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Abstract Sledgehammer is a component of the Isabelle/HOL proof assistant that integrates
external automatic theorem provers (ATPs) to discharge interactive proof obligations. As
a safeguard against bugs, the proofs found by the external provers are reconstructed in Isa-
belle. Reconstructing complex arguments involves translating them to Isabelle’s Isar format,
supplying suitable justifications for each step. Sledgehammer transforms the proofs by con-
tradiction into direct proofs; it iteratively tests and compresses the output, resulting in sim-
pler and faster proofs; and it supports a wide range of ATPs, including E, LEO-II, Satallax,
SPASS, Vampire, veriT, Waldmeister, and Z3.

Keywords Automatic theorem provers · Proof assistants · Natural deduction

1 Introduction

Sledgehammer [12,62] is a proof tool that connects the Isabelle/HOL proof assistant [53,54]
with external automatic theorem provers (ATPs), including first-order superposition provers,
higher-order provers, and solvers based on satisfiability modulo theories (SMT). Given an
interactive proof goal, it heuristically selects hundreds of facts (lemmas, definitions, and
axioms) from Isabelle’s vast libraries, translates them to the external provers’ logics, and
invokes the provers in parallel (Section 2).
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Although Sledgehammer can be trusted as an oracle [13], most users are satisfied only
once the reasoning has been reduced to Isabelle primitives. When Sledgehammer was orig-
inally conceived, the plan was to have it deliver detailed justifications in Isabelle’s Isar (In-
telligible Semi-Automated Reasoning) language [86], a textual format inspired by the pio-
neering Mizar system [46]. Paulson and Susanto [63] designed a prototype that performed
inference-by-inference translation of ATP proofs into Isar proofs and justified each Isar in-
ference using metis, a proof method based on Hurd’s superposition prover Metis [36]. For
example, given the conjecture

lemma X = Y ∪ Z←→ Y ⊆ X ∧ Z ⊆ X ∧ (∀V. Y ⊆ V ∧ Z ⊆ V −→ X ⊆ V)

their procedure generated the following Isar text:

proof neg_clausify
fix v
assume 0: Y ⊆ X ∨ X = Y ∪ Z
assume 1: Z ⊆ X ∨ X = Y ∪ Z
assume 2: (¬ Y ⊆ X ∨ ¬ Z ⊆ X ∨ Y ⊆ v) ∨ X 6= Y ∪ Z
assume 3: (¬ Y ⊆ X ∨ ¬ Z ⊆ X ∨ Z ⊆ v) ∨ X 6= Y ∪ Z
assume 4: (¬ Y ⊆ X ∨ ¬ Z ⊆ X ∨ ¬ X ⊆ v) ∨ X 6= Y ∪ Z
assume 5: ∀V. ((¬ Y ⊆ V ∨ ¬ Z ⊆ V) ∨ X ⊆ V) ∨ X = Y ∪ Z
have 6: sup Y Z 6= X ∨ ¬ X ⊆ v ∨ ¬ Y ⊆ X ∨ ¬ Z ⊆ X by (metis 4)
have 7: Z ⊆ v ∨ sup Y Z 6= X ∨ ¬ Y ⊆ X by (metis 1 3 Un_upper2)
have 8: Z ⊆ v ∨ sup Y Z 6= X by (metis 0 7 Un_upper1)
have 9: sup Y Z = X ∨ ¬ Z ⊆ X ∨ ¬ Y ⊆ X
by (metis 5 equalityI Un_least Un_upper1 Un_upper2)

have 10: Y ⊆ v by (metis 0 1 2 9 Un_upper1 Un_upper2)
have 11: X ⊆ v by (metis 0 1 8 9 10 Un_least Un_upper1 Un_upper2)
show False by (metis 0 1 6 9 11 Un_upper1 Un_upper2)

qed

The neg_clausify tactic on the first line recasts the conjecture into negated clauses, so that
it has the same shape as in the corresponding ATP problem. The negated conjecture clauses
are repeated using the assume command; then inferences are performed using have, cul-
minating with a contradiction. The last step of an Isar proof is announced by the keyword
show. The names equalityI, Un_least, Un_upper1, and Un_upper2 refer to lemmas about
the set operators ⊆ and ∪.

Paulson and Susanto’s approach was temporarily abandoned for several reasons: The
resulting proofs by contradiction were often syntactically incorrect due to technical issues,
notably the lack of necessary type annotations in the printed formulas, leading to unprov-
able goals. The generated proofs were often unpalatable, so that users were disinclined to
insert them in their formalization. Moreover, although metis cannot compete with the fastest
provers, a single call with the list of needed lemmas usually suffices to re-find the proof in
reasonable time. Indeed, the equivalence above can be discharged within milliseconds using
the line

by (metis equalityI Un_least Un_upper1 Un_upper2)

However, proof reconstruction with a single metis call means that the proof must be
re-found each time the formalization is processed. This sometimes fails for difficult proofs
that metis cannot re-find within a reasonable time and is vulnerable to small changes in the
formalization. It also provides no answer to users who would like to understand the proof,



Semi-intelligible Isar Proofs from Machine-Generated Proofs 3

whether it be novices who expect to learn from it, experts who must satisfy their curiosity, or
merely skeptics. But perhaps more importantly, metis supports no theories beyond equality,
which is becoming a bottleneck as automatic provers are being extended with procedures for
theory reasoning. The smt proof method [15,17], which is based on the SMT solver Z3 [51],
is a powerful, arithmetic-capable alternative to metis, but it depends on the availability of Z3
for proof replay, which hinders its acceptance among users; moreover, due to its incomplete
quantifier handling, it can fail to re-find a proof produced by a superposition prover.

The remedy to all these issues is well known: to generate detailed, structured Isar proofs
based on the machine-generated proofs, as originally envisioned by Paulson and Susanto.
But this requires addressing the issues that plagued their prototype, as well as generalizing
their approach so that it works with the vast collection of automatic provers that are now
supported by Sledgehammer.

This article presents a new module for translating ATP proofs into readable Isar proofs.
This module features a number of enhancements that increase the intelligibility and robust-
ness of the output (Section 3). The implementation naturally decomposes itself into a num-
ber of general-purpose procedures, described abstractly in separate sections of this article.

The first obstacle to readability is that the Isar proof, like the underlying ATP proof,
is by contradiction. A procedure transforms proofs by contradiction into direct proofs—or
redirects the proofs (Section 4). The output is a direct proof expressed in natural deduction
extended with case analyses and nested subproofs.

The typical architecture of modern first-order ATPs combines a clausifier and a reason-
ing core that assumes quantifier-free clause normal form (CNF). It is the clausifier’s duty
to skolemize the problem and move the remaining (essentially universal) quantifiers to the
front of the formulas, where they can be omitted. Sledgehammer historically performed
clausification itself, using the neg_clausify tactic, which implemented a naive exponential
application of distributive laws. This was changed to use the ATPs’ native clausifiers, since
they normally generate a polynomial number of clauses and include other optimizations [4].
However, skolemization transforms a formula into an equisatisfiable, but not equivalent,
formula; as a result, it must be treated specially when reconstructing the proof (Section 5).

ATP proofs can involve dozens, hundreds, or even thousands of inferences. When trans-
lating them to Isar, it can be beneficial to compress straightforward chains of deduction
and to try various proof methods as alternatives to metis (Section 6). This postprocessing
can make the resulting proof faster to process. Moreover, many users prefer concise proofs,
either because they want to avoid cluttering their formalizations or because they find the
shorter proofs easier to understand. If several proofs have been concurrently found by dif-
ferent provers, the user can choose the fastest one.

Despite laudable efforts toward standardizing the output of automatic provers [9, 79],
each system currently has its own set of inference rules and sometimes even its own output
format. The following provers are supported:

– Unit-equality prover: Waldmeister [33];
– First-order superposition provers: E [70], SPASS [84], and Vampire [66];
– Higher-order provers: LEO-II [8] and Satallax [20];
– SMT solvers: veriT [18] and Z3 [51].

The best behaved provers in this list take problems in TPTP (Thousands of Problem for
Theorem Provers) format [77], produce proofs in TSTP (Thousands of Solutions for The-
orem Provers) format [79], explicitly record skolemization as an inference, and otherwise
perform only inferences that correspond to logical implications, which can usually be re-
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played using metis. But even for these provers, some adaptations are necessary to integrate
them (Section 7).

The Isar proof construction module has been developed over several years, starting from
Paulson and Susanto’s prototype. A naive attempt at redirecting proofs by contradiction was
sketched at the PAAR 2010 and IWIL 2010 workshops [61, 62]. However, that procedure
could exhibit exponential behavior. The linear procedure described in this article was in-
troduced in a paper presented at the PxTP 2013 workshop [11]. Proof postprocessing was
discussed in a second PxTP 2013 paper [72]. The integration of LEO-II, Satallax, and veriT
was described in an internship report [28]. The corresponding work for Waldmeister is de-
scribed in a B.Sc. thesis [73]. The text of this article is largely based on the two PxTP 2013
papers, which themselves overlap with a Ph.D. thesis [10, Section 6.8] and a B.Sc. the-
sis [71]. Important additions include a section on the specific ATPs (Section 7), real-world
examples (Section 8), and an experimental evaluation (Section 9).

The implementation is an integral part of Isabelle. Although the focus is on this specific
proof assistant, many of the techniques presented here are applicable to proof construc-
tion for other Sledgehammer-like tools, such as HOLYHammer for HOL Light [38, 39] and
MizAR for Mizar [1, 69].

Related Work. There is a considerable body of research about making ATP proofs intel-
ligible. Early work focused on translating resolution proofs into natural deduction calculi
[50, 64]. Although they are arguably more readable, these calculi operate at the logical
level, whereas humans reason mostly at the “assertion level,” invoking definitions and lem-
mas without providing the full logical details. A line of research focused on transforming
natural deduction proofs into assertion-level proofs [3, 35], culminating with the systems
TRAMP [47] and Otterfier [88]. More related work includes the identification of obvious in-
ferences [26, 68], the successful transformation of the EQP-generated proof of the Robbins
conjecture using ILF [25], and the use of TPTP-based tools to present Mizar articles [81].

It would have been interesting to try out TRAMP and Otterfier, but these are large pieces
of unmaintained software that are hardly installable on modern machines and that only sup-
port older ATP systems. Regardless, the problem looks somewhat different in the context of
Sledgehammer. Because the provers are given hundreds of lemmas as axioms, they tend to
find short proofs with few lemmas. Moreover, Sledgehammer can coalesce consecutive in-
ferences if short proofs are desired. Replaying an inference is usually a minor issue, thanks
to proof methods such as metis and linarith. In this respect, the most similar work is the
textual proof generation for MizAR [1], but it replays skolemization by introducing axioms.

2 Preliminaries

This article is concerned with a number of systems: a portfolio of automatic theorem provers
on one side (Section 2.1), the Isabelle/HOL proof assistant and its Isar language on the other
side (Sections 2.2 and 2.3), and the Sledgehammer tool as a bridge in between (Section 2.4).

2.1 Automatic Theorem Provers

Despite important technological differences, the ATPs of interest roughly follow the same
general principles. They take a self-contained problem as input, consisting of a list of axioms
and a conjecture. In case of success, they produce a proof of ⊥ (falsity) from a subset of the



Semi-intelligible Isar Proofs from Machine-Generated Proofs 5

axioms and the negated conjecture. The derivation is a list of inferences, each depending on
previous formulas; it can be viewed as a directed acyclic graph.

The concrete syntax varies from prover to prover. In the automated reasoning com-
munity revolving around the International Conference on Automated Deduction (CADE)
and the CADE ATP System Competition (CASC) [78], the TPTP and TSTP syntaxes have
emerged as de facto standards. TPTP defines a hierarchy of languages, including FOF (first-
order form), TFF0 (typed first-order form), and THF0 (typed higher-order form). Despite
slight syntactic inconsistencies, the subset chain FOF ⊂ TFF0 ⊂ THF0 essentially holds.
The SMT-LIB 2 input syntax [7], supported by most modern SMT solvers, is conceptually
similar to TPTP TFF0. TSTP specifies the basic syntax of a proof, as a list of inferences,
but does not mandate any proof system. On the SMT side, there is no uniform format for
solutions.

2.2 Isabelle/HOL

The Isabelle/HOL proof assistant is based on polymorphic higher-order logic (HOL) [31]
extended with axiomatic type classes [85]. The types and terms of HOL are that of the
simply typed λ-calculus [24] augmented with type constructors, type variables, and term
constants. The types are either type variables (e.g., α, β) or n-ary type constructors, usually
written in postfix notation (e.g, α list). Nullary type constructors (e.g., nat) are also called
type constants. The binary type constructor α⇒ β is interpreted as the (total) function space
from α to β. Type variables can carry type class constraints, which are essentially predicates
on types. An example is the linorder class, which is true only for types τ equipped with a
linear order (op< :: τ⇒ τ⇒ bool).

Terms are either constants (e.g., 0, sin, op<), variables (e.g., x), function applications
(e.g., f x), or λ-abstractions (e.g., λx. f x x). Constants and variables can be functions. HOL
formulas are simply terms of type bool. The familiar connectives (¬, ∧, ∨, −→) and quan-
tifiers (∀, ∃) are predefined. Constants can be polymorphic; for example, map :: (α⇒ β)⇒
α list⇒ β list applies a function elementwise to a list of α elements.

