén and A. Biere. Effective Preprocessing in SAT through Variable and Clause
Elimination. In Proc. of the 8th Int. Conf. on Theory and Applications of Satisfi-
ability Testing (SAT 2005), pages 61–75. Springer, 2005.

7. E. Giunchiglia, P. Marin, and M. Narizzano. QuBE 7.0. JSAT, 7:83–88, 2010.
8. E. Giunchiglia, P. Marin, and M. Narizzano. sQueezeBF: An Effective Preprocessor

for QBFs Based on Equivalence Reasoning. In Proc. of the 13th Int. Conf. on
Theory and Applications of Sat. Testing (SAT 2010), pages 85–98. Springer, 2010.

9. M. Heule, M. Järvisalo, and A. Biere. Clause elimination procedures for cnf formu-
las. In Proc. of 17th Intl. Conf. on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR-17), volume 6397 of LNCS, pages 357–371. Springer, 2010.

10. M. Heule, M. Järvisalo, and A. Biere. Covered Clause Elimination. CoRR,
abs/1011.5202, 2010. Short paper proceedings LPAR-17.

11. M. Järvisalo, A. Biere, and M. Heule. Blocked Clause Elimination. In Proc. of
the 16th Int. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2010), pages 129–144. Springer, 2010.

12. O. Kullmann. On a Generalization of Extended Resolution. Discrete Applied
Mathematics, 96:149–176, 1999.

13. F. Lonsing and A. Biere. Nenofex: Expanding NNF for QBF Solving. In Proc.
of the 11th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT
2008), pages 196–210. Springer, 2008.

14. F. Lonsing and A. Biere. DepQBF: A Dependency-Aware QBF Solver (System
Description). JSAT, 7:71–76, 2010.

15. H. Mangassarian, B. Le, A. Goultiaeva, A.G. Veneris, and F. Bacchus. Leveraging
Dominators for Preprocessing QBF. In Design, Automation and Test in Europe
(DATE 2010), pages 1695–1700. IEEE, 2010.

16. R. Ostrowski, E. Grgoire, B. Mazure, and L. Säıs. Recovering and Exploiting
Structural Knowledge from CNF Formulas. In Proc. of the 8th Int. Conf. on
Princ. and Pract. of Constraint Prog. (CP 2002), pages 199–206. Springer, 2006.

17. F. Pigorsch and C. Scholl. An AIG-Based QBF-Solver Using SAT for Preprocess-
ing. In Proc. of the 47th Design Aut. Conf. (DAC 2010), pages 170–175, 2010.

18. David A. Plaisted and Steven Greenbaum. A Structure-Preserving Clause Form
Translation. Journal of Symbolic Computation, 2(3):293–304, 1986.

19. H. Samulowitz, J. Davies, and F. Bacchus. Preprocessing QBF. In Proc. of the
11th Int. Conf. on Principles and Practices of Constraint Programming (CP 2006),
pages 514–529. Springer, 2006.

20. G.S. Tseitin. On the Complexity of Derivation in Propositional Calculus. Studies
in Constructive Mathematics and Mathematical Logic, 2(115-125):10–13, 1968.

	Blocked Clause Elimination for QBF