Isabelle is a generic theorem prover whose metalogic is an intuitionistic fragment of
HOL. In the metalogic, propositions have type prop, universal quantification is written

∧
,

implication is written =⇒, and equality is written ≡. The object logic is embedded in the
metalogic using a constant Trueprop :: bool⇒ prop, which is normally not printed. In the
examples, we preserve the distinction between the two levels to avoid distracting the trained
Isabelle eye, but readers unfamiliar with the system can safely consider the symbols

∧
, =⇒,

and ≡ as aliases for ∀, −→, and =.
Types are inferred using Hindley–Milner inference. Type annotations :: τ give rise to

additional constraints that further restrict the inferred types. A classic example where type
annotations are needed is x+ y = y+ x. Without type annotations, the formula is parsed as
(x ::α)+(y ::α)= (y ::α)+(x ::α), where α belongs to the plus type class, which provides the
+ operator but imposes no semantics on it. An annotation is necessary to make the formula
provable—e.g., (x :: int)+ y = y+ x. A single annotation is sufficient here because of the
constraints arising from the most general types of the involved operators: op+ :: α⇒ α⇒ α
and op= :: α⇒ α⇒ bool.

For both types and terms, Isabelle distinguishes two kinds of free variable: schematic
variables, which can be instantiated, and nonschematic variables, which stand for fixed,
unknown entities. When stating a conjecture and proving it, the type and term variables are
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normally fixed, and once it is proved, they become schematic so that users of the lemma can
instantiate them when applying the lemma.

2.3 Isar Proofs

At the textual level, Isabelle proofs can be expressed either as so-called apply scripts or as
structured Isar proofs. An apply script is a sequence of tactic applications that transform
the goal until it is discharged. In contrast, Isar proofs have a forward structure, stating inter-
mediate properties and proving each of them with a single proof method introduced by the
keyword by. This makes them more suitable for reconstructing ATP proofs.

Isar proofs are a linear representation of natural deduction proofs in the style of Jaśkow-
ski [37]. Unlike Gentzen-style trees [30], they allow the sharing of common derivations.
The Isar proof format is amply documented elsewhere [53, 86]; here, we attempt a brief
description of the syntax needed for the rest of this article.

Isar proofs are surrounded by proof and qed. The proof keyword optionally takes a
tactic as argument to transform the goal. This facility was exploited by Paulson and Susanto
[63] to recast the conjecture into negated clauses, as we mentioned in the introduction. With
our framework, this is no longer necessary, and hence our proofs will specify the minus
symbol (−) as argument to proof, signifying no proof method.

The body of the proof mimics the corresponding goal. A goal of the form
∧

x1 . . . xk.
A1 =⇒ ···=⇒ Am =⇒C is typically accompanied by a proof block of the form

proof −
fix x1 . . . xk
assume a1: A1...
assume am: Am
have l1: P1 by . . .

...
have ln: Pn by . . .
show C by . . .

qed

where l1, . . . , ln and P1, . . . ,Pn are the optional labels (names) and statements of intermedi-
ate properties, respectively, and similarly for the assumptions. Existential properties can be
stated using obtain. The command

obtain x where P x

is semantically identical to

have ∃x. P x

but in the first case x can be used in further have commands, like a Skolem constant.
Formulas introduced by have, obtain, and show must be followed either by a single

proof method (e.g., by metis) or by a nested proof–qed block. Facts can be added as as-
sumptions to the goal via the using keyword. For many proof methods, this is the only way
of making them use additional facts. Other methods can also take facts as argument; for
example,

have 1+1 = 2 using one_add_one by metis
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is a synonym for

have 1+1 = 2 by (metis one_add_one)

Consecutive steps can be chained together using then. For example,

have l: P by . . .
have m: Q using l by . . .

can be abbreviated to

have P by . . .
then have m: Q by . . .

The abbreviations hence = then have and thus = then show are frequently used.
A general form of chaining makes it possible to have an arbitrary number of intermediate

facts flow into a proof step. Instead of

have l1: P1 by . . .
have l2: P2 by . . .

...
have ln: Pn by . . .
have m: Q using l1 l2 . . . ln by . . .

we can write

have P1 by . . .
moreover have P2 by . . .

...
moreover have Pn by . . .
ultimately have m: Q by . . .

As we see from these examples, much of Isar syntax is concerned with shortening com-
mon idioms. As a final abbreviation, an intermediate fact with a nested proof such as

have
∧

x1 . . . xk. A1 =⇒ ···=⇒ Am =⇒C
proof −
fix x1 . . . xk
assume A1...
assume Am
〈intermediate facts〉
show C by . . .

qed

can be inlined into a block of the form

{ fix x1 . . . xk
assume A1...
assume Am
〈intermediate facts〉
have C by . . . }
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2.4 Sledgehammer

Sledgehammer integrates third-party automatic theorem provers to increase the level of au-
tomation in Isabelle/HOL. It consists of three main components:

1. The relevance filter [44,49] heuristically selects a few hundred facts from the thousands
available in background theories.

2. The translation module [13, 48] encodes polymorphic higher-order propositions in the
target prover’s logic (e.g., untyped or monomorphic first-order logic).

3. The reconstruction module (described in this article) produces an Isar proof that can be
inserted in an Isabelle development.

Given that automatic provers are highly sensitive to the encoding of the problem, the
translation module plays a crucial role. The translation involves two steps:

1. If the target system is first-order, higher-order features such as λ-abstractions and partial
function applications must be encoded.

2. If the target system is ignorant of polymorphism, the polymorphic type information,
including type classes, must be encoded, either by heuristically grounding the types in
the problem (a process known as monomorphization) or by representing types as terms.

3 The Translation Pipeline

The translation from an ATP proof to an Isabelle Isar proof involves two main intermediate
data structures. The ATP proof is first parsed and translated into a proof by contradiction of
the same shape but with HOL formulas instead of first-order formulas (Section 3.1). This
intermediate data structure is then transformed into a direct proof (Section 3.2), from which
Isar proof text is synthesized. Various operations are implemented on these data structures
to enhance the proof.

3.1 Proofs by Contradiction

The ATP proof is first translated into an Isabelle proof by contradiction. This step preserves
the graph structure of the proof, but the nodes are labeled by HOL formulas. This translation
corresponds largely to the work by Paulson and Susanto [63].

Some consolidation can already take place at this level. ATPs tend to record many more
inferences than are interesting to Isabelle users. Trivial operations such as clausification and
variable renaming produce chains of inference that can be collapsed.

Paulson and Susanto [63] describe how HOL terms, types, and type classes are recon-
structed from their encoded form. Their code had to be adapted to cope with the variety of
type encodings supported by modern versions of Sledgehammer [13], but nonetheless their
description fairly accurately describes the current state of affairs.

Because we work in a classical logic, we can silently eliminate double negations. Au-
tomatic theorem provers perform this transformation in their clausifier. If the conjecture is
a negation ¬φ, we write φ for the negated conjecture, implicitly appealing to double nega-
tion elimination. In such cases, the proof by contradiction is more correctly called a “proof
of negation.” For uniformity, we also refer to such proofs as proofs by contradiction, the
distinction being mostly relevant for intuitionistic logics.
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3.2 Direct Proofs

The proof redirection algorithm presented in Section 4 takes a proof by contradiction as the
input and produces a direct proof, expressed in a fragment of Isar. The abstract syntax of
proofs and inferences is given by the production rules

Proofs: π ::= (fix x∗)? (assume l: φ)∗ ι∗

Inferences: ι ::= then? have (l:)? φ l∗ π∗

| then? obtain x∗ where (l:)? φ l∗ π∗

where x ranges over HOL variables (which may be of function types), l over Isar fact labels,
and φ over HOL formulas. Question marks (?) denote optional material, and asterisks (∗)
denote repetition. Nested proof blocks are possible, as indicated by the syntax π∗.

A fix command fixes the specified variables in the local context, and assume enriches
the context with an assumption. Standard inferences are performed using have. Its variant
obtain establishes the existence of HOL variables for which a property holds and adds them
to the context. The optional then keyword indicates that the previous fact is needed to prove
the current fact.

Once the direct proof is constructed, it is iteratively tested and compressed. Finally, then
is introduced to chain proof steps. The then keyword is only a convenience; the same effect
can be achieved less elegantly using labels. At the end, useless labels are removed, and the
remaining labels are changed to f1, f2, etc.

The final step of the translation pipeline produces a textual Isar proof. This step is
straightforward, but some care is needed to generate strings that can be parsed back by
Isabelle. This is especially an issue for formulas, where type annotations might be needed
(Section 6.5).

3.3 Example

The following Isabelle theory fragment declares a two-valued state datatype, defines a flip
function, and states a conjecture about it:

datatype state = On | Off

fun flip :: state⇒ state where
flip On=Off |
flip Off=On

lemma flip x 6= x

Invoking Sledgehammer launches a collection of ATPs. The conjecture is easy, so they
rapidly return. Given the problem in TPTP FOF, Vampire delivers the proof shown in Fig-
ure 1, expressed in a slightly idealized TSTP-like format. Each line gives a formula number,
a role, and a formula. The formulas used from the original problem are listed first (formulas
51, 52, 55, 57, 58, and 774). Any problem formula that can be used to prove the conjecture
is an axiom for the ATP, irrespective of its status in Isabelle (lemma, definition, or actual
axiom). The rightmost columns indicate how the formulas was arrived at: Either it appeared
in the original problem, in which case its identifier is given (e.g., flip_simps_1), or it was
derived from one or more already proved formulas using a Vampire-specific proof rule.
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51 axiom flip(on)=off flip_simps_1
52 axiom flip(off)=on flip_simps_2
55 axiom ¬ off=on state_distinct_1
57 axiom ∀X. (¬ state(X)=on−→ state(X)=off) state_exhaust
58 axiom state(s)= s type_of_s

774 conj ¬ flip(s)= s goal

775 neg_conj ¬¬ flip(s)= s 774 negate
776 neg_conj flip(s)= s 775 flatten
781 plain off 6=on 55 flatten
892 plain ∀X. (¬ state(X)=on−→ state(X)=off) 57 rectify
893 plain ∀X. (state(X) 6=on−→ state(X)=off) 892 flatten

1596 plain ∀X. (state(X)=on ∨ state(X)=off) 893 ennf_trans
2238 neg_conj flip(s)= s 776 cnf_trans
2239 plain state(s)= s 58 cnf_trans
2287 plain flip(on)=off 51 cnf_trans
2288 plain flip(off)=on 52 cnf_trans
2375 plain off 6=on 781 cnf_trans
2485 plain ∀X. (state(X)=off ∨ state(X)=on) 1596 cnf_trans
3342 plain on= s ∨ state(s)=off 2239, 2485 superpos
3362 plain on= s ∨ off= s 3342, 2239 fwd_demod
3402 neg_conj flip(on)=on ∨ off= s 2238, 3362 superpos
3404 neg_conj off=on ∨ off= s 3402, 2287 fwd_demod
3405 neg_conj off= s 3404, 2375 subsum_res
3407 neg_conj flip(off)=off 3405, 2238 bwd_demod
3408 neg_conj off=on 3407, 2288 fwd_demod
3409 neg_conj ⊥ 3408, 2375 subsum_res

Fig. 1 A proof produced by Vampire

If Sledgehammer’s isar_proofs option is enabled, or if one-line proof reconstruction
failed, textual Isar proof reconstruction is attempted. The Isabelle proof by contradiction for
the ATP proof above is as follows:

775 flip s = s ¬ goal
3402 flip On=On ∨Off= s 775, state.exhaust
3404 Off=On ∨Off= s 3402, flip.simps(1)
3405 Off= s 3404, state.distinct(1)
3407 flip Off=Off 775, 3405
3409 False 3407, flip.simps(2), state.distinct(1)

Since the goal is a disequality, by double negation elimination the negated goal happens to
be a positive formula (flip s = s). Linear inference chains are drastically compressed, and
the lemmas

state.distinct(1): Off 6=On
state.exhaust: (y =On=⇒ P) =⇒ (y =Off=⇒ P) =⇒ P
flip.simps(1): flip On=Off
flip.simps(2): flip Off=On

are referenced by name rather than repeated. The passage from FOF to HOL also eliminates
encoded type information, such as the state function and the auxiliary axiom type_of _s.
After redirection, the proof becomes

have 3407: flip Off 6=Off [ flip.simps(2), state.distinct(1)] []
have 3405: flip s 6= s ∨Off 6= s [3407] []



Semi-intelligible Isar Proofs from Machine-Generated Proofs 11

have 3404: flip s 6= s ∨Off 6= s ∧Off 6=On [3405, state.distinct(1)] []
have 3402: flip s 6= s ∨ flip On 6=On∧Off 6= s [3404, flip.simps(1)] []
have 775: flip s 6= s [3402, state.exhaust] []

Compression and cleanup simplify the proof further:

have flip Off 6=Off [ flip.simps(2), state.distinct(1)] []
then have flip s 6= s [flip.simps(1), state.distinct(1), state.exhaust] []

From this simplified direct proof, the Isar proof is easy to produce:

proof −
have Off 6= flip Off by (metis flip.simps(2) state.distinct(1))
thus flip s 6= s by (metis flip.simps(1) state.distinct(1) state.exhaust)

qed

The example is somewhat odd in the way machine-generated proofs often are. A human
prover would likely have clearly distinguished the On and Off cases, discharging them sep-
arately and combining the result. Here, the On case is inlined in the last step, which also
applies the exhaustion rule to justify the case distinction.

4 Proof Redirection

Knuth, Larrabee, and Roberts call the unnecessary use of proof by contradiction a sin against
mathematical exposition [42, Section 3]. What makes such proofs difficult to read is that
they contain a mixture of theorems with respect to the specified axioms (forward steps) and
of formulas whose derivation is tainted by the negated conjecture (backward steps). The
resulting bidirectionality is often enough to confuse readers. It could be argued that proof
by contradiction is the most natural way to prove a negative formula, such as the flip s 6= s
example above, but the issue of bidirectionality also arises in such cases.

The redirection algorithm presented below is not tied to a specific calculus or logic, but
it does require contraposition and double negation elimination. In particular, it works on
the Isar proofs generated by Sledgehammer or directly on first-order TSTP proofs [79]. The
direct proofs are expressed in a simple Isar-like syntax, which can be regarded as natural
deduction extended with case analyses and nested subproofs (Section 4.1). The algorithm
is first demonstrated on a few examples (Section 4.2) before it is presented in more detail,
both in prose and as Standard ML pseudocode (Section 4.3).

Excluding a linear number of additional inferences that justify case analyses, each in-
ference in the proof by contradiction gives rise to one inference in the direct proof. The
algorithm can easily process proofs with hundreds or thousands of inferences. The proce-
dure is admittedly fairly straightforward; it would not be surprising if it were part of folklore
or a special case of existing work.

4.1 Proof Notations

Proof Graphs. ATP proofs identify formulas by numbers. There may be several conjectures,
in which case they are interpreted disjunctively. The negated conjectures and user-provided
axioms are typically numbered 0, 1, 2, . . . , n−1, and the derivations performed during proof
search (whether or not they participate in the final proof) are numbered sequentially from n.
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0 1 2 3

4

5

⊥

6 7

00

00 00

Fig. 2 A proof graph

proof neg_clausify
assume 0
have 4 by (metis 1 2)
have 5 by (metis 3 4)
have 6 by (metis 0 4)
have 7 by (metis 0 5)
show ⊥ by (metis 6 7)

qed

proof −
have 4 by (metis 1 2)
have 5 by (metis 3 4)
have 6∨7 by metis
moreover
{ assume 6
have 0 by (metis 4 6) }

moreover
{ assume 7
have 0 by (metis 5 7) }

ultimately show 0 by metis
qed

Fig. 3 An Isar proof by contradiction (left) and the corresponding direct proof (right)

We abstract the ATP proofs by ignoring the formulas and keeping only the numbers. We call
formulas atoms since we are not interested in their structure. The letters a, b denote atoms.

An atom is tainted if it is one of the negated conjectures or has been derived, directly or
indirectly, from a negated conjecture. For convenience, we relabel the ATP proof’s atoms so
that tainted atoms are decorated with a bar, denoting negation. Thus, if atom 3, correspond-
ing to the formula φ, is tainted, it is relabeled to 3, but it still stands for φ and is called an
atom despite the negative bar. After the relabeling, removing the bar negates the formula;
accordingly, 3 stands for ¬φ.

A proof graph is a directed acyclic graph in which an edge a→ a′ indicates that atom a
is used to derive atom a′. Proof graphs are required to have exactly one sink node, whose
formula is ⊥, and only one connected component. It is natural to write ⊥ rather than a
numeric label for the sink node in examples. We adopt the convention that derived nodes
appear lower than their parent nodes in the graph and omit the arrowheads. Figure 2 gives
an example.

Isar Proofs. Proof graphs cannot represent proofs by case analysis and only serve for the
redirection algorithm’s input. We need more powerful notations for the output (Section 3.2).
Figure 3 shows a proof by contradiction and the corresponding direct proof.

Notice that the direct proof involves a two-way case analysis on a disjunction (6∨ 7).
Generalized disjunctions of the form a1 ∨ ·· · ∨ am are called clauses and are denoted by
the letters c, d, e. Clauses are considered equal modulo associativity, commutativity, and
idempotence. Sets of clauses are denoted by Γ.

Proof redirection requires that inferences can be redirected using the contrapositive but
otherwise makes no assumptions about the proof calculus. Inferences that introduce new
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symbols can also be redirected; for example, skolemization becomes “unherbrandization”
(Section 5.2).

Shorthand Proofs. The last proof format is an ad hoc shorthand notation for a subset of Isar.
In their simplest form, these shorthand proofs are a list of derivations c1, . . . ,cm B c whose
intuitive meaning is: “From the hypotheses c1 and . . . and cm, infer c.” The clauses on the
left-hand side are interpreted as a set Γ.

If a hypothesis ci is the previous derivation’s conclusion, we can omit it and write I
instead of B. This notation mimics Isar, with B for have (or show) and I for hence (or
thus). Depending on whether we use the abbreviated format, our running example becomes

1,2 B 4
3,4 B 5
0,4 B 6
0,5 B 7
6,7 B⊥

or

1,2 B 4
3 I 5

0,4 B 6
0,5 B 7

6 I⊥

Each derivation ΓB c is essentially a sequent with Γ as the antecedent and c as the succedent.
For proofs by contradiction, the clauses in the antecedent are either the negated conjecture
(0), atoms that correspond to background facts (1, 2, and 3), or atoms that were proved in
preceding sequents (4, 5, 6, and 7); the succedent of the last sequent is always ⊥.

Direct proofs can be presented in the same way, but the negated conjecture 0 may not
appear in any of the sequents’ antecedents, and the last sequent must have the conjecture 0
as its succedent. In some of the direct proofs, it is useful to introduce case analyses. For
example:

1,2 B 4
3 I 5
B 6∨7[

[6]
4 I 0

[7]
5 I 0

]
In general, case analysis blocks are of the form


[c1]

Γ11 B d11...
Γ1k1 B d1k1

. . .

. . .

. . .

[cm]
Γm1 B dm1...

Γmkm B dmkm


with the requirement that a sequent with the succedent c1 ∨ ·· · ∨ cm has been proved im-
mediately above the case analysis. Each of the branches must also be a valid proof. The
assumptions [ci] may be used to discharge hypotheses in the same branch, as if they had
been sequents B ci. The case analysis will sometimes be regarded as a sequent

c1∨·· ·∨ cm,
(⋃

i, j (Γij− ci−
⋃

j ′< j dij ′)
)
B d1k1∨·· ·∨dmkm

by ignoring its internal structure.
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4.2 Examples of Proof Redirection

Before reviewing the redirection algorithm, we consider four examples of proofs by contra-
diction and redirect them into a direct proof. The first example has a simple linear structure,
the second and third examples involve a “lasso,” and the last example has a complicated,
spaghetti-like structure.

A Linear Proof. We start with a simple proof by contradiction expressed as a proof graph
and in our shorthand notation:

0

⊥

3

4

1 2
00

00

00

0,1 B 3
2,3 B 4
1,4 B⊥

We redirect the sequents using sequent-level contraposition to eliminate all taints (repre-
sented as bars after the relabeling). This gives

1,3 B 0
2,4 B 3

1 B 4

We then obtain the direct proof by reversing the order of the sequents, and introduce I
where it is possible without changing the order of the sequents:1

proof −
have 4 by (metis 1)
hence 3 by (metis 2)
thus 0 by (metis 1)

qed

1 B 4
2 I 3
1 I 0

Lasso-Shaped Proofs. The next two examples look superficially like lassos but are of course
acyclic, as required of all proof graphs. Recall that all edges are oriented downward by
convention.

0

1 2

3 4

6

⊥

5

00

00 00

0000

00

00

0 B 1
0 B 2
1 B 3
2 B 4

3,4 B 5
5 B 6
6 B⊥

0

1

2

3 4

5 6

⊥

00

00

00

00 00

0000

0 B 1
1 B 2
2 B 3
2 B 4
3 B 5
4 B 6

5,6 B⊥

1 An obvious improvement, with we have not implemented, would be to reorder statements to maximize
the use of then. Karol Pąk has explored this problem in the context of Mizar [57].
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We first consider the example on the left-hand side. Starting from ⊥, it is easy to redirect
the stem:

B 6
6 B 5
5 B 3∨4

When applying the contrapositive to eliminate the negations in 3,4B 5, we obtain a disjunc-
tion in the succedent: 5 B 3∨ 4. To continue from there, we introduce a case analysis. In
each branch, we can finish the proof: [3]

3 B 1
1 B 0

[4]
4 B 2
2 B 0


In the second lasso example, the cycle occurs near the end of the contradiction proof. A
disjunction already arises when we redirect the last derivation. Naively finishing each branch
independently leads to a fair amount of duplication:

B 5∨6
[5]

5 B 3
3 B 2
2 B 1
1 B 0

[6]
6 B 4
4 B 2
2 B 1
1 B 0


The key observation is that the two branches can share the last two inferences. This yields
the following proof (without and with I):

B 5∨6 [5]
5 B 3
3 B 2

[6]
6 B 4
4 B 2


2 B 1
1 B 0

B 5∨6 [5]
I 3
I 2

[6]
I 4
I 2


I 1
I 0

Here we were fortunate that the branches were joinable on the atom 2. To avoid duplication,
we must in general join on a disjunction a1∨·· ·∨am , as in the next example.

A Spaghetti-like Proof. The final example is more complicated:

1

2 3

⊥

4

0

5 6

7 8

00

00

0000

00

00 00

0000

0 B 1
1 B 2
1 B 3

2,3 B 4
2,4 B 5
3,4 B 6

2,5,6 B 7
3,6 B 8
7,8 B⊥
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We start with the contrapositive of the last sequent:

B 7∨8

We perform a case analysis on 7∨8. Since we want to avoid duplication in the two branches,
we first determine which nodes are reachable in the refutation graph by navigating upward
from either 7 or 8 but not from both. The only such nodes are 5, 7, and 8. In each branch,
we can perform derivations of the form Γ B b where Γ ∩ {5,7,8} 6= /0, without fear of
duplication. Following this rule, we can only perform one inference in the right branch
before we must stop:

[8]
8 B 3∨6

Any further inferences would need to be repeated in the left branch, so it is indeed a good
idea to stop. The left branch starts as follows:

[7]
7 B 2∨5∨6

We would now like to perform the inference 5B 2∨4. This would certainly not lead to any
duplication, because 5 is not reachable from 8 by navigating upward in the refutation graph.
However, we cannot discharge the hypothesis 5, having established only the disjunction
2∨5∨6. We need a case analysis on the disjunction to proceed:[

[5]
[2] 5 B 2∨4 [6]

]
The 2 and 6 subbranches are left alone, because there is no node that is reachable only from
2 or 6 but not from the other two nodes in {2,5,6} by navigating upward in the refutation
graph. Since only one branch is nontrivial, it is arguably more aesthetically pleasing to
abbreviate the entire case analysis to

2∨5∨6 B 2∨4∨6

Putting this all together, the outer case analysis becomes [7]
I 2∨5∨6
I 2∨4∨6

[8]
I 3∨6


The left branch proves 2∨4∨6, the right branch proves 3∨6; hence, both branches together
prove 2∨3∨4∨6. Next, we perform the inference 6 B 3∨4. This requires a case analysis
on 2∨3∨4∨6: [

[6]
[2] [3] [4] 6 B 3∨4

]
This proves 2∨ 3∨ 4. Since only one branch is nontrivial, we prefer to abbreviate the case
analysis to

2∨3∨4∨6 B 2∨3∨4
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proof −
have 7∨8 by metis
moreover
{ assume 7
hence 2∨5∨6 by metis
hence 2∨4∨6 by metis }

moreover
{ assume 8
hence 3∨6 by metis }

ultimately have 2∨3∨4∨6 by metis
hence 2∨3∨4 by metis
hence 2∨3 by metis
moreover
{ assume 2
hence 1 by metis }

moreover
{ assume 3
hence 1 by metis }

ultimately have 1 by metis
thus 0 by metis

qed

B 7∨8 [7]
I 2∨5∨6
I 2∨4∨6

[8]
I 3∨6


I 2∨3∨4
I 2∨3[

[2]
I 1

[3]
I 1

]
I 0

Fig. 4 A complicated Isar proof (left) and the corresponding shorthand proof (right)

It may help to think of such abbreviated inferences as instances of rewriting modulo associa-
tivity, commutativity, and idempotence. Here, 6 is rewritten to 3∨4 in 2∨3∨4∨6, resulting
in 2∨3∨4. Similarly, the sequent 4B 2∨3 gives rise to the case analysis[

[4]
[2] [3] 4 B 2∨3

]
which can be abbreviated as well. We are left with 2∨3. The rest is analogous to the second
lasso-shaped proof: [

[2]
2 B 1

[3]
3 B 1

]
1 B 0

Putting all of this together, we obtain the proof shown in Figure 4, expressed in Isar and in
shorthand. The result is arguably quite respectable, considering the spaghetti-like graph we
started with.

4.3 The Redirection Algorithm

The process we applied in the examples of Section 4.2 can be generalized into an algorithm.
The algorithm takes an arbitrary proof by contradiction expressed as a set of sequents as in-
put and produces a proof in our Isar-like shorthand notation, with sequents and case analysis
blocks. The proof is constructed one inference at a time starting from > (the negation of ⊥)
until the conjecture (or the disjunction of the conjectures) is proved.

Basic Concepts. A fundamental operation is sequent-level contraposition. Let a1, . . . ,am be
the untainted atoms and b1, . . . ,bn the tainted atoms of a proof by contradiction. The proof
then consists of the following three kinds of sequent (with n > 0):

a1, . . . ,am,b1, . . . ,bn B⊥ a1, . . . ,am,b1, . . . ,bn B b a1, . . . ,am B a
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Their contrapositives are, respectively,

a1, . . . ,am B b1∨·· ·∨bn a1, . . . ,am,b B b1∨·· ·∨bn a1, . . . ,am B a

We call the contrapositives of the sequents in the proof by contradiction the redirected se-
quents. Based on the set of redirected sequents, we define the atomic inference graph (AIG)
with, for each redirected sequent Γ B c, an edge from each atom in Γ to each atom in c,
and no additional edges. The AIG encodes the order in which the atoms can be inferred
in a direct proof. Navigating forward (downward) in this graph along the unnegated tainted
atoms bj corresponds to navigating backward (upward) in the refutation graph along the bj’s.

Like the underlying refutation graph, the AIG is acyclic and connected. Potential cycles
would involve either only untainted atoms ai, only tainted atoms bj’s, or a mixture of both
kinds. A cycle ai1 → ··· → aik → ai1 is impossible, because the contrapositive leaves these
inferences unchanged and hence the cycle would need to occur in the refutation graph,
which is acyclic by definition. A cycle bj1 → ··· → bjk → bj1 is impossible, because the
contrapositive turns all the edges around and hence the reverse cycle would need to occur
in the refutation graph. Finally, mixed cycles necessarily involve an edge b→ a, which
is impossible because redirected sequents with untainted atoms a can only have untainted
atoms as predecessors.

Given a set of (tainted or untainted) atoms A, the zone of an atom a ∈ A with respect
to A is the set of possibly trivial descendants of a in the AIG that are not descendants of any
of the other atoms in A. As a trivial descendant of itself, a will either belong to its own zone
or to no zone all at, but this is not important for the algorithm. Zones identify inferences that
can safely be performed inside a branch in a case analysis.

The Algorithm. The algorithm keeps track of the last-proved clause (initially >), the set
of already proved atoms (initially the set of facts taken as axioms), and the set of remain-
ing sequents to use (initially all the redirected sequents provided as input). It performs the
following steps:

1. If there are no remaining sequents, stop.
2. If the last-proved clause is > or a single atom:

2.1. Choose a sequent ΓB c among the remaining sequents that can be proved using only
already proved atoms, preferring sequents with a single atom in their succedent.

2.2. Append ΓB c to the proof.
2.3. Make c the last-proved clause, add c to the already proved atoms if it is an atom, and

remove ΓB c from the remaining sequents.
2.4. Go to step 1.

3. Otherwise, the last-proved succedent is of the form a1∨·· ·∨am. An m-way case analysis
is called for:2

3.1. Compute the zone of each atom ai with respect to {a1, . . . ,am}.
3.2. For each ai, compute the set Si of sequents ΓB c such that Γ consists only of already

proved atoms or atoms within ai’s zone.
3.3. Recursively invoke the algorithm m times, once for each ai, each time with ai as

the last-proved clause, ai added to the already proved atoms, and Si as the set of
remaining sequents. This step yields m (possibly empty) subproofs π1, . . . , πm.

2 A straightforward generalization would be to perform a m′-way case analysis, with m′ <m, by preserving
some disjunctions. For example, we could perform a three-way case analysis with a1 ∨a2, a3, and a4 as the
assumptions instead of breaking all the disjunctions in a four-way analysis. This could lead to a nicer output
if the disjuncts are carefully chosen.
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3.4. Append the following case analysis block to the proof:[
[a1] · · · [am]
π1 · · · πm

]
3.5. Make the succedent b1 ∨ ·· · ∨ bn of the case analysis block (regarded as a sequent)

the last-proved clause, add b1 to the already proved atoms if k = 1, and remove all
sequents belonging to any of the sets Si from the remaining sequents.

3.6. Go to step 1.

Whenever a redirected sequent is generated, it is removed from the set of remaining
sequents. In step 3, the recursive calls operate on pairwise disjoint subsets Si of the remain-
ing sequents. Consequently, each redirected sequent appears at most once in the generated
proof, and the resulting direct proof contains the same number of inferences as the initial
proof by contradiction. In Isar, each case analysis is additionally justified by a proof method,
such as metis.

In the degenerate case where no atoms are tainted (i.e., the prover exploited an inconsis-
tency in the axiom set), the generated proof is simply a linearization of the refutation graph,
and the last inference proves ⊥ (which is, unusually, untainted). To produce a syntactically
valid Isar proof, a final inference must be added to derive the conjecture from ⊥.

Pseudocode. To make the above description more concrete, the algorithm is presented in
Standard ML pseudocode below. The pseudocode is fairly faithful to the description above.
Atoms are represented by integers and literals by sets (lists) of integers. Go-to statements
are implemented by recursion, and the state is threaded through recursive calls as three
arguments (last, earlier, and seqs).

One notable difference with the informal description, justified by a desire to avoid code
duplication, is that the set of already proved atoms, called earlier, excludes the last-proved
clause last. Hence, we take last ∪ earlier to obtain the already proved atoms, where last is
either the empty list (representing >) or a singleton list (representing a single atom).

Shorthand proofs are represented as lists of inferences:

datatype inference =
Have of int list× int list
| Cases of (int× inference list) list

The main function implementing the algorithm follows:

fun redirect last earlier seqs =
if null seqs then
[]

else if length last ≤ 1 then
let val provable = filter (fn (Γ, _)⇒ Γ⊆ last ∪ earlier) seqs

val horn_provable = filter (fn (_, [_])⇒ true | _⇒ false) provable
val (Γ, c) = hd (horn_provable @ provable)

in Have (Γ, c) :: redirect c (last ∪ earlier) (seqs−{(Γ, c)}) end
else
let val zs = zones_�of (length last) (map (descendants_�of seqs) last)

val S =map (fn z⇒ filter (fn (Γ, _)⇒Γ⊆ earlier ∪ z) seqs) zs
val cases =map (fn (a, ss)⇒ (a, redirect [a] earlier ss)) (zip last S)

in Cases cases :: redirect (succedent_�of_�cases cases) earlier (seqs−
⋃

S) end
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The code uses familiar ML functions, such as :: (“cons”), hd (“head,” i.e., first element),
@ (“append”), map, filter, and zip. Thus, hd (horn_provable @ provable), corresponding
to step 2.1, returns the first sequent among the remaining sequents that can be proved using
only already proved atoms, preferring sequents with a single atom in their succedent (“Horn
sequents”). The pseudocode also relies on a descendants_�of function that returns the de-
scendants of the specified node in the AIG associated with seqs; its definition is omitted.
Finally, the code depends on the following straightforward functions:

fun zones_�of 0 _ = []
| zones_�of n (B :: Bs) = (B−

⋃
Bs) :: zones_�of (n−1) (Bs @ [B])

fun succedent_�of_�inf (Have (_, c)) = c
| succedent_�of_�inf (Cases cases) = succedent_�of_�cases cases

and succedent_�of_�case (a, []) = [a]
| succedent_�of_�case (_, infs) = succedent_�of_�inf (last infs)

and succedent_�of_�cases cases =
⋃
(map succedent_�of_�case cases)

Correctness. It is not hard to convince ourselves that the proof output by redirect is correct
by inspecting the code. A Have (Γ, c) sequent is appended only if all the atoms in Γ have
been proved (or assumed) already, and a case analysis on a1 ∨ ·· · ∨ am always follows a
sequent with the succedent a1 ∨ ·· ·∨am. Whenever a sequent is output, it is removed from
seqs. The function returns only if seqs is empty, at which point the conjecture must have been
proved (except in the degenerate case where the negated conjecture does not participate in
the refutation).

Termination is not quite as obvious. The recursion is well-founded, because the pair
(length seqs, length last) becomes strictly smaller with respect to the lexicographic exten-
sion of < on natural numbers for each of the three recursive calls in the function’s body.

– For the first recursive call, the list seqs− {(Γ, c)} is strictly shorter than seqs since
(Γ, c) ∈ seqs.

– The second call is performed for each branch of a case analysis; the ss argument is a
(not necessarily strict) subset of the caller’s seqs, and the list [a] is strictly shorter than
last, which has length 2 or more.

– For the third call, the key property is that at least one of the zones is nonempty, from
which we obtain seqs−

⋃
S ⊂ seqs. If all the zones were empty, each atom ai would

be the descendant of at least one atom ai ′ in the AIG (with i ′ 6= i), which is impossible
because the AIG is acyclic.

As for run-time exceptions, the only worrisome construct is the hd call in redirect’s
second branch. We must convince ourselves that there exists at least one sequent (Γ, c) ∈
seqs such that Γ ⊆ last ∪ earlier. Intuitively, this is unsurprising because seqs is initialized
from a well-formed refutation graph: The nonexistence of such a sequent would indicate
a gap or a cycle in the refutation graph. More precisely, if there exist untainted atoms /∈
last∪ earlier, these can always be processed first; indeed, the preference for sequents with a
single atom in their succedent ensures that they are processed before the first case analysis.
Otherwise:

– If last is [] (representing >) or an untainted atom, the contrapositive a1, . . . ,am B b1 ∨
·· ·∨bn of the very last inference is applicable since it only depends on untainted atoms,
all of which have already been proved.
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– Otherwise, last is a tainted atom b. The refutation graph must contain an inference
a1, . . . ,am,b1, . . . ,bn B b, whose redirected inference is a1, . . . ,am,bB b1∨·· ·∨bn. Since
it only depends on b and untainted atoms, it is applicable.

Inlining. As a postprocessing step, we can optionally abbreviate case analyses in which
only one branch is nontrivial, transforming

[ci]
d11, . . . , d1k1 B e1...

[c1] · · · [ci−1] dn1, . . . , dnkn B en [ci+1] · · · [cm]

 into
d̃11, . . . , d̃1k1 B ẽ1

...
d̃n1, . . . , d̃nkn B ẽn

where the function ˜ is the identity except for the assumption ci and the conclusions e1, . . . ,en:

c̃i = c1∨·· ·∨ cm ẽj = c1∨·· ·∨ ci−1∨ ej∨ ci+1∨·· ·∨ cm

It is debatable whether such inlining is a good idea. The resulting proof has a simpler
structure, with fewer nested proof blocks. However, these nested blocks can help make com-
plex proof more intelligible. Moreover, the n-fold repetition of the disjuncts c1, . . . ,ci−1,ci+1,
. . . ,cm clutters the proof and can slow it down.

The inlining procedure can be generalized to arbitrary case analysis blocks. We are
grateful to Konstantin Korovin [43] for crucial insights. An m-way case analysis

[c1]
Γ11 B e11...

Γ1k1 B e1k1

. . .

. . .

. . .

[cm]
Γm1 B em1...

Γmkm B emkm


can be rewritten into a sequence of m case analyses, each of the form

[ci]
Γi1 B ei1...

[e1k1 ] · · · [e(i−1)ki−1 ] Γiki B eiki [ci+1] · · · [cm]


Each case analysis has only one nontrivial branch and can be inlined, yielding a branch-free
proof. For the spaghetti-like proof of the previous section, this process yields

B 7∨8
I 2∨5∨6∨8
I 2∨4∨6∨8
I 2∨3∨4∨6
I 2∨3∨4
I 2∨3
I 1∨3
I 1
I 0

The example shows clearly that we rapidly obtain large disjunctions. In practice, each of the
disjuncts would be an arbitrarily complex formula. Local definitions could be used to avoid
repeating the formulas, but the loss of modularity is deplorable. Indeed, similar concerns
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about Hoare-style proof outlines for separation logic have lead to the development of ribbon
proofs [87], whose parallel “ribbons” evoke the branches of a case analysis.

If branch-free proofs are nonetheless desired, they can be generated more directly by
iteratively “rewriting” the atoms, following a suggestion by Korovin. For example, starting
from the sequent B 7∨ 8, rewriting 7 would involve resolving B 7∨ 8 with 7 B 2∨ 5∨ 6,
resulting in 2∨5∨6∨8. In general, rewriting a tainted atom bj within a sequent ΓB b1∨·· ·∨
bn involves resolving that sequent with the redirected sequent that has bj in its assumptions.
To guarantee that the procedure is linear, it suffices to rewrite atoms only if all their ancestors
in the AIG have already been rewritten, thereby ensuring that atoms are rewritten only once.

5 Skolemization

Skolemization is a special worry when translating ATP proofs in textual Isar proofs. Conjec-
ture and axioms are treated differently because of their different polarities. By convention,
the axioms are positive and the conjecture is negative.3 In the positive case, skolemization
eliminates the essentially existential quantifiers (i.e., the positive occurrences of ∃ and the
negative occurrences of ∀). In the negative case, it eliminates the essentially universal quan-
tifiers. Negative skolemization is usually called dual skolemization or herbrandization [32].

5.1 The Positive Case

We start with the easier, positive case. Consider the following concrete but archetypal extract
from an E or Vampire proof:

11 axiom ∀X. ∃Y. p(X, Y) exists_P
53 plain ∀X. p(X, y(X)) 11 skolem

In Isar, a similar effect is achieved using the obtain command:

obtain y where ∀x. P x (y x) by (metis exists_P)

In the abstract Isar-like data structure that stores direct proofs, the inference is represented
as

obtain [y] where 53: ∀x. P x (y x) [exists_P] []

The approach works for arbitrary quantifier prefixes. All essentially existential variables can
be eliminated simultaneously. For example, the ATP proof fragment

18 axiom ∀V. ∃W. ∀X. ∃Y. ∀Z. q(V,W, X, Y, Z) exists_Q
90 plain ∀V. ∀X. ∀Z. q(V, w(V), X, y(V, X), Z) 18 skolem

is translated to

obtain [w,y] where 90: ∀v x z. Q v (w v) x (y v x) z [exists_Q] []

Reconstruction crucially depends not only on metis’s clausifier but also on its support for
mildly higher-order problems, because of the implicit existential quantification over the
Skolem function symbols in obtain. Indeed, metis is powerful enough to prove a weak form
of the HOL axiom of choice:

3 This choice is justifiable from the point of view of an automatic prover that attempts to derive ⊥ from a
set of axioms and a negated conjecture, because all the premises it starts from and the formulas it derives are
then considered positive.
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lemma (∀x. ∃y. P x y) =⇒∃ f . ∀x. P x ( f x)
by metis

Of course, nothing is derived ex nihilo: metis can prove the formula only because its clausi-
fier depends on the axiom of choice in the first place. Furthermore, metis will succeed only
if its clausifier puts the arguments to the Skolem functions in the same order as in the proof
text. This is not difficult to ensure in practice: Both E and metis respect the order in which the
universal variables are bound, whereas SPASS and Vampire use the opposite order, which is
easy to reverse.

Positive skolemization suffers from a technical limitation connected to polymorphism:
Lemmas containing polymorphic skolemizable variables cannot be reconstructed, because
the variables introduced by obtain must have a ground type.4 An easy workaround would
be to relaunch Sledgehammer with a monomorphizing type encoding [13, Section 3] to
obtain a more suitable ATP proof, in which all types are ground. A more challenging alter-
native would involve detecting which monomorphic instances of the problematic lemmas
are needed and re-engineer the proof accordingly.

5.2 The Negative Case

In the ATPs, negative skolemization of the conjecture is simply reduced to positive skolem-
ization of the negated conjecture. For example:

25 conj ∀V. ∃W. ∀X. ∃Y. ∀Z. q(V,W, X, Y, Z) goal
41 neg_conj ¬ ∀V. ∃W. ∀X. ∃Y. ∀Z. q(V,W, X, Y, Z) 25 negate
43 neg_conj ¬ ∃W. ∃Y. q(v, W, x(W), Y, z(W, Y)) 41 skolem

However, once the proof has been turned around in Sledgehammer, the last two lines are
unnegated and exchanged: First, a proof of the (unnegated) conjecture is found for specific
fixed variables (cf. formula 43 above); then these are generalized into quantified variables
(cf. formula 41). A natural name for this process is unherbrandization. In Isar, the fix com-
mand achieves a similar effect, as in the example below:

lemma
∧

x. R x
proof −
fix x
〈core of the argument〉
show R x by (metis . . .)

qed

However, this works only for the outermost universal quantifiers. Since we cannot expect
users to always state their conjectures in this format, we must generally use a nested proof
block, enclosed in curly braces. Thus, the ATP proof fragment presented above is translated
to

lemma ∀v. ∃w. ∀x. ∃y. ∀z. Q v w x y z
proof −
{ fix v x z
〈core of the argument〉
have ∃w y. Q v w (x w) y (z w y) by (metis . . .) }

4 In Isabelle, only constants can be polymorphic, and constants can only be introduced at the top level of
the theory text, typically via a definition.
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thus ∀v. ∃w. ∀x. ∃y. ∀z. Q v w x y z by metis
qed

Seen from outside, the nested block proves the formula
∧

v x z. ∃w y. Q v w (x w) y (z w y).
From there, metis derives the desired formula ∀v. ∃w. ∀x. ∃y. ∀z. Q v w x y z, in which the
quantifiers alternate. In the data structure that stores direct Isar-like proofs, the proof would
be represented as

have 41: ∀v. ∃w. ∀x. ∃y. ∀z. Q v w x y z [][
fix [v, x,z]
〈core of the argument〉
have 43: ∃w y. Q v w (x w) y (z w y) [. . .] []

]
An easy optimization, which is not yet implemented, would be to omit the nested proof
block for conjectures of the form

∧
x1 . . . xn. φ, where φ contains no essentially universal

quantifiers. It should also be possible to move the inferences that do not depend on the
herbrandized symbols outside the nested block.

Given a HOL problem, the metis method clausifies it and translates it to first-order logic,
invokes the Metis superposition prover, and replays the Metis inferences using suitable Isa-
belle tactics. Skolemization is simulated using Hilbert’s choice operator ε [63]; for exam-
ple, ∀x. ∃y. P x y is skolemized into ∀x. P x (εy. P x y). A newer experimental skolem-
izer exploits Isabelle’s schematic variables to eliminates the dependency on Hilbert’s choice
[10, Section 6.6.7], only requiring the axiom of choice to move the existentials to the front.
Whichever approach is used, Sledgehammer’s textual proof construction exploits metis’s
machinery instead of replicating it textually.

6 Postprocessing

After an ATP proof has been redirected and transformed into a direct Isar proof, a number
of postprocessing steps take place to improve its legibility, efficiency, and in some cases
correctness:

1. Sledgehammer users waste precious time on proofs that fail or take too long. Proof pre-
play addresses this by testing the generated proofs for a few seconds before displaying
them (Section 6.1). Preplaying is performed in conjunction with most of the other steps
to validate them in a pragmatic way.

2. Although metis is the proof method that resembles the external ATPs the most, it is often
advantageous to try out alternative proof methods (Section 6.2).

3. The generated proofs can be arbitrarily detailed depending on which ATP is used. This
proof compression collapses consecutive ATP inferences into single Isar inferences (Sec-
tion 6.3).

4. ATPs frequently use many more facts than are necessary, making it harder for proof
methods to re-find the proof. In addition, most proof methods are aware of background
libraries and might not need to be given all the facts that an ATP needs. Proof minimiza-
tion attempts to eliminate needless dependencies (Section 6.4).

5. Isabelle can serialize logical formulas as text strings, but it does not always understand
its own output. Terms are often read back with overly general polymorphic types, re-
sulting in failures. Annotating each subterm with type constraints impedes readability.
Instead, Sledgehammer now employs an algorithm that introduces a locally minimal,
complete set of type annotations (Section 6.5).
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6.1 Proof Preplay

Isar proofs generated from ATP proofs sometimes fail. We already mentioned that skolem-
ization is not supported for polymorphic variables (Section 5.2). The TSTP parser occasion-
ally goes wrong if it encounters unexpected, undocumented syntax. The ATP proof can also
contain inferences that are ill-typed from an Isabelle point of view—despite the use of glob-
ally sound encodings, individual inferences can violate the type discipline. Moreover, the
proof reconstruction code is not bug-free. And even in the absence of errors, the Isar proofs
can fail because metis or another proof method fails to discharge a proof obligation within a
reasonable amount of time.

Therefore, it is advantageous to try out, or preplay, the proofs before presenting them
to users. The proofs are then printed together with timing information, including warnings
about timeouts or failures. Since Sledgehammer invokes multiple ATPs in parallel, users
must often choose between several proofs. Based on the preplay information, they can make
an informed decision while being spared the tedium of having to test them manually. Even
when the Isar proof is not entirely correct, it is usually possible to repair it—sometimes by
invoking Sledgehammer again on any failing inference steps.

The following example, based on an Isabelle formalization of the Robbins conjecture
[82], demonstrates preplaying. When invoked on the goal x t −x =−x t −−x and config-
ured to use Waldmeister, Sledgehammer produces the following output:

Try this: by (metis huntington sup_assoc sup_comm) (> 3 s, timed out).

Isar proof (54 steps, 1.33 s):

proof −
have f1:

∧
x1 x2. −(−x1 t x2) t −(−x1 t −x2) = x1

by (metis huntington sup_comm)
have f2:

∧
x1 x2 x3. x1 t (x2 t x3) = x3 t (x1 t x2)

by (metis sup_assoc sup_comm)
have

∧
x1 x2 x3. x1 t (x2 t x3) = x2 t x1 t x3

by (metis sup_assoc sup_comm)
hence f3:

∧
x1 x2 x3. x1 t (x2 t x3) = x2 t (x1 t x3)

by (metis sup_assoc)
have f4:

∧
x1 x2 x3. x1 t (x2 t x3) = x3 t (x2 t x1)

using f2 by (metis sup_comm)
have f5:

∧
x1 x2. x1 =−(x2 t −x1) t −(−x1 t −x2)

using f1 by (metis sup_comm)
hence f6:

∧
x1 x2. x1 =−(x2 t −x1) t −(−x2 t −x1)

by (metis sup_comm)
...

hence x t −−−x = x t (−(−x t x) t −(−−x t −−x))
using f10 by metis

hence x t −−−x = x t −x
using f12 by metis

hence −−x =−(x t −x) t −(−x t −−−x)
using f6 by metis

hence −−x =−(x t −x) t −(−x t −x)
using f22 by metis

hence −−x = x
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using f5 by metis
thus x t −x =−x t −−x
by (metis sup_comm)

qed

Waldmeister found a difficult proof involving the same three lemmas over and over (hunting-
ton, sup_assoc, and sup_comm). However, metis fails to re-find the proof within 3 seconds,
as indicated by the mention “> 3 s, timed out” on the first line. (Indeed, metis or any other
Isabelle proof method stands no chance even if given several minutes.) In contrast, the above
(abridged) 54-step Isar proof was replayed in 1.33 seconds. Users can click it to insert it in
their proof text and move on to the next conjecture.

Behind the scenes, the Isar proof preplay procedure starts by enriching the context with
all the local facts introduced in the proof (f1, f2, etc.). For each inference Γ ` φ, it measures
the time metis takes to deduce φ from Γ and stores it in a data structure. The total is printed
at the end, with a ‘>’ prefix if any of the metis calls timed out. In the rare event that a metis
call failed prematurely, Sledgehammer displays the mention “failed” in the banner.

An alternative approach would have been to have Isabelle parse the Isar proof using
its usual interfaces, thereby covering more potential sources of error. For example, with
our approach the Isabelle terms are not printed and re-parsed; because of Isabelle’s flexible
syntax, parsing is problematic despite our best efforts (Section 6.5). On the other hand, the
better coverage would come at the price of additional overhead, and it is not clear how to
achieve it technically. More importantly, the alternative approach offers no way to collect
timing information on a per-step basis. This information is essential for proof compression
(Section 6.3); recomputing it would waste the user’s time.

6.2 Alternative Proof Methods

With proof preplay in place, it is easy to try out other proof methods than metis. This is
especially useful to reconstruct proofs with theory-specific or higher-order reasoning, for
which metis is likely to fail. For each inference in an Isar proof, a selection of the following
methods is tried:

metis the superposition prover Metis [36, 63]
meson a model elimination procedure [45, 59]
satx a simple SAT solver [83]
blast an untyped tableau prover [60]
simp conditional equational reasoning [52]
auto combination of equational and tableau reasoning [58]
fastforce more exhaustive version of auto
force even more exhaustive version of auto
moura a custom method for reconstructing Z3 skolemization (Section 7.5)
linarith a decision procedure for linear arithmetic
presburger another decision procedure for linear arithmetic [23]
algebra a normalization method for rings

6.3 Proof Compression

It is often beneficial to compress Isar proofs by eliminating intermediate steps. Compressed
proofs can be faster to recheck. When the Robbins example from Section 6.1 is compressed
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from 54 to 29 steps, Isabelle also takes nearly half a second less to process it. Moreover,
many users prefer concise Isar proofs, either because they want to avoid cluttering their
theory files or because they find the shorter proofs simpler to understand. Of course, com-
pression can also be harmful: A metis one-line proof is nothing but an Isar proof compressed
to the extreme, and it can be both very slow and very cryptic.

Whereas intelligibility is in the eye of the beholder, speed can be measured precisely via
preplay. Our compression procedure considers candidate pairs of inferences and performs
the merger if the resulting inference is fast enough—no more than 50% slower than the two
original inferences taken together. This 50% tolerance factor embodies a trade-off between
processing speed and conciseness. Given the inferences Γ1 ` φ1 and Γ2]{φ1} ` φ2, where
φ1 is not referenced elsewhere in the proof (in an antecedent), the merged inference is Γ1 ∪
Γ2 ` φ2.

The algorithm consists of the following steps:

1. Initialize the worklist with all inferences Γ ` φ such that φ is referenced only once in the
rest of the proof.

2. If the worklist is empty, stop; otherwise, take an inference Γ1 ` φ1 from the worklist.
3. Let Γ2 ] {φ1} ` φ2 be the unique inference that references φ1. Try to merge the two

inferences as described above. If this succeeds, add any emerging singly referenced
facts belonging to Γ1 ∩ Γ2 to the worklist.

4. Go to step 2.

Step 2 nondeterministically picks an inference. Our implementation prefers inferences with
long formulas, because these clutter the proof more. In step 3, merging the two inferences
may give rise to new singly referenced facts φ that were referenced by both φ1 and φ2 (i.e.,
φ ∈ Γ1 ∩ Γ2) but not by any other inferences.

The process is guided by the performance of preplaying. Users who want to understand
the proof may find that too many details have been optimized away. For them, an option
controls the compression factor, which bounds the number of mergers before the algorithm
stops in relation to the length of the uncompressed proof.

6.4 Proof Minimization

Sledgehammer’s minimization tool takes a set of facts appearing in an inference and repeat-
edly calls the prover with subsets of the facts to find a locally minimal set. Depending on
the number of initial facts, it relies on either of these two algorithms:

1. The naive linear algorithm attempts to remove one fact at a time. This can require as
many prover invocations as there are facts in the initial set.

2. The binary algorithm, due to Bradley and Manna [19, Section 4.3], recursively bisects
the facts. It performs best when a small fraction of the facts are actually required [16,
Section 7].

Given an n-fact proof, the linear algorithm always needs n calls to the external prover,
whereas the binary algorithm requires anywhere between log2 n and 2n calls, depending
on how many facts are actually needed [16, Section 7.1]. Sledgehammer selects the binary
algorithm if n > 20. The binary algorithm is used for ATPs that do not produce proofs or
unsatisfiable cores, in which case n could be in the hundreds. For minimizing individual
inferences in an Isar proof, the linear algorithm is generally preferable.
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Because of the multiple prover invocations (often with unprovable problems), minimiza-
tion often consumes more time than the proof search itself. An obvious improvement to the
textbook minimization algorithms is to inspect the ATP proofs and eliminate any fact that
is not referenced in it. Another improvement is to use the time required by the last suc-
cessful proof as the timeout for the next one, instead of a fixed, necessarily liberal timeout.
Both improvements are implemented in Sledgehammer and are described in more detail
elsewhere [10, Section 6.6.5].

6.5 Serialization

To ensure that types are inferred correctly when the generated HOL formulas are parsed
again by Isabelle, it is necessary to introduce type annotations. However, redundant anno-
tations should be avoided: If we insisted on annotating each subterm, the simple equation
xs = ys, where xs and ys range over lists of integers, would be rendered as

((op= :: int list⇒ int list⇒ bool) (xs :: int list) :: int list⇒ bool) (ys :: int list) :: bool

The goal is not to make the Hindley–Milner inference redundant but rather to guide it.
Paulson and Susanto’s prototype generates no type annotations at all. Isabelle provides

alternative print modes (e.g., one mode annotates all bound variables at the binding site)
but none of them is complete. This may seem surprising to users familiar with other proof
assistants, but Isabelle’s extremely flexible syntax, combined with type classes, means that
some terms cannot be parsed back.

We implemented a custom “print mode” for Sledgehammer, which might become an
official Isabelle mode in a future release. The underlying algorithm computes a locally min-
imal set of type annotations for a formula and inserts the annotations. In Isabelle, type anno-
tations are represented by a polymorphic constant annα of type α⇒ α that can be thought
of as the identity function. The term annτ t is printed as t :: τ. In the presentation below, the
notation tτ indicates that term t has type τ.

Given a well-typed formula φ to annotate, the algorithm starts by replacing all the types
in φ by the special placeholder _. It then infers the most general types for φ using Hindley–
Milner inference, resulting in a formula φ? in which the placeholders are instantiated. Let α1,
. . . , αm be the type variables occurring in φ?. Next, the algorithm computes the substitution
ρ = {α1 7→ τ1, . . . , αm 7→ τm} such that φ?ρ = φ, which must exists if φ is well-typed and
the inferred types in φ? are the most general. Finally, the algorithm inserts type annotations
of the form :: τ that cover all the type variables αi in ρ’s domain—i.e., such that each type
variable αi occurs in at least one type annotation.

The last step is where the complexity arises. The algorithm assigns a cost to each can-
didate site tτ in φ where a type annotation can be inserted. The cost is given as a triple of
numbers:

cost of tτ = (size of τ, size of t, preorder index of t in φ)

Triples are compared lexicographically. The first two components encode a preference for
smaller annotations and smaller annotated terms. The third component resolves ties by pre-
ferring annotations occurring closer to the beginning of the printed formula. All subterms
of φ are potential candidates to carry type annotations. (It would be desirable to consider
the binding sites of variables in quantifiers and λ-abstractions as candidates as well, but un-
fortunately these are simply name–type pairs and not terms in Isabelle.) Each site tτ is also
associated with the set of type variables αi it covers.



Semi-intelligible Isar Proofs from Machine-Generated Proofs 29

The goal is to compute a locally minimal set of sites that completely covers all type vari-
ables. The resulting cost need not be a global minimum, though; computing the minimum
amounts to solving the weighted set cover problem, which is NP-hard [40]. One could prob-
ably use a SAT solver to solve the problem efficiently, but we prefer a more direct greedy
approach, which is polynomial and produces satisfactory results in practice.

Starting with the set of all possible sites, the algorithm iteratively removes the most
expensive redundant site until the set is minimal in the sense that removing any site from it
would make it incomplete. This reverse greedy approach ensures that a minimal set will be
reached eventually. In contrast, the standard greedy approach could yield a too large set: For
the term hnat⇒real cnat generalized to hα⇒β cα, it would first pick c to cover α, only to find
out that h must be annotated as well to cover β, making the first site redundant.

The names of the variables αi introduced in φ? are irrelevant as long as they are fresh.
In a postprocessing step, variables that occur only once anywhere inside τ1, . . . , τm are re-
placed by _, and annotations :: τ that cover only variables converted to _ are omitted. Thus,
the formula length ([] :: α list) = 0 is printed as length [] = 0 without undesirable gain of
generality.

7 System-Specific Technicalities

Although most of the Isar proof construction module is generic, some work is necessary to
integrate specific ATPs. We have so far integrated eight provers, focusing on those that are
highly performant or that show promise and whose proof output is detailed enough. They
are reviewed in turn below, starting with the Musterkind E and concluding with Satallax and
its nonstandard proof output.

7.1 E

E is perhaps the prover that best implements the TPTP and TSTP standards. It is also
one of the most performant systems, as judged by its consistent second-place rankings at
CASC [78]. Regrettably, it does not support the typed syntax TFF0 yet, meaning that all
type information must be encoded.

E’s proof output is remarkably free of hard-to-translate constructs. Skolemization is
recorded in the proof as applications of the ‘skolemize’ rule, in the style demonstrated in
Sections 3 and 5.

7.2 Vampire

Vampire also implements TPTP and TSTP, including TFF0. It is the strongest system at
CASC. Its output is similar to E’s. Skolemization is recorded as applications of the ‘skolemi-
sation’ rule. As noted earlier, Skolem arguments appear in the reverse order of that expected
by metis, but they can easily be reversed.

Vampire’s preprocessor implements some optimizations that introduce symbols. An-
other difficulty is that splitting yields proofs that are beyond what our framework can han-
dle: Even if the framework’s output format supports case analyses, its input does not. Some
versions of the prover even output huge binary decision diagrams, without attempting to
integrate them with the TSTP syntax. These features are disabled when producing an Isar
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proof, following a hint we found at a tutorial [34, p. 20]. They can still be used for proof
search proper, for reducing the hundreds of facts given to the prover to the (usually) much
smaller set actually needed for the proof.

Although Vampire supports TFF0 in its input, its proofs contain no type information.
Types can normally be inferred from the function and predicate symbols occurring in the
problem (whose types are encoded in the names [13, Section 3]), with the exception of
formulas of the form ∀X Y. X = Y , for which reconstruction will fail.

7.3 SPASS

SPASS generates proofs in its custom DFG (Deutsche Forschungsgemeinschaft) format
only, even though it can parse TPTP FOF. Fortunately, DFG is based on similar concepts
and can be represented using the same data structure as TSTP.

Splitting must be disabled to obtain intelligible proofs. (SPASS records splitting in an
obfuscated way that makes it very difficult to analyze the proof afterward.) The main dif-
ficulty in integrating SPASS is that clausification, including skolemization, is not recorded
in the proofs. The proof is expressed in terms of the clausified problem, as output by the
SPASS’s preprocessor, FLOTTER. This violates what we call the Russian doll principle—
the notion that a metaprover B can encapsulate a prover A by reducing B-problems to A-
problems and translating back A-solutions (proofs or models) to B-solutions.

But since SPASS is such a powerful prover, especially in the context of Isabelle and
Sledgehammer [14], it is worthwhile to provide the missing link, namely, a translation of a
proof of the clausified problem to a proof of the original problem.

Our solution is to unskolemize the problem clauses that appear in the proof and use
that information to enrich the proof with skolemization inferences. Given a CNF problem,
expressed as a single formula with disjunctions inside conjunctions, the unskolemization
algorithm performs the following steps:

1. If there are no remaining Skolem symbols, return the universal closure of the formula.
2. If there exists a Skolem constant c, take the closure ∃X. φ[X/c] of the formula φ and

continue recursively with the body of ∃X. φ[X/c].
3. Otherwise, let f(X, t) be an application of a Skolem function:

3.1. Let χ, ψ be a partition of the conjuncts of φ such that each clause in χ contains an
occurrence of a Skolem function g(Y,u) applied to a variable Y distinct from X, and
each ψ does not.

3.2. Take the closure ∀X. ψ[f1(t1)/f1(X, t1), . . . , fn(tn)/fn(X, tn)], where each n-ary Skolem
function f j that takes X as its first argument is transformed into an (n−1)-ary func-
tion that does not.

3.3. Proceed recursively with χ and the body of ∀X. ψ[f1(t1)/f1(X, t1), . . . , fn(tn)/fn(X, tn)],
and take the conjunction of the two results.

The algorithm will be illustrated on an example. Let f,g,h,k be Skolem functions. Let

r(A,D,E) ∧ p(A,B, f(A,B),C,g(A,B,C)) ∧ q(A,D,h(A,D),E,k(A,D,E))

be the conjunction of all the problem clauses that appear in the proof. The unskolemization
algorithm produces the formula

∀A.
(
∀D. ∃H. ∀E. ∃K. r(A,D,E) ∧ q(A,D,H,E,K)

)
∧
(
∀B. ∃F. ∀C. ∃G. p(A,B,F,C,G)

)
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The steps of the algorithm are reproduced below:

r(A,D,E) ∧ p(A,B, f(A,B),C,g(A,B,C)) ∧ q(A,D,h(A,D),E,k(A,D,E))︸ ︷︷ ︸
∀A. r(A,D,E) ∧ p(A,B, f(B),C,g(B,C)) ∧ q(A,D,h(D),E,k(D,E))︸ ︷︷ ︸(
∀D. r(A,D,E) ∧ q(A,D,h,E,k(E))︸ ︷︷ ︸
∃H. r(A,D,E) ∧ q(A,D,H,E,k(E))︸ ︷︷ ︸
∀E. r(A,D,E) ∧ q(A,D,H,E,k)︸ ︷︷ ︸
∃K. r(A,D,E) ∧ q(A,D,H,E,K)

)
∧ p(A,B, f(B),C,g(B,C))︸ ︷︷ ︸
∀B. p(A,B, f,C,g(C))︸ ︷︷ ︸
∃F. p(A,B,F,C,g(C))︸ ︷︷ ︸
∀C. p(A,B,F,C,g)︸ ︷︷ ︸
∃G. p(A,B,F,C,G)

The unskolemization algorithm is not perfect. We believe it is complete for what one
could call naive skolemization, but the algorithm implemented by FLOTTER is anything
but naive [4]. Furthermore, it is possible to construct examples where clauses are derived
from both the negated conjecture and from other facts, leading to confusion in the redirection
algorithm. Nonetheless, our approach appears to work fairly well in practice, especially after
disabling a number of FLOTTER optimizations by passing appropriate options.

7.4 Waldmeister

Regrettably, the official version of Waldmeister cannot parse TPTP. The version available
remotely via the SystemOnTPTP service [76] includes a translator from the untyped TPTP
CNF UEQ format, which targets unit equality provers, to Waldmeister’s native format. A
unit equality problems consists of n axioms of the form t = u and one negated conjecture of
the form t 6= u, where t and u are first-order terms.

Paradoxically, Waldmeister can output TSTP proofs. However, these contain a number
of oddities: The original fact names are not preserved; to restore this information, we must
compare the formulas in the proofs with those in the original problems, modulo variable
renaming and symmetry of equality. Worse, the endgame of any Waldmeister proof is highly
abnormal. It consists of four inferences of the following form:

1.0.0.0 conj s = t goal
1.0.0.1 plain u = t 1.0.0.0, 0.a.b.c reduction
1.0.0.2 plain u = u 1.0.0.1, 0.d.e.f reduction
1.0.0.3 plain true 1.0.0.2 trivial

(The numbers 0.a.b.c and 0.d.e.f refer to formulas s = u and t = u derived earlier in the
proof. The last four steps are always numbered 1.0.0.0 to 1.0.0.3.) The last inference would
appear to derive true, which is not a particularly impressive achievement. The endgame
makes more sense if we negate the four formulas and adjust the formula roles accordingly:

1.0.0.0 neg_conj s 6= t negated goal
1.0.0.1 neg_conj u 6= t 1.0.0.0, 0.a.b.c reduction
1.0.0.2 neg_conj u 6= u 1.0.0.1, 0.d.e.f reduction
1.0.0.3 neg_conj false 1.0.0.2 trivial

The redirection algorithm takes over from there to produce a direct proof, as with the super-
position provers:
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have 1.0.0.1: u = t [0.d.e.f ] []
have 1.0.0.0: s = t [1.0.0.1, 0.a.b.c] []

This can be shortened even further to

have 1.0.0.0: s = t [0.a.b.c, 0.d.e.f ] []

Another peculiarity of the Waldmeister integration is related to its restrictive logic. Log-
ical connectives such as ∧ and ∨ must be encoded as terms and axiomatized. Because the
logic is so weak, it is not even possible to express the requirement that all Boolean-valued
terms are equal to either true or false.

Unlike for the other provers, skolemization takes place in Sledgehammer. The skolem-
ization steps are recorded so that they can be retrofitted to the Waldmeister proof, without
requiring unskolemization (cf. SPASS, Section 7.3).

Essentially existential variables in the goal are translated to universal variables in the
negated conjecture; thus, ∃x. f x = g x is translated to f(X) 6= g(X). This triggers the use of
narrowing in Waldmeister, which results in even odder proofs than usual. Isar proof recon-
struction currently fails in this case.

7.5 Z3

Z3 is integrated in Sledgehammer via the SMT-LIB format for problems. The original inte-
gration [15, 17] relied on version 1 of the format. Isabelle now uses version 2.

Z3 proofs are expressed in a custom format inspired by SMT-LIB. A proof is simply a
(large) SMT-LIB term, where proof rules are represented by function symbols and formulas
and terms appear unencoded as arguments to proof rules. Inferences can be reused thanks to
a ‘let’ construct. Parsing a Z3 proof results in a directed acyclic graph whose sink node is
⊥, much in the style of those obtained from TSTP-based provers.

For a number of years, proof reconstruction for Z3 was performed by a dedicated Isa-
belle proof method, called smt, that parses a Z3 proof and replays the inferences using
standard Isabelle methods (such as simp and arith). This requires Z3 to be installed on the
user’s machine for replaying. Unfortunately, in some cases a specific version of the solver
is needed to re-find a proof. As a matter of policy, any theory files included in the Isabelle
distribution or the Archive of Formal Proofs [41] may not depend on smt.

A partial solution to these issues is to cache Z3 proofs in a file that accompanies the
Isabelle theory. Whenever the theory is reprocessed, the cache is consulted before actually
calling Z3. However, the cache is fragile: Even trivial changes such as renaming a constant
will cause a lookup failure.

Isar proof reconstruction appears to be the superior approach: By representing Z3 proofs
as structured Isabelle proofs, we finally get Z3 out of the replay loop. Some of the code from
the smt method, such as the proof parser, can be reused.5

The first difficulty in translating Z3 proofs into Isar proofs is that Z3, like Waldmeis-
ter, does not identify the axioms by name. And like Waldmeister, it silently normalizes the
formulas; for example, a formula of the form P−→ Q−→ R in the problem may appear as
P ∧ Q −→ R in the proof. Such minor alterations are enough to cause reconstruction fail-
ures. Without closely inspecting the solver’s code, it is impossible to tell whether we have
identified all such cases.

5 Newer versions of Z3 also support TPTP TFF0 as input and TSTP as output format. We ran into some
basic parsing issues, due to unbalanced parentheses in the TSTP output, and since we already had a tried and
tested parser for native proofs, we did not investigate this further.
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One of the main strengths of SMT solvers is their support for linear arithmetic. When
trying alternative proof methods (Section 6.2), Sledgehammer will use different subsets of
methods for different Z3 inferences. In particular, it will first try linarith, presburger, and
algebra to replay an arithmetic inference, before falling back on other methods.

Z3 proofs include definitions, which are axioms of the form f(X1, . . . ,Xn) = . . . where f
is a fresh symbol that does not occur on the right-hand side. These definitions are simply
inlined. It should not be difficult to extend the Isar proof reconstruction module to support
these: Isar provides let and def constructs that could be used to mimic the Z3 proof.

Similarly, Z3 supports nested subproofs. At any point in the proof graph, a ‘hypothesis’
rule introduces a local assumption, which is eventually discharged by a ‘lemma’ rule. When
they are cleanly nested, the ‘hypothesis’ and ‘lemma’ rules can be seen as delimiters for a
nested proof block. It should be possible to extend the module’s data structures described in
Section 3 to support nested proof blocks. Isar provides the syntax { . . .} that could be used
for this. For the moment, each hypothesis is simply added explicitly to all formulas that
appear in the nested block, after which the block structure can be ignored.

Z3 has a peculiar notion of skolemization. A typical prover, such as E or Vampire, can
go from the original axiom to its skolemized version in one inference:

11 axiom ∀X. ∃Y. p(X, Y) exists_P
53 plain ∀X. p(X, f(X)) 11 skolem

In contrast, Z3 introduces a skolemization axiom, introduced by the ‘sk’ rule. The axiom
can be used to perform skolemization:

11 axiom ∀X. ∃Y. p(X, Y) exists_P
12 axiom ∀X. (∃Y. p(X, Y)) = p(X, f(X)) sk
53 plain ∀X. p(X, f(X)) 11, 12

At the Isar level, the skolemization axiom (step 12) corresponds to an obtain, which itself
embodies an existential (∃p. . . .).6 The proof obligation is a tautology, but one that is too
difficult for metis, blast, meson, or any of the other standard methods.

Our initial approach was to rewrite the skolemization axiom into a syntactically weaker
version, by moving the outermost universal quantifiers under the equivalence:

12 axiom (∀X. ∃Y. p(X, Y)) = (∀X. p(X, f(X))) sk

One direction of the equivalence amounts to skolemization as performed by typical provers,
whereas the other direction is trivial. This worked in some cases (such as the simple example
above) but failed in other cases, where the stronger formula was necessary.

Instead, we developed a simple proof method, called moura (after Leonardo de Moura,
who implemented Z3’s skolemizer), that can prove such formulas in Isabelle from the axiom
of choice: (∀x. ∃y. q x y) =⇒ (∃ f . ∀x. q x ( f x)). The moura method consists of a call to
auto augmented with the axiom of choice as a so-called safe introduction rule, meaning that
the axiom will be aggressively resolved against the goal. The auto invocation is optionally
followed by metis or blast to finish the work if necessary.

As an example, consider the skolemization axiom ∀X. (∃Y. p(X, Y)) = p(X, f(X)) from
above. The corresponding Isabelle proof obligation is ∃ f .∀x. (∃y. p x y) = p x ( f x). Apply-
ing the axiom of choice as an introduction rule yields the goal ∀x.∃y. (∃y. p x y) = p x y, a
tautology that can easily be discharged by auto.

6 Strictly speaking, the proof obligation associated with an obtain has the form (
∧

p. . . . =⇒ Q) =⇒ Q.
However, this is logically equivalent to ∃p. . . . , and proof methods such as metis can cope with both forms.
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In general, the proof obligation associated with a skolemization axiom can start with
n existential quantifiers, if n Skolem functions are introduced simultaneously. This is han-
dled by augmenting auto with generalized variants of the axiom of choice, of the form
(∀x.∃y1 . . . yn. q x y1 . . . yn) =⇒ (∃ f1 . . . fn.∀x. q x ( f1 x) . . . ( fn x)), all of which are conse-
quences of the standard axiom of choice (the n = 1 case).

7.6 veriT

The SMT solver veriT was designed to produce highly detailed proofs, to facilitate its in-
tegration with proof assistants (notably Coq [2]), while offering reasonable performance.
Its proof format was carefully designed to possibly serve as a standard [9]. The format is
conceptually similar to TSTP, with one line per inference.

Skolemization is captured by a ‘tmp_skolemize’ rule, which is similar to the correspond-
ing rules found in typical provers. A connected rule is called ‘tmp_ite_elim’: From an an-
tecedent of the form (if s then t else u) = v, it derives c= v ∧ (if s then c= t else c= u). The
constant c can be thought of as the Skolem constant emerging from ∃c. c = v ∧ (if s then
c = t else c = u). Strangely enough, veriT will sometimes introduce the same constant c
multiple times, but always specified by the same formula. These duplicates must be coa-
lesced, to avoid introducing several obtain variables with the same names, each shadowing
the previous one, resulting in reconstruction failures.

The solver’s proof output also features nested proof blocks with local assumptions.
These are eliminated in the same way as for Z3.

7.7 LEO-II

LEO-II produces its proofs in the TSTP format. Unusually for an ATP, its proof format
is thoroughly documented [75]. LEO-II proofs typically consist of a number of generally
higher-order inferences followed by a single first-order inference, found by the underlying
first-order ATP (by default, E), that derives ⊥.

The higher-order steps performed by LEO-II itself are reconstructed by trying various
Isabelle proof methods, in the hope that one of them will succeed. Even metis, which is
primarily first-order, will sometimes succeed at solving higher-order problems, thanks to
its encoding of λ-abstractions as combinators. (Recall that metis is strong enough to jus-
tify skolemization steps in Isar proofs, which are beyond first-order logic.) Extensionality,
as embodied by the rule ‘extcnf_equal_neg’, is handled by passing Isabelle’s ext axiom,
(∀x. f x = g x) =⇒ f = g, to the proof method.

The last step can in principle be replayed by metis, but this may take too long (or fail
for technical reasons). In particular, LEO-II sometimes fails to extract the necessary lem-
mas from an E proof and will then return a ridiculously large set of spurious dependencies.
LEO-II also provides an option (–proofoutput 2) that translates the individual E infer-
ences into LEO-II inferences, to embed them into the larger LEO-II proof, but this mode of
operation is extremely slow and failed on all examples we considered.

LEO-II proofs contain a number of so-called logistic rules, whose succedent does not
logically follow from the antecedent. Most of these are disabled by specifying the appropri-
ate options (–notReplLeibnizEQ –notReplAndrewsEQ –notUseExtCnfCmbd).
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h1

⊥

h1,h2

⊥

h1,h2,h3

⊥

h1,h2,h3,h5

⊥
h1,h2,h3,h4

⊥

h1,h2,h3,h4,h7

⊥
h1,h2,h3,h4,h6

⊥

Fig. 5 Graph for a proof produced by Satallax

7.8 Satallax

Satallax supports three output formats: a TSTP-like format, Coq’s Ltac tactic language, and
Coq proof terms [21]. The TSTP-like format was added at our request and appears to be
the most appropriate for reconstruction in Isabelle, but it deviates from standard TSTP in
important, undocumented ways. Often, we were able to make sense of it only by inspecting
the corresponding Coq proofs. In the Isabelle integration, a preprocessor transforms the
TSTP-like proof into a standard proof by contradiction before the rest of the translation
pipeline can take over.

A TSTP-like proof produced by Satallax can be seen as a tree, as depicted in Figure 5.
The root corresponds to the negated conjecture. The edges leaving from one node denote an
inference that gives rise to one or two new goals. Compared with standard proofs by contra-
diction, which derive formulas from formulas, this goal-directed approach is backward. It is
reminiscent of the interaction in tactic-based systems such as Coq and Isabelle.

A node is a set of hypotheses and the goal ⊥. We write
h1, . . . ,hn

⊥ to indicate that ⊥
follows from the hypotheses h1, . . . ,hn. The leaf nodes are annotated by a proof rule that
detects contradictory hypotheses. It is convenient to distinguish between the initial linear
fragment of the tree (with the thicker edges) and the branching part. The linear part can be
directly translated to a standard TSTP proof, as follows.

– h0 is always the conjecture:
0 conj h0

– h1 is always the negated conjecture:
1 neg_conj h1 =⇒ ⊥ 0

– For each step in the linear part, if
h1, . . . ,hn,hn+1

⊥
is derived from

h1, . . . ,hn

⊥ , then we can
produce the following inference:

n plain hn 1,2, . . . ,n−1
n+1 plain hn+1 1,2, . . . ,n

The translation works recursively for the branching part, as follows.

– A leaf
h1, . . . ,hn

⊥ is translated to
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13 plain h1 =⇒ ··· =⇒ hn =⇒ ⊥
– Given a node

h1, . . . ,hn

⊥ that gives rise to
h1, . . . ,hn,hn+1

⊥
and

h1, . . . ,hn,hn+2

⊥
, two goals

that were translated to
12 plain h1 =⇒ ··· =⇒ hn =⇒ hn+1 =⇒ ⊥ . . .
13 plain h1 =⇒ ··· =⇒ hn =⇒ hn+2 =⇒ ⊥ . . .

the node of interest is translated to
14 plain h1 =⇒ ··· =⇒ hn =⇒ ⊥ 12, 13

Observe that the dependencies are reversed: Where Satallax reduced one goal to two
new subgoals, the repaired TSTP proof derives one formula (14) from a pair of formulas
(12 and 13).

The hypotheses hi can heavily burden the formulas and hence the resulting Isar proofs.
Fortunately, we can often simplify them. The new hypotheses in the linear part (h2 and h3 in
our example) are unconditionally true, because they occur before the first case distinction.
Thus we can remove them from the chain of implications and add them to the dependencies.
For example, instead of

7 plain h1 =⇒ h2 =⇒ h3 =⇒ h4 =⇒ h7 =⇒ ⊥

the translation can produce

7 plain h4 =⇒ h7 =⇒ ⊥ h1,h2,h3

Another, more minor issue with reconstructing Satallax proofs is that invocations of
extensionality are implicit in the proof, whereas Isabelle tactics do not apply it by default. As
a workaround, the translation adds Isabelle’s ext axiom as a dependency to each inference,
relying on proof minimization (Section 6.4) to eliminate it where it is not needed.

8 Examples

The Isar proof construction module has been part of Isabelle ever since Paulson and Susanto
implemented their prototype. However, it took several more years before we found it ro-
bust enough to have Sledgehammer run it whenever metis fails. Since then, Sledgehammer-
generated Isar proofs have started appearing in user formalizations, usually in the face of a
metis failure. We also hear from users who activated the feature to better understand a proof,
confirming our hypothesis that machine-generated textual proofs can help experts who must
satisfy their curiosity. As one user remarked, “Reading a proof that nobody wrote [is] a very
nice sensation” [22].

To give a flavor of the Isar proofs that arise in practice, we present some specimens
that we found in the Archive of Formal Proofs [41], a collection of user-contributed Isabelle
formalizations (Section 8.1). These examples are complemented by a few more that arose
as we worked on our own formalization (Section 8.2). The examples are reproduced almost
exactly as we found them, except for some minor reformatting and renaming. We have
deliberately chosen specimens at both ends of the readability gradients, to demonstrate both
the strengths and the weaknesses of our approach in practice.

8.1 Archive of Formal Proofs

The first example originates from a formalization of the Babylonian method for computing
nth roots [80]. Judging from the style, it appears not to have been tampered with:
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have f1: ∀n. rat_�of_�int brat_�of_�nat nc= rat_�of_�nat n
using of_int_of_nat_eq by simp

have f2: ∀n. real_�of_�int brat_�of_�nat nc= real n
using of_int_of_nat_eq real_eq_of_nat by auto

have f3: ∀i ia. brat_�of_�int i / rat_�of_�int iac= breal_�of_�int i / real_�of_�int iac
using div_is_floor_divide_rat div_is_floor_divide_real by simp

have f4: 0 < brat_�of_�nat pc
using p by simp

have bS c ≤ s
using less floor_le_iff by auto

hence brat_�of_�int bS c / rat_�of_�nat pc ≤ brat_�of_�int s / rat_�of_�nat pc
using f1 f3 f4 by (metis div_is_floor_divide_real zdiv_mono1)

hence bS / real pc ≤ brat_�of_�int s / rat_�of_�nat pc
using f1 f2 f3 f4 by (metis div_is_floor_divide_real floor_div_pos_int)

thus S / real p≤ real_�of_�int (s div int p)+1
using f1 f3
by (metis div_is_floor_divide_real floor_le_iff floor_of_nat less_eq_real_def )

The argument is fairly readable by the standards of machine-generated proofs. Each step is
an unconditional equality or inequality.

The next example is extracted from a theory for verifying network security policies [27].
All the steps are discharged by metis, probably because an older version of Sledgehammer
was used, which did not try alternative proof methods:

have f1: ∀a as. − insert (a :: α) (coset as) = set as−{a}
by (metis compl_coset insert_code(2) set_removeAll)

hence f2: ∀ f a l. f ‘ (− insert (a :: α) (coset (succ_�tran (undir l) a))) =
set (map f (removeAll a (succ_�tran (undir l) a)) :: node_config list)

by (metis undir_reach_def sinvar_eq_help1 set_removeAll)
have f3: ∀a l. − insert (a :: α) (coset (succ_�tran (undir l) a)) =

SNI.undir_�reach (lg2g l) a
using f1 by (metis SNI.undir_reach_def succ_tran_correct

undir_correct)
have ¬ nP ‘ (− insert x (coset (succ_�tran (undir G) x)))⊆ {Unrel} ∨

nP ‘ (− insert x (coset (succ_�tran (undir G) x)))⊆ {Unrel}
by metis

moreover
{ assume nP ‘ (− insert x (coset (succ_�tran (undir G) x)))⊆ {Unrel}
hence (nP x = Inter−→ nP ‘ SNI.undir_�reach (lg2g G) x⊆ {Unrel}) =

(nP x = Inter−→ nP ‘ set (undir_�reach G x)⊆ {Unrel})
using f2 f3 by (metis undir_reach_def image_set) }

moreover
{ assume ¬ nP ‘ (− insert x (coset (succ_�tran (undir G) x)))⊆ {Unrel}
hence (nP x = Inter−→ nP ‘ SNI.undir_�reach (lg2g G) x⊆ {Unrel}) =

(nP x = Inter−→ nP ‘ set (undir_�reach G x)⊆ {Unrel})
using f2 f3 by (metis undir_reach_def image_set) }

ultimately show (nP x = Inter−→ nP ‘ SNI.undir_�reach (lg2gG) x⊆ {Unrel}) =
(nP x = Inter−→ nP ‘ set (undir_�reach G x)⊆ {Unrel})

by metis
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This example is hard to read, but it did allow the user to move on with his formalization.
The two nested proof blocks, leading to the ultimately show statement, are produced by the
proof redirection algorithm. Type annotations appear here and there to ensure that the right
types are inferred.

Incidentally, we discovered that a modern version of Sledgehammer yields a much
shorter proof, using one of the alternative proof methods described in Section 6.2:

by (simp add: SNI.undir_reach_def succ_tran_correct undir_correct undir_reach_def )

This is now the proof that appears in the Archive of Formal Proofs.
The third and last example from the archive is about regular algebras [29]. The skeleton

of the proof, including the induction step, was written manually. The proofs of the base case
and of the induction step were ostensibly filled in by Sledgehammer:

lemma powsum_ub: i≤ n =⇒ x i ≤ xn
0

proof (induct n)
case 0 show case

by (metis (hide_lams, mono_tags) 0.prems eq_iff le_0_eq power_0 powsum_00)
next
case (Suc n) show case
proof −
{ assume aa1: Suc n 6= i
have ff1: xSuc n

0 ≤ xSuc n
0 ∧ Suc n 6= i

using aa1 by fastforce
have ff2: ∃a. xn

0 +a≤ xSuc n
0 ∧ Suc n 6= i

using ff1 powsum2 by auto
have x i ≤ xSuc n

0
using ff2 by (metis Suc.hyps Suc.prems add_lub le_SucE less_eq_def ) }

thus x i ≤ xSuc n
0

using less_eq_def powsum_split_var2 by auto
qed

qed

The proof of the induction step features an interesting proof pattern: a nested proof block
arising from proof redirection. A mathematician could have written, “We may assume with-
out loss of generality that n+1 6= i.” In the formal proof, the non-loss of generality is justified
by the very last step, which takes place outside the scope of the assumption Suc n 6= i.

8.2 Metatheory of Resolution

Resolution was introduced in 1965 by Robinson [67] as a simple, elegant, and efficient cal-
culus for propositional and first-order logic. Despite the rise of SAT solving, it is at the heart
of E, LEO-II, SPASS, Vampire, and many other ATP systems. Its metatheory is elaborated
in a chapter by Bachmair and Ganzinger [5].

One of the authors of this article, Blanchette, is involved in an effort to develop infras-
tructure for formalizing inference systems; together with Dmitriy Traytel, he has formalized
parts of Bachmair and Ganzinger’s chapter. Possibly due to the omnipresence of multisets,
which are not as well supported as lists and sets by auto, Sledgehammer turned out to be
invaluable. Often, it was possible to simply follow the paper proof and let the ATPs fill in
the gaps. One example is the following Sledgehammer-generated fragment, which arose in
the proof of compactness:
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obtain mm :: α clause set⇒ α clause set⇒ α clause where
f1:

∧
M Ma. (M ⊆Ma ∨ mm M Ma ∈ M) ∧ (mm M Ma /∈Ma ∨ M ⊆Ma)

by (metis subsetI)
hence f2:

∧
M Ma Mb. mm M (Ma ∪Mb) /∈Ma ∨ M ⊆Ma ∪Mb

by (meson Un_iff )
hence D ∈ saturate (D ∪ E)
using f1 by (metis in_sat_ee saturate_mono sup_commute)

thus E ∈ saturate (D ∪ E)
using f2 f1 by (meson in_sat_d inference_system.saturated_saturate

saturate_mono saturatedD step.hyps(1) subsetCE)

The proof is difficult to relate to until one pays attention to what the Skolem function mm
stands for: Given two sets of clauses C and D , mm C D returns an element of C −D if such
an element exists.

The next and last example arose while enriching the theory of multisets:

obtain j where j_len: j < length xs′ and nth_j: xs′ ! j = x
proof −
assume

∧
j. j < length xs′ =⇒ xs′ ! j = x =⇒ thesis

moreover have
∧

k m n. (m :: nat)+n < m+ k ∨ ¬ n < k
by linarith

moreover have
∧

n a as. n−n < length (Cons a as) ∨ n < n
by (metis Nat.add_diff_inverse diff_add_inverse2 impossible_Cons le_add1

less_diff_conv not_add_less2)
moreover have ¬ length xs′ < length xs′

by blast
ultimately show thesis
by (metis (no_types) Cons.prems Nat.add_diff_inverse diff_add_inverse2

length_append less_diff_conv list.set_intros(1) multiset_of_eq_setD
nth_append_length split_list)

qed
As we have come to expect from machine-generated proofs, some of the steps are odd. It
is hard to imagine a human stating n− n < length (Cons a as) ∨ n < n as an intermediate
property. Despite this, Blanchette inserted the proof unchanged in the theory file, only to
discover a much simpler alternative, also due to Sledgehammer, one month later:

by (metis Cons.prems in_set_conv_nth list.set_intros(1) multiset_of_eq_setD)

This example hints at the variety of proofs that are possible for the same problem. Dif-
ferent ATPs find radically different proofs; sometimes the same ATP, invoked on a different
day, produces different results. One reason for this is the use of machine learning in the rel-
evance filter [44]. More variation is possible by changing the Isar proof compression factor
or setting other Sledgehammer options.

9 Evaluation

Enhancements to Sledgehammer can be evaluated systematically by applying the tool to
each goal arising in existing Isabelle theory files and measuring how many goals can be
discharged automatically. Since the main motivation behind Isar proof construction is to in-
crease the success rate, we compare the success rate of Sledgehammer without and with Isar
proofs for each ATP (excluding Waldmeister, which cannot be run locally, cf. Section 7.4).
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Judgment Day Arithmetic Resolution
One-line Isar Oracle One-line Isar Oracle One-line Isar Oracle

E 613 +10 + 0 239 + 3 + 0 364 + 4 + 0
SPASS 667 + 5 + 5 249 + 3 + 0 385 + 4 + 2
Vampire 692 + 9 + 6 243 + 3 + 0 395 + 5 + 0

veriT 535 + 5 + 3 237 +14 + 6 336 + 1 + 0
Z3 615 +17 +11 243 +12 + 3 384 + 5 + 3

LEO-II 413 + 0 + 5 122 + 0 + 0 210 + 0 + 5
Satallax 438 + 4 + 3 120 + 0 + 0 234 + 0 + 3

Fig. 6 Number of successful Sledgehammer invocations per ATP with one-line proof reconstruction, with
Isar proof reconstruction, and with ATPs trusted as oracles

The benchmarks are partitioned into three suites, for a total of 2461 goals:

– Judgment Day (1230 goals) consists of seven theories from the Isabelle distribution and
the Archive of Formal Proofs that have been used continuously since 2010 for evaluating
Sledgehammer [16]. The theories were chosen to be representative of various Isabelle
applications.

– Arithmetic (622 goals) consists of three theories involving linear and nonlinear arith-
metic that were selected to evaluate SMT solvers [12].

– Resolution (609 goals) consists of nine theories belonging to the formalization of the
metatheory of resolution (Section 8.2).

Be aware that benchmark suites such as Judgment Day keep on evolving together with the
proof assistant. Also, the hardware is not always the same from evaluation to evaluation.
Hence, success rate values should not be compared uncritically across papers.

The current experiments were carried out on Linux servers equipped with Intel Core2
Duo CPUs at 2.40 GHz. Each prover was given 30 seconds to solve each goal, but the
30-second slot was split into several slices, each corresponding to different problems and
options to the prover. The results are summarized in Figure 6.

It is important to bear in mind that the evaluation is not a competition between the
provers. Different provers are invoked with different problems and options, and although we
have tried to optimize the setup for each, we might have missed an important configuration
option. Each number must be seen as a lower bound on the potential of the prover.

When a proof is found, one-line proof reconstruction is attempted, using a portfolio of
methods (metis, meson, blast, simp, auto, fastforce, force, linarith, and presburger). Recon-
struction is a success if at least one of the method succeeds within 2 seconds. The number
of successful one-line proofs is given in the “One-line” column of Figure 6. Unlike in some
other Sledgehammer evaluations [12], the smt method is not included as a reconstructor,
because of the limitations mentioned in Section 7.5. For arithmetic goals, this means that
one-line proof reconstruction will often fail for SMT solvers.

If one-line reconstruction fails, Sledgehammer attempts to generate an Isar proof. The
goal is considered solved if the Isar proof is successfully generated and replayed. This is
reflected in the “Isar” column of Figure 6.

In case both reconstruction approaches fail, the user could in principle trust the external
prover as an oracle, since the problem encoding is sound [13].7 These reconstruction failures
are recorded in the “Oracle” column of Figure 6.

7 In practice, most Isabelle users in this case would work on a manual proofs, often getting some inspiration
from the unreconstructable ATP-generated proof.
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The data shows that Isar reconstruction makes a serious dent in Sledgehammer recon-
struction failures: Most proofs that could not be replayed before by one-line proofs can
now be reconstructed as Isar. Out of 7893 ATP successes overall, 104 (1.3%) can be recon-
structed only thanks to the new Isar module, and 55 (0.7%) still require trusting the external
prover. Overall, textual reconstruction via one-line or multi-line proofs succeeds in 7838
of 7893 cases (99.3%). The remaining reconstruction failures can be explained in various
ways, notably:

– The symbols introduced by obtain cannot be polymorphic, which is sometimes an issue
(cf. Section 5.1).

– Communication with E, but also in some cases with other provers, takes place through
type encodings. Although the encodings are globally sound [13], individual inferences
can be ill-typed, leading to Isar failures.

– Not all proof rules are supported for all provers. Notably, Z3’s model-based quantifier
instantiation strategy introduces odd symbols in the arithmetic inferences, and LEO-II’s
conjecture splitting rule, a logistic rule that cannot be disabled, would require a more
general format for representing ATP proofs (or some other trick).

– Sometimes, the culprit is a mere failure to perform by Isabelle’s proof methods. This
can be an issue for the higher-order ATPs LEO-II and Satallax.

A 1.3% increase of the success rate might not sound like much, but as one of us remarked
in a previous paper [14, Section 7]:

When analyzing enhancements to automatic provers, it is important to remember
what difference a modest-looking gain of a few percentage points can make to users.
The benchmarks were chosen to be representative of typical Isabelle goals and in-
clude many that are either too easy or too hard to effectively evaluate automatic
provers. Indeed, some of the most essential tools in Isabelle, such the arithmetic de-
cision procedures, score well below 10% when applied indiscriminately to the entire
Judgment Day suite.

In short, every percentage point counts.

10 Conclusion

Sledgehammer employs a variety of techniques to improve the readability and efficiency
of the generated Isar proofs. Whenever one-line proof reconstruction fails or times out,
users are offered detailed, direct Isar proofs that discharge the goal, sometimes after a small
amount of manual tuning. While the output is designed for replaying proofs, it also has a
pedagogical value: Unlike Isabelle’s automatic tactics, which are black boxes, the proofs
delivered by Sledgehammer can be inspected and understood. The direct proofs also form
a good basis for manual tuning. Users who are interested in inspecting the proofs can force
their generation by passing an option. Related options control preplay and compression.

This work is still in progress. Many aspects could be improved further; we mentioned
a few in the previous sections. Our next priority is to identify and rectify any remaining
failure cases: Preplaying insulates users from failures, but ideally valid ATP proofs should
always lead to valid Isar proofs. We also want to integrate the SMT solver CVC4 [6], which
performs extremely well on Isabelle problems [65, Section V] but whose LFSC (Logical
Framework with Side Conditions) proofs [74] would need to be parsed and understood.

A possible further step would be to implement proof manipulation algorithms to sim-
plify the proofs further before presenting them to users. For example, users normally prefer
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sequential chains of deduction to the spaghetti-like structure of some machine-generated
proofs; using appropriate algorithms, it should be possible to minimize the number of jumps
or introduce block structure to separate independent subproofs. Similar work has been car-
ried out for human-written proofs [55, 56], but we expect machine proofs to offer more
opportunities for refactoring. Automatic discovery of concepts and lemmas would also be
useful for larger proofs.

Today, most automatic provers have some proof output, but perhaps due to the low
number of consumers this output is typically crude and poorly documented. Reconstruction
as done in Sledgehammer reveals these weaknesses. Clearly, more could be done on the ATP
side to increase correctness, readability, and interoperability of the generated proofs.
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